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Abstract

Background Epidemiological studies have shown inverse association between intelligence and coronary artery disease
(CAD) risk, but the underlying mechanisms remain unclear.

Methods Based on 242 SNPs independently associated with intelligence, we calculated the genetic intelligence score (gIQ)
for participants from 10 CAD case—control studies (n=34,083) and UK Biobank (n=427,306). From UK Biobank, we
extracted phenotypes including body mass index (BMI), type 2 diabetes (T2D), smoking, hypertension, HDL cholesterol,
LDL cholesterol, measured intelligence score, and education attainment. To estimate the effects of glQ on CAD and its related
risk factors, regression analyses was applied. Next, we studied the mediatory roles of measured intelligence and educational
attainment. Lastly, Mendelian randomization was performed to validate the findings.

Results In CAD case—control studies, one standard deviation (SD) increase of glQ was related to a 5% decrease of CAD
risk (odds ratio [OR] of 0.95; 95% confidence interval [CI] 0.93 to 0.98; P =4.93e-5), which was validated in UK Biobank
(OR=0.97;95% CI1 0.96 to 0.99; P=6.4e-4). In UK Biobank, we also found significant inverse correlations between gIQ
and risk factors of CAD including smoking, BMI, T2D, hypertension, and a positive correlation with HDL cholesterol. The
association signals between gIQ and CAD as well as its risk factors got largely attenuated after the adjustment of measured
intelligence and educational attainment. The causal role of intelligence in mediating CAD risk was confirmed by Mendelian
randomization analyses.

Conclusion Genetic components of intelligence affect measured intelligence and educational attainment, which subsequently
affect the prevalence of CAD via a series of unfavorable risk factor profiles.
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Introduction

Epidemiological studies have shown an inverse associa-
tion between intelligence score and risk of coronary artery
disease (CAD) [1, 2]. Higher intelligence is also inversely
associated with risk factors of CAD, like smoking and
obesity [3-5]. Moreover, there is evidence for association
between higher intelligence and longer educational attain-
ment [6, 7] which may be an important mediator in reduc-
ing CAD risk [8]. However, the mechanisms linking higher
intelligence with a decreased risk of CAD remain unclear.

Genome wide association studies (GWAS) have iden-
tified large numbers of genetic variants, typically single
nucleotide polymorphisms (SNPs), associated with a wide
range of complex traits providing opportunities of explor-
ing the relationships between traits. Polygenic risk scores
defined as sum of trait-associated SNPs weighted by effect
size derived from large-scale GWAS measure the liabil-
ity of individuals developing such traits [9, 10]. Thereby
polygenic risk scores become an important genetic tool
for studying association between traits [8, 11]. Two-sam-
ple Mendelian randomization (MR) is another genetic
method of accessing causal relationships among traits
which requires summary statistics of GWAS instead of
full individual level genotype data and phenotypic meas-
urements [12].

Savage et al. performed genome-wide association
meta-analysis in 269,867 individuals and identified 242
SNPs independently associated with intelligence [13]. We
used the statistics of these intelligence SNPs to perform
both regression analysis of the individual-level polygenic
score and two-sample MR analysis to study the associa-
tion between intelligence and CAD risk, and to explore
potential pathways from a higher genetic intelligence score
to lower CAD risk.

Methods

Cohorts description of individual-level genotype
data

Individual level genotype data were collected from ten
case—control studies of CAD as discovery set [14-21].
All participants were of European descent, mostly from
the Germany and UK. The replication set was from UK
Biobank [22] which includes genotypes of 487,409 indi-
viduals derived from two different genotyping array
platforms.

