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New machine learning 
and physics‑based scoring 
functions for drug discovery
Isabella A. Guedes1,3, André M. S. Barreto1, Diogo Marinho1, Eduardo Krempser2, 
Mélaine A. Kuenemann3, Olivier Sperandio3,4, Laurent E. Dardenne1* & Maria A. Miteva3,5*

Scoring functions are essential for modern in silico drug discovery. However, the accurate prediction of 
binding affinity by scoring functions remains a challenging task. The performance of scoring functions 
is very heterogeneous across different target classes. Scoring functions based on precise physics-based 
descriptors better representing protein–ligand recognition process are strongly needed. We developed 
a set of new empirical scoring functions, named DockTScore, by explicitly accounting for physics-
based terms combined with machine learning. Target-specific scoring functions were developed for 
two important drug targets, proteases and protein–protein interactions, representing an original 
class of molecules for drug discovery. Multiple linear regression (MLR), support vector machine and 
random forest algorithms were employed to derive general and target-specific scoring functions 
involving optimized MMFF94S force-field terms, solvation and lipophilic interactions terms, and an 
improved term accounting for ligand torsional entropy contribution to ligand binding. DockTScore 
scoring functions demonstrated to be competitive with the current best-evaluated scoring functions in 
terms of binding energy prediction and ranking on four DUD-E datasets and will be useful for in silico 
drug design for diverse proteins as well as for specific targets such as proteases and protein–protein 
interactions. Currently, the MLR DockTScore is available at www.dockt​hor.lncc.br.

Structure-based drug design and virtual screening have become common approaches for drug discovery. The 
predictive performance of scoring functions is essential for such methodologies1–3. However, accurate prediction 
of protein–ligand binding affinity remains a major challenge for current scoring functions. Despite the improve-
ment over the last years of empirical, force-field or knowledge-based scoring functions, most of them still show 
unsatisfactory correlation with the experimental binding affinity or are based on meaningless description of 
protein–ligand interactions exhibiting overestimated accuracies in some cases4–6.

Empirical scoring functions are based on a set of individual contributions or interaction descriptors cali-
brated by regression or statistical approaches using a training set of experimental affinity data for protein–ligand 
complexes7,8. Improvement of scoring functions can be achieved by developing new terms, training on larger 
high-quality datasets or using sophisticated machine learning-based algorithms for regression analysis, e.g. 
XGBoost and LightGBM boosting approaches9–13. Next, solvation and entropy contributions are key for ligand 
binding14–20. Although several previous scoring functions have considered such effects14,15,17,19common limitations 
of scoring functions are related to often neglecting them10,21–23. New scoring functions based on more precise 
physics-based descriptors to better represent protein–ligand recognition process are thus needed. Furthermore, 
a number of studies demonstrated that scoring functions performance is very heterogeneous across different 
target classes22–26. Target-specific scoring functions have shown to achieve better affinity prediction performance 
than general scoring functions trained over diverse protein families21–23,27–29.

In this work, we developed a set of new empirical scoring functions, named DockTScore, to estimate pro-
tein–ligand binding affinity by explicitly accounting for physics-based interaction terms contributing to the 
binding free energy. Our models are based on the MMFF94S force field and trained and validated on high-
quality large datasets properly curated. DockTScore scoring functions incorporate classical van der Waals and 
electrostatic energy terms, optimized terms accounting for solvation, lipophilic protein–ligand interactions 
and an improved estimation of ligand torsional entropy contribution to ligand binding for better describing 
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of protein–ligand recognition. Firstly, we employed multiple linear regression (MLR)30,31 to ensure a physical 
interpretation of the individual term contribution. Then, we developed more sophisticated nonlinear scoring 
functions using support-vector machine (SVM) for regression (named “SMOReg”)32 and random forest (RF)33 
algorithms using the theory-inspired physics-based terms selected from the initial MLR analysis. The develop-
ment of scoring functions using physics-based descriptors representing protein–ligand recognition process 
together with the assessment of the accuracies of different linear and nonlinear models are important to avoid 
unrealistic overestimations of scoring functions accuracy due to some known biases, especially when training 
nonlinear models4,6,34,35.

