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Contactless analysis of heart rate 
variability during cold pressor 
test using radar interferometry 
and bidirectional LSTM networks
Kilin Shi1,5*, Tobias Steigleder2,5, Sven Schellenberger3, Fabian Michler1, Anke Malessa2, 
Fabian Lurz3, Nicolas Rohleder4, Christoph Ostgathe2, Robert Weigel1 & Alexander Koelpin3

Contactless measurement of heart rate variability (HRV), which reflects changes of the autonomic 
nervous system (ANS) and provides crucial information on the health status of a person, would 
provide great benefits for both patients and doctors during prevention and aftercare. However, gold 
standard devices to record the HRV, such as the electrocardiograph, have the common disadvantage 
that they need permanent skin contact with the patient. Being connected to a monitoring device 
by cable reduces the mobility, comfort, and compliance by patients. Here, we present a contactless 
approach using a 24 GHz Six-Port-based radar system and an LSTM network for radar heart sound 
segmentation. The best scores are obtained using a two-layer bidirectional LSTM architecture. To 
verify the performance of the proposed system not only in a static measurement scenario but also 
during a dynamic change of HRV parameters, a stimulation of the ANS through a cold pressor test is 
integrated in the study design. A total of 638 minutes of data is gathered from 25 test subjects and 
is analysed extensively. High F-scores of over 95% are achieved for heartbeat detection. HRV indices 
such as HF norm are extracted with relative errors around 5%. Our proposed approach is capable to 
perform contactless and convenient HRV monitoring and is therefore suitable for long-term recordings 
in clinical environments and home-care scenarios.

Heart rate describes the number of heartbeats per minute. However, the beat of a healthy heart is not absolutely 
regular. Fluctuations in the time intervals of adjacent heartbeats are referred to as heart rate variability (HRV)1,2. 
This variability is linked to the neurocardiac function of the body and is generated by heart-brain interactions and 
by dynamic non-linear processes which are regulated by the autonomic nervous system (ANS)3. It is influenced 
by many factors such as exercise and mental stress or physiological events such as respiration, blood pressure 
regulation, or the circadian rhythm4,5. HRV is an indicator for both chronic and psychological conditions such 
as depression, epileptic seizures6, diabetic neuropathy7, or the surveillance of post-infarction patients to prevent 
sudden cardiac death8. Especially chronic diseases pose a major concern in future health care as both loss of 
quality of life and consumption of resources due to their effects are immense and their impact rises steadily.

On the other side lies a tremendous chance in addressing chronic diseases in a timely fashion as by adequate 
prophylactic measures, their course can be altered drastically and outcomes can be changed fundamentally. In 
order to achieve this, HRV needs to be measured over long periods in a way, which is both agreeable for the 
patient and resource-friendly for society. Established devices, which are capable to measure HRV indices, are 
the electrocardiograph (ECG)2,8 or the photoplethysmograph (PPG)9. However, these devices have the common 
disadvantage that they need permanent contact to the patient. Especially during long-term recordings, this 
reduces their mobility, comfort, and compliance10. Furthermore, electrodes might lead to further distress, false 
alarms and thereby increase symptom burden11.

A very promising approach for this task are radar systems. Radar technology promises an unobtrusive way 
for continuous and touch-free monitoring of vital signs12–21. A radar system transmits an electromagnetic wave, 
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which is scattered at the proband’s body and received back by the radar. By evaluation of the propagation time 
between transmit and reception of the signal the relative distance can be determined. Another radar concept is 
based on phase measurements between transmit and receive signal for distance monitoring. Using this technique, 
researchers have reported high accuracies when detecting heart rates and single heartbeats, not only with direct 
line of sight but also through obstacles such as clothing. However, in order to reliably measure HRV, heart rate 
determination is not sufficient. Precise beat-to-beat detection and segmentation is needed to obtain correct values 
since small fluctuations in the detection timing have high impact on the resulting HRV indices.

Previous works that researched radar-based heart beat or HRV extraction utilised the pulse wave component 
as cardiac signal. However, the shape and configuration of the pulse wave is connected to respiration and there-
fore changes continuously during each respiration cycle. This might complicate precise heartbeat extraction that 
is needed for HRV determination. For the first time, this work explores the possibility of HRV extraction using 
the radar heart sound component, which promises higher accuracy and precision when compared to cardiac 
analysis using the pulse wave component due to its prominent shape and temporal distinctness19,22. In order to 
perform precise beat-to-beat localisation in the heart sound signal for HRV calculation, a hidden-Markov-based 
algorithm and a bidirectional Long Short-Term Memory (LSTM) network are implemented, evaluated, and com-
pared. Several LSTM configurations are tested to obtain the optimal set of hyperparameters. Whereas previous 
works only evaluated the measurability and performance of radar-based HRV extraction in a static setting, e.g., 
in a supine or seated position, we employed a defined test scenario including a stimulation of the ANS through 
a cold pressor test (CPT). Thereby, the indices are not only measured at rest but also during sudden changes 
of the HRV parameters. To obtain a conclusive result, data from 25 test subjects are gathered and a reference 
ECG is used to perform an extensive evaluation of the performance of heartbeat detection and HRV extraction.