The data of UK Biobank were also applied to character-
ize interplay between intelligence and risk factors of CAD
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including body mass index (BMI), type 2 diabetes (T2D),
HDL cholesterol, LDL cholesterol, hypertension, and
smoking behavior. These traits were either self-reported
or extracted from hospital episodes or death registries as
reported by UK Biobank [22]. Intelligence scores were
measured in UK Biobank through a 13-item verbal-
numeric reasoning test designed to assess the ability of
solving problems that require logic and reasoning abil-
ity, independent of acquired knowledge (field ID 20016).
The total range of intelligence as measured by this score
was from 0 to 13 arbitrary unit. Details of corresponding
studies, data preprocessing and traits definition of data
from UK Biobank are shown at Supplementary Notes and
Table S1.

Intelligence associated variants

Savage et al. performed GWAS meta-analysis of 14 inde-
pendent epidemiological cohorts of European descent and
reported 242 independent SNPs with genome-wide signifi-
cant association (P < 5e-8) to intelligence scores [13]. We
estimated effect size for each SNP from GWAS summary
statistic table using method by Zhu et al. [23]. Details are
shown at Supplementary Notes and Table S2.

Statistics

The summary statistics of 242 independent SNPs of intelli-
gence were applied to calculate the individual-level weighted
genetic score of intelligence for each study. Firstly, each var-
iant was given a value from O to 2 according to the presence
of the intelligence allele in the imputed genotype data of
each participant, which was then multiplied with the effect
size of the variant on intelligence. For variants with missing
genotypes in the imputed data, the reference allele frequency
was applied. Then we summed these values of 242 variants
for each participant as the polygenic score of intelligence,
namely the genetic intelligence score (gIQ). Afterwards, the
continuous gIQ was standardized into z-scores with mean of
0 and standard deviation (SD) of 1. By logistic regression
analyses, we estimated effects of glQ on CAD risk for each
study separately. To control the bias due to population strati-
fication or different genotyping platforms, the first two prin-
ciple components for 10 CAD studies were added as adjust-
ments of the regression model. In UK Biobank, because of
more complex population structure, we employed top five
principle components and array platforms for this data set.
Lastly, the fixed-effect size meta-analysis was performed
to estimate the combined effects across all CAD studies.
Based on gIQ, all individuals were evenly separated into
low, medium and high groups to study the distribution of
cases and controls along with increasing gIQ.
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Albeit the glQ reflects intelligence at first place, the
SNPs utilized in this score may be pleiotropic and thus
affects other traits [24-26]. Seven of 242 intelligence SNPs
were reported to be associated with educational attainment
through a large scale GWAS cohort which detected 1271
education-associated SNPs [27]. We thus re-evaluated the
association between gIQ and CAD risks after exclusion of 7
SNPs overlapping with educational attainment to estimate
the direct effects of intelligence.

In UK Biobank, we estimated effects of glQ on meas-
ured intelligence, educational attainment, risk factors of
CAD including BMI, T2D, smoking, HDL cholesterol,
LDL cholesterol and hypertension. Definitions of these traits
are shown at Supplementary Notes and Table S3. Logistic
regression was applied to binary traits like T2D, smoking,
hypertension; and linear regression was for continuous traits
like measured intelligence, educational attainment, BMI,
HDL cholesterol, and LDL cholesterol. Top five principle
components and array platforms were used as adjustment of
regression models. We also studied phenotypical association
of measured intelligence with educational attainment and
CAD incidence in UK Biobank. Additionally, to avoid the
genetic influence of education derived from genetic over-
laps between intelligence and education, we re-estimated
the effects of intelligence on CAD and its risk factors by
eliminating seven overlapping SNPs [27].

Two-sample Mendelian randomization analysis

Mendelian randomization (MR) is a method using genetic
variants as instruments to study causal relationships between
exposures and outcomes [28]. We introduced the multivari-
able two-sample MR analysis to investigate the direct casual
effects of intelligence and educational attainment on CAD
and its risk factors. This approach taking GWAS summary
statistics as input measures effects of one standard devia-
tion (SD) change in intelligence or educational attainment.
As bias can be introduced in two-sample MR when using
genetic consortia that have partially overlapping sets of
participants, we selected consortia without overlaps. The
GWAS summary statistics of CAD and its risk factors, edu-
cational attainment were acquired from CARDIoGRAM-
plusC4D (CAD) [17], GIANT (BMI) [29], TAG (smok-
ing) [30], GLGC (HDL cholesterol, LDL cholesterol) [31],
SSGAC (educational attainment) [27], and DIAGRAM
(T2D) [32]. Elaborate description of these five studies can
be found at Supplementary Notes and Table S4.