In addition to general scoring functions appropriate for diverse protein targets, we have developed MLR, 
SMOReg and RF scoring functions for two specific protein classes: proteases, and protein–protein interactions 
(PPIs) to be targeted by small-molecule inhibitors (iPPIs). Proteases are key drug targets, for which focused 
scoring functions have already been developed (e.g. targets such as HIV-1 protease35). Interestingly, only one 
work has been reported thus far aiming at developing a linear scoring function to predict the binding affinity of 
inhibitors of PPIs36 using a training set of 27 PPIs complexes. Our MLR DockTScore for iPPIs gave new insights 
into the determinant factors contributing to inhibiting PPIs by small molecules. Moreover, we report here the 
first nonlinear scoring functions focusing on iPPIs and developed on 60 PPI complex structures carefully selected 
and curated. We evaluated the accuracy of affinity prediction and success of virtual screening to discriminate 
between active and decoys compounds of our scoring functions on four DUD-E datasets.

Methods
Data sets.  Data sets of diverse protein–ligand complexes for general scoring functions.  We trained and tested 
the general scoring functions appropriate for diverse protein targets based on the PDBbind v2013 refined set 
(http://www.pdbbi​nd-cn.org/, version 2013), which is composed of 2959 protein–ligand complexes with bind-
ing affinity data manually collected from their original source37–40. PDBbind is known as the largest dataset of 
high-quality structures available for the development and validation of docking-scoring methods. The refined 
set was constructed according to several criteria concerning (i) the quality of the structures, (ii) the binding af-
finity data and (iii) the nature of the complex. Binding affinities in PDBbind comprise a large interval of values, 
ranging from 1.2 pM (1.2 × 10−12 M) to 10 mM (1.0 × 10−3 M). We converted the original binding constants to 
energy unit in kcal mol−1.

The PDBbind core set, a subset of the refined set widely used as benchmarking data for evaluation of docking-
scoring methods, was used here to assess the performance of our general scoring functions as an external test 
set only, not being used during the training step. The core set version 2013 is composed of 195 protein–ligand 
complexes carefully collected from the refined set for comparative studies of scoring functions38–40.

Data sets for target‑specific scoring functions.  We selected a random subset from the PDBbind v2013 refined 
set according to specific ranges of the EC Number, (Enzyme Commission Number (EC Number) is a system of 
enzyme nomenclature that numerically classifies enzymes based on the chemical reaction catalyzed.) ranging 
from 3.4.11.0 to 3.4.25.69, to create a dataset for training and testing the scoring function focused for proteases, 
resulting in a subset composed of 783 structures (Table S1).

To create the dataset for inhibitors of protein–protein interactions (iPPIs), we took the X-Ray-based iPPIs 
dataset previously described in Kuenemann and colleagues41, which was composed of 85 protein–ligand com-
plexes. Here, we collected the binding affinity data from the original sources and manually prepared each complex 
using the Protein Preparation Wizard from Maestro (Maestro, version 9.7, Schrödinger, LLC, New York, NY, 
2014). From the initial 85 iPPIs dataset, 25 complexes were removed due to their low resolution (value higher 
than 2.5 Å), the presence of covalently bound ligands or absence of affinity data. The remaining 60 structures 
were suitable for training and testing the specific scoring functions for iPPIs (Table 1).

Table 1.   The iPPIs dataset. a Total number of protein–ligand complexes in the dataset. b Number of complexes 
in the training set. c Number of complexes in the random test set. d Binding affinity of the strongest protein–
ligand interactions. e Binding affinity of the weakest protein–ligand complex.