Heart rate variability
To quantify HRV, different sets of parameters have been introduced. These indices can be separated into two 
major groups: Time-domain and frequency-domain parameters2,23,24. Time domain indices provide a quantifi-
cation of the amount of variance in the inter-beat intervals (IBIs) using statistical measures. Commonly known 
parameters comprise the standard deviation of the NN intervals (SDNN) or the the root mean square successive 
difference of intervals (RMSSD). Another established parameter is the triangular index (TRI), which represents 
the integral of the density of the IBI histogram divided by its height2. TRI has a high validity25,26 and can be used 
to distinguish between normal heart rhythms and arrhythmias27. The major advantage of geometric measures 
such as TRI compared to measures like SDNN or RMSSD is their relative insensitivity to computational errors 
of the IBI values28. Therefore, in this work, TRI was selected for further analysis.

Frequency-domain measures are calculated by transforming a windowed IBI signal into frequency-domain 
using the discrete Fourier transform (DFT)2. Afterwards, the power distribution among certain frequency bands 
is analysed. Frequency-domain parameters are separated into high-frequency (HF) and low-frequency (LF) 
bands2. The LF band ranges from 0.04 Hz ... 0.15 Hz, equalling rhythms or modulations with periods lengths of 
7 s ... 25 s. LF has often been used as a marker for sympathetic activity29. The HF band ranges from 0.15 Hz ... 0.4 
Hz, corresponding to rhythms between 2.5 s ... 7 s. This band reflects parasympathetic or vagal activity and is 
sometimes also called the respiratory band since it is affected by Heart rate (HR) variations which are caused by 
the respiratory cycle, an effect which is called “respiratory sinus arrhythmia”. Low HF values are associated with 
stress, panic, anxiety, or worry. Another frequency-domain parameter is LF/HF ratio, which is simply calculated 
as the ratio of the respective absolute values. Since both sympathetic nervous system (SNS) and the parasym-
pathetic nervous system (PNS) regulate HR, this value tries to reflect the dominance of either sympathetic or 
parasympathetic activity. Low LF/HF ratios are assumed to reflect stronger parasympathetic activity while high 
ratios may indicate higher sympathetic activity1,4.

Two measures are usually calculated for each band, the absolute power and the normalised value. The unit of 
the absolute power in a certain band is ms2 . Normalised values are calculated by dividing the respective power 
by the total power of LF and HF and are given in normalised units (n.u.). These values represent the percentage 
of the component in the total activity and emphasise the controlled and balanced behaviour of the SNS and 
PNS. Moreover, normalisation minimises the effect of changes in the total power which might lead to incorrect 
conclusions1,2.

Methods
Subjects.  The university hospital in Erlangen was responsible for the acquisition and support of test subjects, 
the clinical validation, and acquiring the approval of the ethics committee. All of the data recordings were per-
formed at the university hospital in Erlangen. Overall, measurements were performed with 25 healthy subjects. 
The written consent was obtained from all participants of this study.

Before each measurement medical staff checked the health state of the participants. The test persons were 
then informed in detail about the measurement procedure and were able to ask questions about any uncertain-
ties. Before starting the measurement, the participants laid down on the examination table and were wired to the 
so-called “Task Force Monitor (TFM)” by CNSystems. This medical gold standard device was used for recording 
the reference ECG signal synchronised to the radar measurements.

The average age of all participants is 24.3 years with a standard deviation of 2.8 years. The average body mass 
index of all participants is 23.7 kg/m2 with a standard deviation of 2.9 kg/m2 . Equal gender ratio is observed 
(female n = 12 , male n = 13).

Measurement setup and synchronisation.  A picture of the measurement setup can be seen in Fig. 1A. 
The radar system is mounted on a fixed construction placed above the examination table and focuses on the 
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chest area of the test subjects. The height above the chest as well as the position of the radar can be adapted. On 
average, the distance between the antenna and the skin of a test subject was around 40 cm. A block diagram 
of the setup is depicted in Fig. 1B. The signals of the radar system and the TFM are sampled by two different 
computers. The signals are synchronised during post-processing by creating a sequential binary synchronisation 
sequence according to the Gold codes inside the radar system. These sequences are sampled by the radar system 
as well as the reference device by feeding the synchronisation sequence into the TFM by connecting a cable to the 
external input. The synchronisation procedure is shown in Fig. 1C. Since the radar system and the TFM system 
have different sampling frequencies, the first step is to find the resampling factor that is used to obtain the same 
sampling rate. This is done by optimising the factor using the fminbnd function in MATLAB and taking the 
maximum cross-correlation value as objective function. This resampling factor is used to determine the latency 

Figure 1.   Overview of the measurement setup and measurement protocol. (A) Photograph of the measurement 
setup, including the TFM, the radar system, and the examination table17. (B) Block diagram of the measurement 
setup. (C) Flowchart of the data synchronisation routine. (D) Cross-correlation of the SYNC sequences which 
is used to determine the latency between both systems. (E) Synchronisation sequences of the TFM and the 
radar system after resampling and time shift removal. (F) Depiction of the measurement protocol: after a resting 
measurement of nine minutes, the CPT manoeuvre is performed, which includes three main parts with a length 
of 90 s and pauses with a length of 60 s in between.
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between ECG and radar signal by searching for the maximum in the cross-correlation of both synchronisation 
sequences as shown in Fig. 1D. The time shift results from the asynchronous start of both systems. Using both 
the resampling factor and the latency, the ECG signal is resampled and shifted in order to obtain synchro-
nised radar and ECG signals. A section of a resampled and shifted synchronisation sequence of both systems is 
depicted in Fig. 1E. After synchronisation, both signals have a sample rate of 2000 samples per second.