To address the influence of genetic overlaps between
education and intelligence, we eliminated seven SNPs
that are both associated with intelligence and educational
attainment in MR analysis. Three MR methods including
inverse-variance-weighted average (IVW) [33], MR-egger
[34] and weighted median [35] were applied. Relationships

significant (P <0.05) in at least two of three methods were
identified to be reliable and shown by IVW results. Lastly,
sensitivity analysis of effects of intelligence and educational
attainment on CAD were performed by excluding SNPs
that were moderately associated with risk factors of CAD
(P <0.001) from intelligence SNPs and education SNPs
respectively. Details are shown at Supplementary Notes.

Results
Effect of glQ on the risk of CAD

Ten case—control studies of CAD with 16,144 CAD cases
and 17,939 controls were included in this study. Majority of
participants were from the Germany and UK. Individual-
level genotype data and elaborate phenotype data from UK
Biobank were used as validating set containing 20,310 CAD
cases which were defined by either self-reported, or hospital
episode and death registry data, and 406,996 controls. (Sup-
plementary Notes and Table S1). For each cohort, we gener-
ated gIQ based on 242 SNPs reported to be genome-wide
significantly associated with intelligence [13].

The score in participants of the 10 CAD studies was nor-
mally distributed (Fig. S1). Meta-analysis using fixed-effect
size model indicated relative decrease of CAD risk by 5%
(95% confidence interval [CI], 0.93 to 0.98; P=4.93e-5)
along with per 1-SD increase in gIQ (Fig. 1). When indi-
viduals were equally grouped into a low, medium and high
group of gIQ, risk of CAD steadily decreased with an odds
ratio (OR) of the high group vs low group being 0.89 (95%
CI 0.84 to 0.93; P=6.2e-6, Fig. 2).

Data from the UK Biobank confirmed the inverse asso-
ciation between gIQ and CAD risk with an OR=0.97 (95%
CI 0.96 to 0.99; P=6.4e-4, Fig. 1). The risk of high glQ
group was 7% lower than the low gIQ group (P =0.0005)
in UK Biobank. As expected, the association between glQ
and CAD risk was abolished after adjustment for measured
intelligence defining measured intelligence as an intermedi-
ary trait between gIQ and CAD risk (Fig. 3).

Bidirectional association between intelligence
and education

In UK Biobank, we found that 1-SD increase of gIQ
increased measured intelligence score by 0.29 unit
(P < 1e-10) and prolonged years spent in school by 0.45 year.
In addition, one more year spent in school increased the
measured intelligence score by 0.16 unit (P < 1e—10). Vice
versa, one unit increase in measured intelligence prolonged
years spent in school by 0.98 year (P < le—10). Both the
measured intelligence and educational attainment had
inverse effects on CAD risk. See results in Table S5.
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Study N CAD cases N controls Odds ratio[95% Cl]
GerMIFSI 622 1551 1.00[0.90,1.12] L
GerMIFSII 1192 1256 0.90[0.83,0.98] —
GerMIFSHI 1055 1441 0.97[0.89,1.06] ——
GerMIFSIV 954 1136 0.80[0.73,0.88] —
GerMIFSV 2437 1574 1.05[0.99,1.12] ——>
GerMIFSVI 1639 1186 0.97[0.90,1.05] ——
GerMIFSVII 3062 3462 1.02[0.96,1.08] ——
Cardiogen 382 404 0.79[0.67,0.93] 8
WTCC 1900 2911 1.01[0.95,1.07] ——
MIGen 2901 3018 0.87[0.83,0.92] ——
FE meta-analysis p =4.93e-05 0.95[0.93,0.98] -
UK Biobank 20310 406996 0.97[0.96,0.98] E 3
FE meta-analysis p =7.55e-07 0.97[0.95,0.98] -