Protein (short name) Totala Affinities (kcal mol−1) Trainingb Testc

Bcl2-like/BAX 10 −12.636d, −5.244e 7 3

Bromodomain2/Histone 2 −9.968, −8.561 2 0

Bromodomain4/Histone 11 −9.931, −6.145 9 2

K-Ras/SOS1 1 −4.712 1 0

MDM2-like/P53 20 −12.768, −6.737 14 6

Menin 1 −10.404 0 1

Xiap/Smac 7 −11.278, −5.378 6 1

E1/E2 1 −10.051 1 0

IL2/IL2R 1 −6.910 1 0

LEDGF/Integrase 4 −10.490, −6.676 2 2

ZipA/ftsZ 2 −6.685, −5.544 2 0

Total 60 45 15

http://www.pdbbind-cn.org/
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Training and test sets.  All datasets were randomly separated into a training set with 75% of the structures and 
an independent test set with the remaining 25% structures (Table S1). For the general scoring functions, the 
core set (N = 195) was extracted from the refined set, initially containing 2959 complexes. Thus, the random 
selection of complexes for the independent test and training sets was performed exclusively with the remaining 
2764 complexes. The random 75% of the 2764 complexes used to train the general scoring functions is called 
“General::random” training set (N = 2073, Table S1. In addition, we tested the influence of the training data set 
size on the predictive capacity for the general scoring functions. Thus, we also trained general scoring functions 
using all the 2764 protein–ligand complexes (called here “General::all”, Table S1). In this case, the predictive 
performance was evaluated only on the v2013 core set (N = 195).

For proteases, the training set was composed of 587 complexes and the test set was composed of 196 distinct 
complexes, not being used during the training step. Given the smaller size of the iPPI dataset, we characterized 
the composition of both training and test sets according to the protein families and the range of the binding 
affinity data (Table 1). Complexes of MDM2-like/P53 interacting with small ligands are the most frequent with 
20 available structures, followed by complexes of Bromodomain4/Histone (11 complexes) and Blc2-like/BAX 
(10 complexes).

Preparation of the structures.  Protein–ligand complexes of the v2013 refined set consist of the complete unit 
taken from Protein Data Bank (PDB)42 (rcsb.org) and is available as prepared structures following an auto-
matic procedure with some manual inspection performed by Li and colleagues38. Originally, the protein–ligand 
complexes were prepared following a simple protonation scheme considering a neutral pH: (i) all carboxylic 
acid and phosphate groups were deprotonated, and (ii) all aliphatic amine, guanidine and amidine groups were 
protonated. As well known, the correct assignment of both protein and ligand protonation/tautomeric states is 
crucial for correct binding mode and affinity predictions, but is a very time-consuming task for a large number 
of ligands43–45. In this work, we applied an improved protocol for the preparation of the structures of the v2013 
refined set using the Protein Preparation Wizard from Maestro (Maestro, version 9.7, Schrödinger, LLC, New 
York, NY, 2014). Protonation assignment and hydrogen-bond optimization were performed using ProtAssign 
and PROPKA46 considering the presence of the bound ligand. Protonation and tautomeric states of the ligand 
were calculated using Epik47 (Epik, version 2.7, Schrödinger, LLC, New York, NY, 2014). Metal ions were consid-
ered as cofactors, and all waters were removed from the structures. Finally, energy minimization was performed 
to optimize the hydrogen atoms positions. A special attention was paid for the preparation of the core set due to 
its importance for the benchmarking studies. The protonation/tautomeric states of the binding-site residues and 
the bound ligand of the core set were further visually inspected and appropriate corrections were made guided 
by the original reference corresponding to the respective crystallographic structure and the Protoss program48. 
The curated core set (protein, ligand and cofactors) is freely available in the Supplementary Material. All struc-
tures of the iPPIs datasets and the proteases from DUD-E were prepared using the same protocol adopted for 
the core set.

Physics‑based interaction terms.  In this work, we implemented and evaluated several physicochemical 
terms contributing to the binding free energy to obtain pertinent descriptors for the derivation of the empirical 
scoring functions: protein–ligand electrostatic interactions ( Ecoul ), van der Waals interactions ( EvdW ), lipophilic 
contact interactions ( Elipo ), polar ( Epolar_solv ) and nonpolar ( Enp_solv ) solvation contributions, and ligand tor-
sional entropy contribution ( Eentropy).