Cold pressor test.  The goal of this study is to examine the possibility of contactless HRV measurement 
using radar technology. For this purpose, a test procedure analyses HRV parameters of healthy test subjects 
simultaneously collected by both a reference ECG and the radar system. In order to achieve a reliable statement 
whether the radar is capable of accurately determining the parameters not only in a static setting but also in the 
case of abrupt HRV changes, the designed test protocol includes not only a resting scenario but also a forced 
activation of the ANS. In order to force a stimulation of the ANS, the CPT was chosen as part of the experimental 
protocol. The CPT is a test procedure designed to provoke a sympathetic activation and an increase in blood 
pressure in healthy subjects30,31. The CPT manoeuvre is typically performed by immersing a subject’s hand into 
ice water ( 1◦C ... 5◦C ) for a short period of several minutes (1 min ... 6 min) or as long as possible30.

Experimental protocol.  The measurement routine is depicted in Fig. 1F. First, a resting measurement was 
performed for nine minutes. During this time, the test subject was asked to lie calmly on the examination table. 
Room temperature and brightness were set to a comfortable level. The resting measurement ensures the test 
subjects for being able to calm down in order to have a comparable starting point.

Next, the CPT sequence was started. The data gathered from these recordings are used to compare the 
extracted HRV values of the reference device and the radar system to each other. The CPT manoeuvre was split 
into three parts of equal length: “Baseline”, “Response”, and “Recovery” with pauses of 60 s in between. HRV 
comparison is performed separately for all three parts. Baseline serves as a reference starting point, Response 
measures the abrupt change of HRV during the ice water stimulation, and Recovery provides information about 
the ability to return to normal condition. These windows were chosen in order to achieve large amount of vari-
ation between the successive HRV values since the overall objective is to evaluate the ability of radar systems to 
correctly determine HRV values not only in one setting but also after abrupt changes.

Each of the three parts has a length of 90 s. This length was chosen due to practical and theoretical considera-
tions. During Response, the test subjects were asked to hold their hands into the ice water for two minutes or 
as long as possible. The windowed data which are used for the HRV calculation of this part, however, should be 
fully covered by this action, i.e., the window length should not be longer than 120 s. A slightly shorter window 
would be preferred in case a subject is not able to hold their hands into the ice water for the entire two minutes. 
Although the standard window length of short-time HRV measurements is five minutes, researchers have shown 
that the calculation of valid HRV parameters is possible for shorter windows3,32,33. Parameters such as HF, LF, or 
LF/HF ratio can be calculated for a window length of 90 s, therefore, this length was chosen as overall window 
length for HRV calculation. It is important to choose the same window length for all parts of the CPT manoeuvre 
in order to ensure comparability2.

The overall measurement of the CPT sequence is started a little ahead of Baseline and is stopped a little 
behind Recovery, in order to make sure that the same depicted sequence can be extracted from every test sub-
ject. “Immersion” represents the point in time at which the subject is asked to put the hand into the ice water. 
Removing the hand from the water happens after a maximum of two minutes or earlier, so this point in time 
may lie after the end of the Response window but never in the Recovery part.

Six‑Port interferometry.  The Six-Port consists of two input and four output ports. The input signals are 
the reference signal P1 and the signal P2 which is the signal that is reflected at the target and received by the 
antenna. In the Six-Port structure, these two signals are superimposed under four relative and static phase shifts 
of 0◦, 90◦, 180◦ , and 270◦ . These four output signals P3 ... 6 are then down-converted into baseband using diode 
power detectors, resulting in baseband signals B3 ... 6 . The baseband signals form two pairs of differential signal 
which represent the orthogonal in-phase and quadrature components I and Q of a complex number Z34:

The relative distance change �x can then be extracted from Z using:

with � being the known wavelength of the signal and �ϕ , the argument of Z , representing the relative phase shift 
between the two input signals:

Calculation and processing of HRV parameters.  The HRV parameters HF, LF, LF/HF ratio, and TRI 
are calculated for both the radar and the ECG signal. The first step hereby is to extract single heartbeats from the 
ECG and the radar heart sound signal. For the ECG, the R-peaks are used as reference points which are located 
using the algorithm presented by Zhang et al.35. Afterwards, detected peaks are manually inspected to check for 
erroneous labels. The interval between two successive heartbeats is called RR interval whereas a set of successive 
RR intervals is called RR sequence. To obtain radar RR sequences, the radar heart sound signals are segmented 

(1)Z = I + jQ = (B5 − B6)+ j(B3 − B4).

(2)�x =
�ϕ

2π
·
�

2
,

(3)�ϕ = arg{Z} = arg{(B5 − B6)+ j(B3 − B4)}.
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first. The start of the first state, i.e., the first heart sound, is used as reference point for each heartbeat of the radar 
heart sound signal.

The RR sequences of the ECG and radar signal are checked for invalid values using an automated procedure. 
These correction steps are important since single outliers will otherwise cause large errors in the resulting HRV 
parameters, especially when calculating frequency-domain parameters2. To remove artefacts, e.g., missed beats 
or falsely detected beats, an algorithm for artefact removal is utilised which is based on the work by Vollmer36,37. 
After artefact removal, the HRV parameters are calculated. Time-domain parameters can be directly derived 
from the RR sequences. To calculate frequency-domain parameters like LF or HF, the RR sequences are linearly 
interpolated and standardized first. Interpolation is necessary since equidistant sampling is required in order 
to calculate the DFT. Before calculating the DFT, the signal is zero-padded until its length is a power of two.