075 080 085 oggds rgt.;%s 100 105 105

Fig. 1 Association of glQ and CAD risk. The genetic intelligence
score was calculated in 10 case-controls studies of CAD and UK
Biobank respectively. Logistic regression was performed to evalu-
ate the association between gIQ and CAD risks in each study. Fixed-
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Fig. 2 Distribution of cases and controls according to glQ. Individu-
als in 10 CAD studies were evenly grouped into a low (score=1),
medium (score=2) and high (score =3) group according to their gIQ.
The OR is incidence of CAD relative to low group. Risk of CAD
decreases along the increases of glQ
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effect size meta-analysis was performed to combine all studies. Forest
plot shows regression result in each study and the overall effect size.
The gIQ was inversely associated with CAD risk

Effects of glQ on risk factors of CAD

We next asked, in UK Biobank data, whether the association
between glQ and CAD risk was mediated by traditional risk
factors of CAD, and whether such effects were dependent of
measured intelligence and educational attainment. We found
strong associations of glQ with BMI, smoking, T2D, HDL
cholesterol, and hypertension (Fig. 3). The effects of glQ on
CAD risk factors were largely attenuated after adjustment for
measured intelligence or educational attainment (Fig. 3 and
Table S6), suggesting that measured intelligence and edu-
cational attainment mainly mediated associations between
glQ and these risk factors. The analyses after removal of
seven SNPs overlapping between intelligence and educa-
tional attainment obtained quantitatively and qualitatively
similar effects of glQ on CAD and its risk factors (Fig. S2).
We also studied the mediatory roles of these risk factors
on the association between gIQ and CAD risk by apply-
ing them as adjustments to the regression model. Adjusting
for individual risk factor or risk factors combined mark-
edly attenuated association signal between gIQ and CAD
risk (Fig. S3), indicating these risk factors were involved in
mediating the association between gIQ and CAD risk.

Mendelian randomization validation

To substantiate our observations, we performed multi-
variable two-sample MR analysis taking intelligence or
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Tratis OR[95%CI] Pvalue Adjusted
CAD 0.976[0.962,0.990] 6.4e-04 No —
CAD 1.010[0.986,1.036] 0.412 1Q S
CAD 1.006[0.991,1.022] 0.420 Edu —r—
BMI 0.899[0.886,0.911] 5.4e-49 No ——
BMI 0.933[0.912,0.955] 5.3e-09 1Q —_—
BMI 0.946[0.932,0.961] 1.0e-12 Edu —_—
Smoking 0.981[0.975,0.987] 8.3e-10 No ——
Smoking 0.984[0.974,0.994] 0.002 1Q ==
Smoking 1.000[0.994,1.007] 0.950 Edu —-—
T2D 0.966[0.951,0.980] 4.1e-06 No e
T2D 0.986[0.961,1.011] 0.278 1Q ————
T2D 0.997[0.981,1.014] 0.742 Edu ——
Hypertension 0.987[0.981,0.993] 3.8e-05 No —-—
Hypertension 1.000[0.991,1.010] 0.923 Q —
Hypertension 1.000[0.994,1.007] 0.883 Edu —-—
LDL chol. 0.999[0.996,1.001] 0.341 No -
LDL chol. 0.998[0.993,1.002] 0.274 1Q —=
LDL chol. 0.999[0.996,1.002] 0.547 Edu -
HDL chol. 1.007[1.006,1.008] 1:3e=29 No O
HDL chol. 1.006[1.004,1.008] 1.0e-09 1Q [ |
HDL chol. 1.005[1.003,1.007] 5.9e-06 Edu |