Electrostatic and van der Waals protein–ligand interactions.  The protein–ligand electrostatic and van der Waals 
interactions are calculated using the MMFF94S force field49,50. The MMFF94S force field was parameterized 
using high-quality ab  initio quantum–mechanical data and demonstrated to accurately reproduce protein–
ligand binding geometry in docking studies51,52. The electrostatic interaction Ecoul was calculated using:

where qi and qj are the partial charges of atoms i and j, ε is the dielectric constant, Rij is the distance between the 
centers of the atoms i and j, and δelec = 0.05 is the electrostatic buffering constant. The partial charges qi and qj 
are calculated through a bond-charge-increment method starting from an initial formal charge of the atom i 
( q0i  ) and adding the bond-charge-increment contributions ( ωki ), which reflect the polarity of the covalent bonds 
of the atoms i and k:

In this work, we evaluated two sigmoidal distance-dependent dielectric functions to consider the electrostatic 
screening due to the dielectric medium of protein–ligand complexes. The first one developed by Hingerty and 
colleagues53 is currently implemented in the MMFF94S functional form used by the DockThor program for 
protein–ligand docking51,52 (available as a web server at https​://www.dockt​hor.lncc.br):

where r is the internuclear separation between the atoms i and j.

Ecoul =
332.0716qiqj
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The second dielectric function was formulated by Ramstein and Lavery, allowing to change both the maximal 
value of the dielectric constant ( D ) and the limiting value of the dielectric ( Di ) when the interatomic distance 
approaches 0 ( ε(r) → Di when r → 0)54. Here, we tested Di values of 1 and 4 to simulate the relatively low 
dielectric at the interior of protein binding sites55.

r is the internuclear separation between the atoms i and j, s = 0.16 is the slope of the sigmoidal segment and 
D = 78.

The van der Waals potential ( EvdW ) as implemented in the MMFF94S force field representing a “Buffered 
14–7” form50 includes specific buffering constants δvdW and γ = 0.12:

where Rij is the interatomic distance (Å), εij is the well depth (kcal mol−1) and R∗
ij is the minimum-energy separa-

tion (Å), which depends on the MMFF94S types of the atoms i and j. The original buffering constant δvdW = 0.07 
was replaced in this work by δvdW = 0.67 , which was empirically obtained to produce a more softened version 
of the van der Waals potential noted as EvdWS.

Lipophilic protein–ligand interactions.  We developed two descriptors Elipo to calculate the lipophilic contact 
interactions effect Elipo by summing all hydrophobic atom pairs between the ligand and the protein following 
the previously proposed functional forms in ChemScore56 and X-Score57 scoring functions. For each of them, 
the atoms considered for lipophilic contacts were: (i) all carbon atoms, or (ii) any non-hydrogen atom with 
MMFF94S partial charge q in the interval −0.4 < q < +0.4 . We empirically estimated this range of partial 
charges through analysis of several protein–ligand complexes parameterized with the MMFF94S force field. The 
Elipo descriptor for each lipophilic contact following e.g. the ChemScore is calculated by:

where d is the distance between the pairs of atoms and dvdW is the sum of their van der Waals radii.