Human subjects.  The study was approved by the ethics committee of the Friedrich-Alexander-Universität 
Erlangen-Nürnberg (No. 85_15B). All research was performed in accordance with relevant guidelines and regu-
lations. The informed consent was obtained from all subjects in human trials.

Contactless heart sound recording using radar interferometry.  The first step of contactless HRV 
acquisition is to measure cardiac vital signs using radar. Two approaches are possible, either to measure the 
motion of the chest surface due to the propagation of the pulse waves13,15,18,38,39 or to record the substantially 
smaller vibrations of the skin due to the heart sounds19,40–43. The latter technique has proved to deliver higher 
accuracies when determining the timings of the single heartbeats19. This is preferable since HRV represents the 
variation of the time intervals of single successive heartbeats. Precisely locating single heartbeats is therefore 
essential since outliers cause large errors in the resulting HRV values, especially when calculating frequency-
domain parameters2.

Six-Port-based interferometers have shown to be able to measure heart sound signals using a phase evalua-
tion technique34,44. In this study, a bistatic 24 GHz Six-Port-based radar system was built and utilised which can 
be seen in Fig. 2A. A photo of the Six-Port structure is shown in Fig. 2B. The system consists of two antennas, a 
transmitting (TX) as well as a receiving (RX) antenna. The beams of the antennas are tilted towards a common 
focal point at a target distance of around 40 cm17. The resulting inclination angle of the antennas is ±10◦ . The 
antennas have a simulated gain of 19 dBi and a measured gain of 17.7 dBi each and are realised using a planar 
design in order to facilitate the integration into the housing. The 72 patches of the antenna are arranged in nine 
columns with eight elements each. The simulated and measured radiation patterns of the antennas in both hori-
zontal and vertical plane are shown in Fig. 2C,D. It can be seen that measured and simulated value exhibit high 
agreement. The system has an equivalent isotropically radiated power (EIRP) smaller than 20 dBm, which is the 
limit as defined by the regulations for the industrial, scientific, and medical (ISM) band.

Algorithms for heart sound segmentation.  An LSTM network and a hidden semi-Markov model 
(HSMM)45 are used for the detection of single heartbeats in the radar heart sound signal. The HSMM model is 
implemented as described in19. Three features are used for training and testing: the homomorphic, the Hilbert, 
and the power spectral density envelope of the heart sound signal. The HSMM is chosen as state-of-the-art 
algorithm since it is the only segmentation technique that has been evaluated for radar heart sound analysis.

However, the HSMM algorithm has the disadvantage that it requires a priori information. Due to its limited 
heart rate range, it sometimes lacks the capability to correctly detect high variations of the heart rate. Recurrent 
neural network (RNNs) architectures and especially LSTMs promise to be a fitting candidate to overcome these 
drawbacks. LSTM networks are a special type of RNN, which are able to learn time-dependencies. Hochreiter 
and Schmidhuber46 introduced LSTMs to avoid long-term dependency problems and handle issues that con-
ventional RNNs face. Standard LSTMs can only take the preceding elements into account. However, for the 
task of heart sound segmentation, subsequent inputs might also carry relevant information regarding the state 
change47. Therefore, bidirectional LSTMs are employed in this work, which consist of two LSTM layers. One 

Figure 2.   The radar system and its components17. (A) Photograph of the radar system. (B) Planar realisation 
of the Six-Port structure. (C) Simulated (Sim.) and measured (Meas.) radiation pattern in horizontal plane. (D) 
Simulated and measured radiation pattern in vertical plane at 10◦ inclination.
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layer computes the forward embedding while the other layer computes the backward layer. The final result is 
obtained by concatenating both embeddings.

Several LSTM configurations were thoroughly evaluated for the purpose of radar heart sound segmenta-
tion using leave-one-subject-out cross-validation (LOSOCV). The models are hereby trained on the data of all 
subjects except the one that is tested. This is iterated until the data of all subjects have been tested once. Models 
with one and two LSTM or bidirectional LSTM layers are compared. Furthermore, the units per layer are varied 
between 50 and 400 hidden units. The best results are obtained using a model with two bidirectional LSTM lay-
ers containing 400 hidden units in the first layer and 200 hidden units in the second layer. A dropout layer with 
a drop probability of 0.2 is used after each LSTM layer to combat overfitting. The LSTM layers are followed by 
a fully-connected layer, a softmax layer, and a classification layer. Training is done for 50 epochs with a batch 
size of 64. The initial learn rate is 0.001 and drops after every 20 epochs by a factor of 10. The utilised features 
include the homomorphic, the Hilbert, and the power spectral density envelope of the heart sound signal as for 
the HSMM model. Additionally, heart rate is estimated using the autocorrelation of the heart sound signal. This 
is done by searching for the maximum in the autocorrelation signal in a certain range, corresponding to heart 
rates of 40 to 135 beats per minute (bpm). This value is used as a feature for every time step of the windowed 
signal that is segmented.

Results
Performance evaluation of beat‑to‑beat detection and HRV extraction.  To determine the per-
formance of the radar system for HRV analysis, the first step is to evaluate the scores when detecting single heart-
beats. A reference heartbeat is defined at every R-peak in the ECG signal. This point in time also corresponds to 
the start of the first heart sound. LSTM and HSMM return a segmentation of the heart sound signal consisting 
of four states: first heart sound, systole, second heart sound, and diastole. To compare the performance of heart-
beat extraction and HRV calculation, the start of each first state, i.e., each detected first heart sound, is used for 
comparison.