Fig.3 Associations of glQ with CAD and it risk factors including
BMI, smoking, T2D, HDL cholesterol, LDL cholesterol, and hyper-
tension in UK Biobank. The OR for BMI is shown as logarithm of
the linear regression coefficient. ‘Adjusted’ indicates the regression
model between gIQ and trait after adjustment for measured intelli-

educational attainment as exposures, CAD and its risk fac-
tors as outcomes. The estimates of the direct effects on out-
comes for intelligence and education were generally in a
consistent direction (Fig. 4). 1-SD increase of intelligence
resulted in decrease of CAD risk by 25% (OR =0.75;95%
CI10.69t0 0.81; P < 1e-10), decrease of BMI by 0.1 kg/m2
(95% CI — 0.16 to — 0.14; P=1.02e-3), decrease of T2D
risk by 15% (OR =85; 95% CI1 0.77 to 0.95). A SD increase
in the education years resulted in decrease of risk of CAD
by 38% (OR=0.62; 95% CI 0.58 to 0.66; P < 1e-10),
decrease of BMI by 0.32 kg/m? (95%CI — 0.37 to — 0.27;
P < 1e-10), increase of HDL cholesterol by 0.19 mmol/L
(95% CI 0.14 to 0.25; P < 1e—10), decrease of the risk
of smoking by 43% (OR=0.57; 95%CI 0.501 to 0.642;
P < 1e-10), and decrease of T2D risk by 47% (OR =0.53;
95%CI 0.49 to 0.57; P < 1e—10). The effects of educational
attainment on CAD and its risk factors displayed the same
direction as intelligence but were stronger in magnitude.
See details at supplementary notes and Table S7.

088 090 092 094 09 098 100 102 1.04
QOdds ratio

gence (IQ), or length of school years completed (Edu), or neither of
the two (No). The gIQ had inverse effects on BMI, T2D, smoking,
and hypertension and a positive effect on HDL cholesterol. The asso-
ciation signals were largely attenuated by measured intelligence and
educational attainment

Lastly, MR sensitivity analysis were performed for
intelligence and educational attainment respectively. For
intelligence, SNPs moderately associated (P < 0.001) with
CAD (n=5), BMI (n=45), and HDL cholesterol (n=15)
were removed from intelligence SNPs. The sensitivity
analysis showed 1-SD increase in intelligence to decrease
the risk of CAD by 22% (OR for IVW method of 0.78; 95%
CI0.72 to 0.84; P=5.6e—10). Same as intelligence, SNPs
moderately associated (P <0.001) with CAD (n=13),
BMI (n=155), HDL cholesterol (n=6), LDL cholesterol
(n=5), and smoking (n=2) were removed from education
SNPs. The sensitivity analysis showed 1-SD increase in
education years to decrease the risk of CAD by 34% (OR
for IVW method of 0.66; 95%CI 0.62 to 0.70; P < 1e-10).
Results are shown at Table S8.
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Fig.4 The result of MR analyses. Error bars indicate 95% confidence
intervals around the estimated effects calculated using multivariable
two-sample MR. The effects on outcomes for intelligence and edu-
cational attainment were generally in consistent directions. But the
effects of educational attainment are quantitatively stronger than
intelligence

Discussion

Epidemiological studies have revealed that increased intel-
ligence correlates with reduced CAD risk [1, 2]. Consist-
ently, our study shows that 1-SD increase of glQ based on
accumulated effects of genetic variants associated with intel-
ligence, results in 5% decrease in the risk of CAD. The CAD
risk in the high group of gIQ is relatively lower by 11% than
in the low group. The observation was replicated in the UK
Biobank. Interestingly, the inverse association got largely
attenuated after adjustment for measured intelligence and
educational attainment supporting the hypothesis that these
traits play a role in modulating CAD risk.