Polar and nonpolar solvation contributions.  In this work, the solvation contribution was calculated using a 
polar solvation term, which accounts for the loss of polar interactions of the charged groups of both protein and 
ligand with the solvent, and a nonpolar solvation term, which reflects the desolvation of the hydrophobic protein 
and ligand groups due to binding. The polar solvation term Epolar_solv was calculated by summing up the number 
of charged atoms becoming buried after the complex formation and not interacting with a charged atom in the 
protein–ligand complex. In this term, two charged atoms were considered as interacting if the distance between 
them ( d ) was equal to or lower than dvdW + 1.0Å , where dvdW is the sum of their van der Waals radii. A charged 
atom was defined as a non-hydrogen and a non-carbon atom with a partial charge 

∣

∣q
∣

∣ > 0.8.
The nonpolar solvation Enp_solv was calculated based on the total loss of the solvent-accessible surface area 

(SAS) of the protein and the ligand due to the binding converted into energy ( Enp_solv in kcal mol−1) follow-
ing Kuhn and Kollman58. The SAS of atoms in the free and complexed states was calculated with the program 
MSMS59.

where Gnp is calculated by:

Ligand torsional entropy contribution.  We revisited here the ligand torsional entropy term based on the con-
formational component of the ligand entropy and arising from the loss of the torsional degrees of freedom for 
a flexible ligand upon binding. Instead of a crude approximation based on the total number of all rotatable 
bonds14–17,19, we propose an improved estimation of the lost torsional freedom of the ligand by considering only 
the rotatable bonds, which become “frozen” due to binding. Similar approaches were previously adopted to 
approximate protein side-chain entropic contributions15,60.

The bonds are considered as “frozen” based on the change of the solvent-accessible surface areas of the ligand 
atoms directly involved in each rotatable bond, aiming to penalize only dihedrals that are unable to rotate after 
the complex formation.

Firstly, each rotatable bond of the ligand (Fig. 1A) is divided into two sides for the two atoms i and j 
(Fig. 1B,C). Each side is composed of (i) the atom i, which is directly involved in the bond (symbol *), and (ii) 
the first neighbors of the atom i (symbol +). The same procedure is applied to the other side (atom j). The change 
of the SAS (ΔSAS) for each side upon the binding is computed taking into account all atoms of the side. If SAS 
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decreases ≥ 50% for the two sides, the rotatable bond is considered as frozen due to the binding. We consider 
that a hiding of a rotatable bond by more than 50% is significant for the ligand flexibility, and thus critical to the 
change of the ligand entropy due to the binding. In fact, the protein receptor is kept rigid during the docking and 
slight protein movements could compensate for a small change of the SAS of a ligand rotatable bond. We thus 
take into consideration only those bonds becoming frozen due to the binding for the ligand torsional entropy 
contribution estimation (Fig. 1D).

Derivation of linear scoring functions.  We performed the selection of the descriptors based on the 
assumption that the major contributions to the free energy of binding are the intermolecular interactions, rep-
resented by the van der Waals and electrostatic interactions between the protein and the ligand, and the solva-
tion and entropy changes due to the binding. We developed thus independent descriptors accounting for van 
der Waals and electrostatic interactions, protein–ligand lipophilic contacts, the change of the conformational 
entropy of the ligand, and polar/nonpolar solvation contribution to the binding (see their definition in “Physics-
Based Interaction Terms”). Then, we selected the best descriptors (see below), assuring that all above men-
tioned classes of interactions have been present in the final scoring functions, instead of using a combinatorial 
or sequential descriptors selection.

We applied multiple linear regression (MLR) ensuring a physical interpretation of the individual terms’ contri-
butions. A tenfold cross-validation was used to select the best performing physics-based descriptors. This initial 
descriptor selection was applied only for the derivation of the general scoring function since it was trained with 
the largest training set containing diverse protein–ligand complexes. We started with the basic function FMMFF 
containing the electrostatic term with the Ramstein dielectric function tending to 4, Di = 4, ( Ecoul4 ) and the soft 
van der Waals term ( EvdWS ) based on the original MMFF94S force field. These two terms were selected since they 
achieved the best correlation among four combinations tested for the electrostatic and vdW terms (see Table S2).