Scores are obtained using LOSOCV. Four figures are compared: F1 score, sensitivity, precision, and accuracy. 
Sensitivity is calculated as the number of true positives (TP) divided by the sum of true positives and false nega-
tives (FN). Precision is defined as the number of true positives divided by the sum of true positives and false 
positives (FP). Accuracy is calculated as the number of true positives divided by the sum of all true positives, 
false positives, and false negatives. The F1 score represents a harmonic mean of sensitivity and precision and can 
be calculated as: (2 · TP)/(2 · TP · FP · FN).

A detected heartbeat is counted as true positive when it deviates no more than 75 ms from the reference 
heartbeat. This corresponds to half of the recognised tolerance range of 150 ms for ECG R-peak detection48. A 
false negative is counted when no heartbeat is detected within this range around an ECG R-peak. A false posi-
tive is added when there is no ECG R-peak around a detected one. The scores for all test subjects, separated by 
the nine minutes resting measurement and the CPT manoeuvre, are summarised in Table 1. In addition to the 
mean score of the whole CPT manoeuvre, the scores for the three single CPT scenarios, Baseline, Response, and 
Recovery, are also shown. The data from subject 20 was excluded due to massive clipping of the baseband signals. 
For the resting measurement, the LSTM achieves an F1 score of 99.01%, a sensitivity of 98.89%, a precision of 
98.94%, and an accuracy of 97.86%. The HSMM scores four to eight percentage points lower in comparison with 
an F1 score of 93.67%, a sensitivity of 94.35%, a precision of 94.62%, and an accuracy of 89.54%. For the CPT 
manoeuvre, the LSTM also scores around three to seven percentage points higher in comparison, with an F1 
score of 96.28%, a sensitivity of 95.54%, a precision of 96.01%, and an accuracy of 91.89%. It can be noted that 
the resting scores are on average higher than the CPT scores. This is due to the lower scores during the Recovery 
scenario. Overall, higher scores can be observed for the LSTM algorithm for all figures.

High scores in Table 1 indicate that HRV can in principle be measured by radar. To further validate this 
assumption, LSTM and HSMM performances are evaluated for the calculation of several HRV parameters. 
Besides the data from test subject 20, which was excluded due to clipping of the radar signal, the data from 
test subjects 8 and 16 also had to be excluded from HRV calculation. Test subject 8 was excluded since she was 
not able to hold their hand in the ice water for a sufficient time and test subject 16 was excluded since no trig-
ger signals were acquired during the measurement, i.e., the single parts of the CPT could not be distinguished 

Table 1.   Performance comparison of LSTM and HSMM for single heartbeat detection.

F1 Sensitivity

Resting (%)

CPT

Resting (%)

CPT

Baseline (%) Response (%) Recovery (%) Mean (%) Baseline (%) Response (%) Recovery (%) Mean (%)

LSTM 99.01 97.76 92.98 98.09 96.28 98.89 97.96 91.39 97.70 95.54

HSMM 93.67 94.48 86.57 94.19 91.75 94.35 95.01 88.18 93.96 92.25

Precision Accuracy

Resting (%)

CPT

Resting (%)

CPT

Baseline (%) Response (%) Recovery (%) Mean (%) Baseline (%) Response (%) Recovery (%) Mean (%)

LSTM 98.94 97.33 92.92 98.05 96.01 97.86 95.39 85.44 95.84 91.89

HSMM 94.62 95.40 85.02 94.49 91.33 89.54 90.85 76.32 89.08 84.82
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afterwards. Several HRV parameters are compared: Heart rate (HR), HF, HF norm, LF, LF/HR ratio, and TRI. 
Although the heart rate is not a typical HRV parameter per se, it is closely linked to HRV and is also widely used 
for medical decision-making.

Table 2 compares the HRV indices that are obtained using the radar system and the LSTM/HSMM algorithm 
to the reference ECG HRV indices. Rows correspond to different parameters and scenarios while columns rep-
resent the methods. The first row corresponds to the nine-minute resting measurement (Rest.) while the other 
rows represent the CPT manoeuvre. The CPT values are again split into the three scenarios Baseline (Base.), 
Response (Resp.), and Recovery (Reco.) as well as a mean score. The first six columns display absolute values 
with their mean and standard deviation. The results from different test subjects are separated into two groups. 
The groups were formed by distinguishing the different reactions of the test subjects to the CPT. As noted by 
Mourot  et al.30, some people react with an increasing HF norm in response to ice water stimulus while others 
exhibit a decreasing HF norm. Therefore, the scores of the test subjects are separated under this consideration. 
Test subjects 1, 4, 6, 7, 12, and 25 had a decrease of HF norm due to the ice water stimulus, i.e., a lower HF norm 
during Response in comparison to Baseline. Their scores are summarised under “Group neg.” while the others 
are summarised under “Group pos.”. The inverse reactions of different test subjects are no drawback for this study 
as the direction of change of the HRV parameters is not important. The goal of this study is to demonstrate reli-
able measurability of HRV parameters using radar interferometry during sudden changes, therefore, only the 
absolute change is of interest. The table was split into two groups to underline the changes of parameters which 
would otherwise be hidden due to two opposing groups.

For both groups, an increase of heart rate can be observed during Response. Per definition, the negative 
group has a decrease of HF and HF norm during Response while the positive group has an increase of these 
parameters. During Recovery, HF norm return to Baseline level. As expected, LF and LF/HF ratio increase dur-
ing Response in the negative group while they decrease in the positive group. Again, they return to normal level 
during Recovery. TRI increases in both groups during Response and decreases again during Recovery. These 
trends are reproduced by both the LSTM and the HSMM.