Our study also shows the inverse effects of glQ on health-
related outcomes including BMI, smoking, T2D, hyperten-
sion, and a positive effect on HDL cholesterol, which are
well-known for their influences on CAD risk [36—40]. Same
as for CAD, these association signals appear to be largely
mediated by measured intelligence and educational attain-
ment. It can be concluded that these risk factors mediate
the association between glQ and CAD risk individually and
collectively.

Our study confirms that intelligence and educational
attainment are genetically and phenotypically associated
with each other [6, 7]. Like in the present study, a recent
study by our group states that educational attainment is
inversely associated with CAD risk which appears to be
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mediated by risk factors such as BMI and smoking [8, 26].
Interestingly, our current study indicates that the effects of
educational attainment on CAD and its risk factors are quan-
titatively stronger than respective effects of intelligence. All
these findings indicate that improving educational attain-
ment can have potential benefits in improving decision-mak-
ing regarding health-relevant lifestyle factors and reducing
risk of CAD and other health-related outcomes.

Polygenic risk score and two-sample MR are two genetic
approaches of investigating association between traits.
Compared with the traditional epidemiologic approach, the
genetic approach is unlikely to be confounded by lifestyle or
environmental factors as genotypes are stable over lifetime
[11]. The utilization of genetic methods is limited, however,
by false discovery because of horizontal pleiotropy, a phe-
nomenon explained by the fact that variants may affect mul-
tiple traits through different pathways [9, 10]. The complex
interplay of intelligence and educational attainment caused
by their genetic roots limits a precise causal relationship
between intelligence and CAD as well as its risk factors. In
our study, we aimed to exclude genetic overlaps between
intelligence and education to highlight putative causal
effects of intelligence on CAD and its risk factors. Indeed,
this notion was furtherly confirmed by MR analysis and the
MR sensitivity analysis after excluding SNPs marginally
associated with risk factors of CAD from intelligence (or
education).

There are some limitations in our study. First, the intel-
ligence SNPs utilized in this study were identified from a
large GWAS meta-analysis based 14 independent epidemio-
logical cohorts of European ancestry [13]. To avoid bias
due to difference in population genetics, we restricted our
analysis to cohorts from Germany, UK, and others of Euro-
pean ancestry. Second, there might be other health-related
or socioeconomic factors that interplay with intelligence and
CAD risk [26]. Specially, environmental exposures can be
important confounders of association between intelligence
and CAD risk. Third, the measured intelligence obtained in
UK Biobank through a 13-item verbal-numeric reasoning
test does not equal to real intelligence whose full scopes are
unspecifiable. Moreover, educational attainment defined as
years spent in schools in this study has a wide spectrum in
various countries. Last, the two-sample MR analyses are
likely to be biased if two studies contains overlapping par-
ticipants or cohorts which are quite common in large-scale
GWAS meta-analysis [41]. We tried best to choose studies
that are of European ancestry and have minimal overlaps to
avoid such bias in two-sample MR analysis.

In conclusion, using genetic approaches, we depicted a
pathway from gIQ to CAD risk (Fig. 5). The higher gIQ is
associated with the higher measured intelligence and longer
educational attainment, both of which appear to reduce the
prevalence of risk factors of CAD including BMI, smoking,
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Fig.5 Pathway from higher glQ
to lower risk of CAD. Our study
shows inverse effects of genetic
determinants of intelligence on
CAD and its risk factors includ-
ing BMI, smoking, hyperten-
sion, and T2D and positive
effects on HDL cholesterol.
These association signals

are mediated by measured
intelligence and educational
attainment, which two are
bidirectionally associated with
each other

Genetic
determintants
of intelligence

T2D and hypertension, and increase HDL cholesterol, which
in concert subsequently reduce the prevalence of CAD.
Moreover, the effects of educational attainment on risk fac-
tors and CAD appear to be stronger than the effects of intelli-
gence. Thus, repetitive campaigns throughout schooling may
be worthwhile for preventive reasons as they may ameliorate
the association between glQ and unhealthy lifestyle.
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