Then, each of the remaining physics-based descriptors (lipophilic contacts, entropy, polar solvation and 
nonpolar solvation) was individually added to the basic function FMMFF one at a time, to find the best varia-
tion for each of them leading to the best correlation on cross-validation experiments. Thus, the combinations 
evaluated herein were: FMMFF + lipophilic contacts (4 variants), FMMFF + entropy, FMMFF + polar solvation, and 
FMMFF + nonpolar solvation. The correlations obtained for all combinations are present in the Supplementary 
Material (Tables S3 and S4). We considered the best variation of each specific term to finally combine them into 
the general scoring function (Ffinal = FMMFF + lipophilic contacts + ligand conformational entropy + polar solva-
tion + nonpolar solvation). Next, the best combination of terms of the general scoring function was applied to the 
class-specific scoring functions, and was also used for the descriptors in the development of nonlinear scoring 
functions with machine learning methods.

Figure 1.   Illustration of the algorithm for computing the ligand torsional entropy term. (A) Selection of the 
rotatable bonds in the ligand. (B and C). Each rotatable bond is divided into two sides (i in yellow and j in 
orange) and the root (*) and the neighboring ( +) atoms are detected. (D) A rotatable bond is considered as 
frozen if both sides become buried with more than 50% due to the binding (case 1). If at least one side does not 
become buried with more than 50% due to the binding the rotatable bond is not taken into consideration (case 
2).
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Derivation of nonlinear scoring functions.  In this work, we also developed nonlinear scoring functions 
using the Support Vector Machine for Regression (SMOReg) and Random Forest (RF) algorithms. Such scoring 
functions were trained using the same physics-based descriptors selected for the final linear scoring functions.

Support Vector Machine (SVM) aims to find the hyperplane that maximizes the margin of separation between 
data classes. In particular, in the kernel application the original nonlinear separable data can be transformed 
to a linear hyperplane separable problem on a higher dimension space61. SMOReg uses the sequential minimal 
optimization (SMO) for training support-vector machines (SVM) models in regression problems. In regression 
problems, all prediction errors less than a value of ε are ignored (insensitive-loss function)30,62. This strategy 
reduces the risk of overfitting on the training set and is controlled by the complexity parameter C, which is 
user-defined together with ε.

Random Forests (RF) were introduced by Breiman in 2001 as a powerful strategy for ensemble learning33. The 
RF combines several random trees (numTrees) in a bagging ensemble model, often leading to excellent results in 
diverse classification problems33,62. The output variable of a RF model is usually an average value of the predic-
tions of the regression trees (as used in this work), where the node splitting is performed using a finite subset of 
features randomly chosen (numFeatures).

All the machine-learning procedures were carried out using the Weka v3.8.3 package30. We explored diverse 
configurations of SMOReg and RF on a tenfold cross-validation procedure. For SMOReg, we varied the com-
plexity parameter C, tolerance in loss function epsilon (ε), kernel (puk or rbf), gamma (γ) of the rbf kernel, and 
sigma (σ) and omega (ω) of the puk kernel. In the RF training, we explored the number of trees (numTrees) and 
the number of features that are randomly chosen for splitting the parent node (numFeatures).

The tested learning parameters and their optimal values found are present in Tables S5 and S6, respectively 
(see Supporting Information).

Validation of the scoring functions.  Binding affinity accuracy.  The best model of each machine-
learning algorithm was selected according to the Pearson’s Correlation Coefficient ( R ) using the tenfold cross-
validation strategy. Then, we applied the scoring functions to the respective test sets to validate their affinity 
predictability according to R and root mean squared error (RMSE). Both R and RMSE were calculated using the 
experimental and predicted free energy of binding (ΔGbind):

where yi and ti are respectively the predicted and the experimental binding affinities for the i-th complex, y and 
t are the arithmetic average values for y and t and N is the number of points in the data set.

where N is the number of points in the dataset, yi is the predicted binding affinity and ti is the experimental 
binding affinity.