The last two columns show the percentage differences of the LSTM or HSMM values in comparison to the 
reference ECG values. These percentage differences are calculated by taking the mean difference over all test 
subjects. For HR, both LSTM and HSMM achieve deviations of 0.16%% and 0.35% for the resting measurement 
and 1.06% and 2.08% for the whole CPT manoeuvre. For HF, LSTM achieves substantially lower deviations of 
8.17% and 10.87% in comparison to HSMM with 14.74% and 17.10%. For HF norm, LSTM again achieves small 
deviations of 4.83% and 5.52%, which are around four percentage points lower in comparison to the HSMM 
values. For LF, LSTM and HSMM have similar CPT differences of 10.25% and 10.43%, respectively. For LF/HF 
ratio, the differences of the LSTM algorithm are around 7% lower in comparison to HSMM, with deviations of 
9.43% for the resting measurement and 11.15% for the CPT manoeuvre. For TRI, HSMM achieves a slightly 
lower deviation during the resting measurement but a higher deviation of 18.37% during the CPT manoeuvre.

Figures 3 and 4 show scatter plots and Bland–Altman plots for heart rate, HF, HF norm, LF, LF/HF ratio, and 
TRI. The left and right side depict the results obtained by LSTM and HSMM, respectively. Each row corresponds 
to one parameter. In order to evaluate the performance of the radar under sudden HRV changes, the resting 
measurements were not included in the plots. The CPT measurement data in the scatter plots are visually split 
into the three scenarios Baseline, Response, and Recovery.

The scatter plots reveal the amount of correlation between two methods. Correlation is calculated as Pearson 
correlation coefficient (R). However, a high correlation does not necessarily lead to a good agreement between 
those methods49. This is the reason why Bland and Altman introduced the so-called Bland–Altman plot50. This 
plot allows for easy visual identification of any systematic errors such as a fixed or proportional bias. The mean 
value shows if there is any fixed bias between two methods. A fixed bias indicates that there is a constant offset 
between two methods while a proportional bias shows that differences between the two methods depend on 
the absolute value. The limits of agreement (LoA) describe a range of agreement within which 95% of the dif-
ferences between the two methods are included. Small values of mean and LoA show a high agreement between 
two methods.

For heart rate, LSTM achieves a correlation coefficient of 95.72%. A small mean value of −0.43 bpm is 
observed in the Bland–Altman plot with the LoA lying at −6.45 bpm and −5.58 bpm. No proportional bias can 
be seen. HSMM has a correlation of 80.41%, mainly due to one outlier. The mean values of the differences is at 
0.68 bpm and the LoA are at −13.97 bpm and 15.32 bpm. Compared to LSTM, the mean value as well as the LoA 
are substantially higher. For HF, LSTM again has a substantially higher correlation than HSMM with R = 91.36% 
for LSTM and R = 80.47% for HSMM. LSTM has a mean difference of 0.22 with the LoA at −0.76 and 1.20 
while HSMM has a mean difference of 0.40 with the LoA at −1.06 and 1.86. For HF norm, similar values can be 
observed for R. For the LSTM, R = 91.86% while for the HSMM, R = 79.81% . In the Bland–Altman plot, a mean 
difference of 0.79× 10−2 and LoA of −8.50× 10−2 and 10.09× 10−2 can be observed for the LSTM. HSMM has 
a mean difference of 2.05× 10−2 and LoA at −12.17× 10−2 and 16.27× 10−2.

For LF, LSTM has a slightly smaller correlation of 78.56% in comparison to HSMM with a correlation of 
79.83%. The mean difference of LSTM is at 0.09 with the LoA at −1.01 and 1.18. These numbers are also slightly 
higher than for HSMM, which has a mean difference of 0.07 and LoA at −0.96 and 1.10. For LF/HF ratio, LSTM 
again has a high correlation of 92.87 % with the mean difference at −0.04 and the LoA at −0.40 and 0.31. HSMM 
only reaches a lower correlation of 75.39% with the mean difference at −0.11 and the LoA at −0.73 and 0.52. For 
the time-domain parameter TRI, LSTM achieves a correlation of 73.93% in comparison to the ECG. HSMM 
has a correlation of 61.28%. No proportional biases can be observed in any of the Bland–Altman plots of all six 
parameters.

The LSTM algorithm has generally achieved better results than the HSMM model. It might be additionally of 
interest to investigate the dynamic changes of the parameters to determine if the LSTM is also able to reproduce 
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the instantaneous variations in response to the stimulation of the CPT. Figure 5 shows a comparison of the HRV 
parameters before, during, and after the CPT. Depicted are the mean and standard deviation for each scenario 
and each parameter as obtained by the ECG and the LSTM. To emphasise the absolute change of the parameters 
in response to the CPT, the data is again split into the positive and negative group. Although there are small 
bias errors at Response for LF and for the negative group of TRI, the direction of change can be reconstructed 
for all parameters. For the positive group, a small error occurs at TRI but only for the Response scenario. In 
summary, the LSTM is able to demonstrate its ability to closely track the changes of the HRV parameters that 
are induced by the CPT.