Virtual screening experiments.  In order to evaluate the success of our scoring functions to discriminate 
active and decoys compounds, we performed docking experiments using the protein–ligand docking program 
DockThor51,52 and re-scoring with DockTScore on core set and the DUD-E datasets63 for the proteases FA7 
(coagulation factor VII, PDB code 1W7X), RENI (renin, PDB code 3G6Z), TRYB1 (tryptase β1, PDB code 
2ZEC), and UROK (urokinase-type plasminogen activator, PDB code 1SQT), and the kinases AKT2 (serine/
threonine-protein kinase AKT2, PDB code 3D0E), KIT (stem cell growth factor receptor, PDB code 3G0E) and 
MK01 (MAP kinase ERK2, PDB code 2OJG). Proteases were selected to evaluate the screening success of the 
DockTScore general and target-specific scoring functions trained on the PDBbind refined set due to the large 
size of the training set used to calibrate the focused scoring functions for proteases. The protease and kinase 
datasets from DUD-E were chosen according to the following criteria: (i) no metal ions interacting with the 
ligand, and (ii) co-crystallized ligand successfully redocked with the top-energy solution with RMSD ≤ 2.0 Å. 
For PPIs, we constructed screening datasets for Bcl2-like/BAX and MDM2/p53 systems composed of actives 
taken from the iPPI-DB64 database (https​://ippid​b.paste​ur.fr/) and inactive compounds taken from the BDM 
chemical library available at ChemREST (https​://chem-rest.paste​ur.fr/#?&versi​oned_sourc​es=8&used_filte​rs =). 
The iPPI-DB is a database that contains the structure, some physicochemical characteristics, the pharmacologi-
cal data and the profile of about 2000 modulators of protein–protein interactions. It contains exclusively small 
molecules and therefore no peptides. BDM compounds have been previously shown to be negative on MDM2 
and Bcl2 interactions via fluorescence polarization assays65. For the PPIs screening datasets, we selected only the 
compounds without chiral centers and having only one protonation/tautomer state as predicted by Epik. Fol-
lowing the DUD-E sets construction, we selected randomly 50 inactives for each active compound to keep an 
adequate balance between actives and inactives to evaluate the scoring functions performance on virtual screen-
ing experiments. The PDB codes 3QKD and 4IPF were used for the receptor structures of the Bcl-2-like protein 
1 and MDM2, respectively.

The docking poses were generated with the program DockThor for protein–ligand docking freely available 
as a web server at https​://dockt​hor.lncc.br). The DockThor program uses a grid box to define the search space, 
the DMRTS genetic algorithm as the search algorithm, and an MMFF94S-based scoring function for pose 
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prediction51,52. Configuration of the search space of each protein target was automatically determined according 
to the reference ligand: (i) the center of coordinates was defined as the center of coordinates of the ligand, (ii) 
the grid size was defined as the largest axis value of the ligand plus a tolerance of 6 Å on each dimension, (iii) the 
discretization (i.e. spacing between two points of the grid) was set to the default value of 0.25 Å except for the 
cases where the grid size was greater than 26 Å. The parameters of the search algorithm were set as follows for 
redocking experiments: (i) 24 docking runs, (ii) 1,000,000 evaluations on each docking run, (iii) initial popula-
tion of 1,000 individuals. The MMFF94S-based scoring function for ranking the docking poses (Etotal) consists 
of (i) the torsional, electrostatic and Buf-14–7 van der Waals potential terms for the internal energy, and (ii) the 
electrostatic and Buf-14–7 van der Waals potential terms for the intermolecular interactions. The docking poses 
are clustered using our in-house tool dtstatistic using a criterion of diversity equals to 2.0 Å.

The screening experiments were performed using the computational facilities provided by the Brazilian 
SINAPAD (Sistema Nacional de Alto Desempenho, https​://www.lncc.br/sinap​ad/) high-performance platform 
and the Supercomputer SDumont. We used a set of GA parameters named “virtual screening” for the screening 
experiments used to reduce the computational cost, consisting of 12 docking runs, 500,000 GA evaluations and 
initial population of 750 individuals. The top-energy docking pose ranked by the total energy Etotal were selected 
for the virtual screening experiments and binding affinity predictions.