Discussion
We have introduced and validated a method for contactless HRV acquisition using a Six-Port-based radar system 
and a bidirectional LSTM model. Compared to other contactless ways of vital sign and HRV measurement such 
as cameras51 or laser systems52, radar technology has the advantage that it is independent of surrounding light 
and is able to penetrate clothing or other visually non-transparent obstacles.

The possibility of extracting HRV parameters using radar technology has been investigated in general53–57. 
Previous works focused mainly on the measurability of HRV indices in a static setting, e.g., when lying or sitting 
at rest. However, it has not been investigated if the systems are able to track rapidly changing HRV parameters 
in a dynamic setting. To research this aspect, we defined an experimental protocol including not only a resting 
measurement but also a subsequent CPT manoeuvre, a commonly used cardiovascular test, which was used to 

Table 2.   Comparison of calculated HRV parameters. The HRV parameters of the reference ECG are compared 
to the radar HRV parameters using both the LSTM and HSMM algorithm. The absolute values are compared 
for the two groups (mean ± standard deviation), while the mean deviation of the parameters are given for all 
test subjects.

Group neg. (mean ± std.dev.) Group pos. (mean ± std.dev.)
Overall (percentage 
difference)

ECG LSTM LSTM ECG LSTM HSMM

Difference 
LSTM ↔

ECG(%)

Difference 
HSMM ↔

ECG (%)

Heart 
Rate (bpm) Resting 55.81± 5.90 55.80± 5.86 55.71± 5.89 61.56± 11.60 61.55± 11.61 61.42± 11.48 0.16 0.35

CPT

 Baseline 56.78± 7.59 56.79± 7.60 56.79± 7.61 62.22± 11.70 62.61± 11.94 61.92± 11.84 0.79 0.45

 Response 63.26± 11.73 62.80± 10.81 62.88± 11.96 67.12± 13.11 65.24± 11.69 70.67± 17.84 1.98 5.27

 Recovery 55.79± 5.99 55.90± 6.06 55.92± 6.06 60.56± 10.84 60.65± 11.18 60.19± 10.69 0.41 0.41

 Mean 58.61± 9.38 58.49± 8.93 58.53± 9.43 63.30± 12.24 62.83± 11.76 64.26± 14.56 1.06 2.08

HF (stand.) Resting 4.45± 0.66 4.55± 0.64 4.70± 0.59 3.91± 1.06 4.14± 1.07 4.24± 0.91 8.17 14.74

CPT

 Baseline 4.66± 0.51 4.87± 0.58 5.02± 0.72 3.61± 1.15 3.73± 1.07 3.96± 0.89 11.39 21.68

 Response 4.14± 0.72 4.21± 1.06 4.20± 0.54 3.84± 1.27 4.07± 1.17 4.24± 1.32 10.04 11.75

 Recovery 4.91± 0.92 5.39± 0.89 5.33± 0.96 3.87± 1.34 4.11± 1.21 4.45± 1.25 11.19 17.88

 Mean 4.57± 0.80 4.82± 0.99 4.85± 0.90 3.77± 1.26 3.97± 1.17 4.21± 1.19 10.87 17.10

HF norm 
(n.u.) Resting 61.19± 6.34 61.80± 6.29 62.31± 6.35 52.05± 10.38 53.61± 10.40 53.92± 8.25 4.83 8.68

CPT

 Baseline 64.60± 8.01 65.86± 7.32 66.74± 7.69 47.29± 10.33 48.83± 9.15 49.71± 8.25 5.26 12.99

 Response 57.88± 5.26 55.60± 5.46 56.58± 5.47 55.58± 10.44 54.25± 9.18 56.42± 7.65 4.96 5.45

 Recovery 61.62± 8.23 66.56± 8.51 62.63± 6.80 51.34± 13.49 52.75± 13.23 55.68± 12.43 6.36 10.80

 Mean 61.37± 7.79 62.67± 8.78 61.98± 7.90 51.40± 12.00 51.94± 10.93 53.94± 10.13 5.52 9.75

LF (stand.) Resting 2.84± 0.64 2.84± 0.62 2.88± 0.56 3.49± 0.57 3.47± 0.58 3.55± 0.51 4.82 7.48

CPT

 Baseline 2.60± 0.78 2.55± 0.70 2.53± 0.75 3.86± 0.51 3.78± 0.66 3.95± 0.60 5.86 7.08

 Response 3.00± 0.52 3.31± 0.59 3.25± 0.63 2.93± 0.70 3.34± 0.72 3.14± 0.58 16.26 11.79

 Recovery 3.05± 0.68 2.70± 0.71 3.13± 0.49 3.57± 0.93 3.62± 0.97 3.47± 0.89 8.61 12.43

 Mean 2.88± 0.70 2.85± 0.75 2.97± 0.71 3.45± 0.83 3.58± 0.81 3.52± 0.78 10.25 10.43

LF/HF ratio Resting 0.67± 0.18 0.65± 0.18 0.65± 0.17 1.04± 0.45 0.98± 0.44 0.93± 0.28 9.43 16.02

CPT

 Baseline 0.57± 0.21 0.54± 0.19 0.52± 0.21 1.23± 0.52 1.13± 0.44 1.06± 0.32 8.80 21.61

 Response 0.74± 0.17 0.81± 0.17 0.78± 0.17 0.87± 0.38 0.90± 0.37 0.81± 0.25 13.42 11.30

 Recovery 0.65± 0.20 0.53± 0.20 0.61± 0.17 1.08± 0.53 1.02± 0.50 0.89± 0.44 11.22 21.44

 Mean 0.66± 0.21 0.63± 0.23 0.64± 0.21 1.06± 0.51 1.02± 0.45 0.92± 0.36 11.15 18.12

TRI Resting 11.52± 2.93 10.19± 2.21 12.39± 2.67 11.13± 2.75 10.17± 2.67 11.41± 3.02 17.67 17.43

CPT

 Baseline 11.08± 2.26 9.45± 3.06 12.75± 2.82 11.09± 2.35 11.02± 2.76 11.85± 4.27 12.92 18.97

 Response 12.85± 6.26 12.06± 4.15 14.43± 3.56 12.01± 2.87 10.48± 2.69 12.70± 3.59 14.45 24.16

 Recovery 10.48± 2.38 8.58± 1.59 11.00± 1.37 10.03± 2.52 9.49± 2.63 10.72± 2.97 23.15 11.97

 Mean 11.47± 4.20 10.03± 3.45 12.73± 3.07 11.04± 2.71 10.33± 2.77 11.76± 3.74 16.84 18.37
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force a sudden change of HRV due to the stimulus of the ANS. We utilised a bistatic radar system to acquire vital 
sign data from 25 test subjects, a larger number of test subjects compared to previous studies. Altogether, 683 
minutes of data were gathered and analysed extensively. An ECG signal was acquired in parallel which served 
as a reference gold standard device for heartbeat detection and HRV calculation.

Previous works utilised the pulse wave component to extract HRV. However, this may complicate precise 
beat-to-beat localisation due to the influence of respiration on the shape and configuration of the pulse wave. In 
this paper, we firstly evaluated the possibility of HRV extraction using radar heart sound signals. This promises 
for higher accuracies since the shape and configuration of the heart sound signal is more distinct and not influ-
enced by respiration. Radar heart sound data were used to determine the RR sequences and HRV parameters 
for the radar system. We implemented two algorithms for the task of heartbeat segmentation and beat-to-beat 
recognition, a state of the art HSMM algorithm and a bidirectional LSTM network. Several configurations of 
the LSTM model were compared using different numbers of layers and hidden units. A two-layer bidirectional 
LSTM with 400 and 200 hidden units in the first and second layer demonstrated the best results.

For heartbeat detection, high F1 scores, sensitivities, precisions, and accuracies around 90% ... 99% have been 
observed for both algorithms, however, the LSTM algorithm performed around three to seven percentage points 
better than the HSMM. Furthermore, HRV indices of the radar system were compared to ECG HRV indices. 
Overall, LSTM performed better for both the resting scenario as well as the CPT manoeuvre. When acquiring 
parameters such as HF norm or LF/HF ratio, LSTM achieved low deviations of 5.52% and 11.15%, respectively, 
for the CPT, while the HSMM had higher deviations of 9.75% and 18.12%. Using scatter and Bland–Altman 
plots to compare radar and ECG HRV indices, correlations over 90% could be observed with small offsets and 
no proportional biases. We demonstrated that the LSTM algorithm is capable to perform precise heart sound 
segmentation in order to track the dynamic changes of HRV before, during, and after the CPT. Our results show 

Figure 3.   Scatterplots and Bland–Altman analyses of the parameters heart rate, HF, and HF norm. (A,C,E) 
Comparison of LSTM values with reference ECG. (B,D,F) Comparison of HSMM values with reference ECG.
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that the proposed system is able to track HRV parameters not only in a static resting scenario but also during 
sudden changes.

The main benefit of our proposed system is its ability to perform contactless and accurate monitoring of 
HRV. Without the need of permanent cabling, this method allows for burden-free long-term monitoring which 
is crucial for a medical diagnosis. One of the limitations of this approach is that it is only suited for stationary 
usage, e.g., to monitor a person in bed. If the person leaves the bed, the radar will not be able to track the sub-
ject. However, for most use cases, this would not be considered a drawback, e.g., for patient monitoring at the 
hospital or for measurements at night in a domestic scenario. Another limitation of our system is random body 
movement. During the movement of the subject, heart sound data cannot be measured with high accuracy. 
Therefore, HRV cannot be determined for this period of time. Nonetheless, this is no drawback for the scenario 
that the system is designed for. During a long-term measurement, e.g., at night, short periods without reliable 
data are negligible. Sections containing low quality heart sound signals need to be automatically detected and 
discarded from the HRV analysis.

Our presented approach enables precise, touch-free, and continuous monitoring of HRV parameters using a 
24 GHz radar system and an LSTM network. The proposed bidirectional LSTM architecture is able to perform 
real-time analysis of HRV parameters. This allows for a convenient way of long-term monitoring in a wide range 
of everyday applications. In hospitals, where latex or cold foam mattresses are commonly used, the system can 
be mounted under the mattress without causing any major impact, provided that the slatted frame has a gap 
or does not contribute significantly to damping58. Mounting the system above the patient is also possible, since 
common blankets can be easily penetrated. Additionally, its low output power, which lies within the limits of 
the regulations of the ISM band, makes it suitable for long-term monitoring applications not only in a clinical 

Figure 4.   Scatterplots and Bland–Altman analyses of the parameters LF, LF/HF ratio, and TRI. (A,C,E) 
Comparison of LSTM values with reference ECG. (B,D,F) Comparison of HSMM values with reference ECG.
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environment, e.g., for patient monitoring at the general ward, but also in a home-care scenario, e.g., for aftercare 
treatment or preventative health care.

Data availability
The data that supports the findings of this study are available upon request from the corresponding author.
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