The screening success was evaluated according to the area under the curve for the receiver operation char-
acteristics (ROC AUC), the enrichment factor at 1% of the screened libraries (i.e., EF1%), and the Boltzmann-
enhanced discrimination of ROC values (α = 20 and α = 100, respectively BEDROC20 and BEDROC100)66 using 
the open-source tool for virtual screening analysis Rocker67.

Results
Performance of physics‑based terms for the scoring functions.  The best correlation between the 
predicted and experimental affinities (R = 0.493) using tenfold cross-validation on the General::random training 
set (N = 2073) with MLR for a scoring function accounting only for EvdW and Ecoul was obtained with our sof-
tened version of the Buf-14-7 van der Waals potential ( EvdWS , with δvdW = 0.67 ) and the electrostatic term using 
the sigmoidal dielectric function of Ramstein and Lavery58 with Di = 4 (Table S2), noted here as Ecoul4 . The 
scoring function composed of only EvdWS and Ecoul4 terms is noted in this work as the “basic scoring function” 
FMMFF . No correlation was obtained in cross-validation experiments (R = 0.053) using only the two original 
MMFF94S force field terms EvdW Buf-14–7 (with δvdW = 0.07 ) and Ecoul ( Di = 1 ). It is interesting to note that 
the best correlation was obtained with the softened version EvdWS , which is expected because no energy mini-
mization of the complex structures was performed. Soft vdW potentials are more permissive for small clashes 
that can be present, in particular in structures generated by molecular docking without subsequent energy mini-
mization. For X-ray derived structures shorter non-bonded atom–atom distances may be present when com-
pared to energy minimized structures through classical force fields optimizations. Indeed, when dealing with 
non-optimized structures such as those used in X-ray models, it is indicated to softening the Buf-14-7 potential 
increasing the δvdW buffering constant50. The Elipo lipophilic contact term provided better results when nonpolar 
atoms were defined based on the MMFF94S partial charges instead of considering only carbon atoms, achiev-
ing here a Pearson correlation of R = 0.538 when added to the FMMFF basic scoring function (Table S3). This 
result indicated that our description of the atom types according to their partial atomic charges, specific for the 
MMFF94S force field is relevant. Adding our original and simple term for the polar solvation also improved the 
accuracy of the basic scoring function FMMFF (R = 0.514). Similarly, adding the nonpolar solvation term to FMMFF 
improved the correlation in tenfold cross-validation experiments (R = 0.503). In the same line, our proposed 
improved term for ligand torsional entropy contribution demonstrated to be important for the affinity predic-
tion when associated with the basic scoring function, improving its correlation on cross-validation experiments 
(R = 0.507). The observed improvement due to our individual physics–based terms permitted their validation for 
further training of the general and target-specific empirical scoring functions.

General scoring functions.  The MLR coefficients obtained for the general scoring functions considering 
all validated six terms are shown in (Table 2). As expected, the coefficients are in accordance with the physical 
meaning of the corresponding terms (i.e., favorable or unfavorable contribution). Energy terms such as van 
der Waals, electrostatic and nonpolar solvation increase the binding affinity when the associated coefficients 
have positive values and the corresponding interactions for Ecoul and Enp_solv are favorable for the binding. The 
empirical term related to the counting of the lipophilic atom pairs has a favorable contribution as the associated 
coefficient has a negative value. The polar solvation and the entropy terms are unfavorable as the coefficients are 
positive.

Table 2.   Coefficients of the terms obtained for the general scoring functions trained with MLR. a Scoring 
function trained with the random training set (N = 2073). b Scoring function trained with the refined set minus 
core set (N = 2764).

Scoring functions Ecoul4 EvdWS Elipo Eentropy Epolar_solv Enp_solv c0
General::randoma 0.0039 0.0386 −0.0111 0.0560 0.1025 0.0169 −5.5197

General::allb 0.0045 0.0343 −0.0104 0.0605 0.0987 0.1180 −5.5178

https://www.lncc.br/sinapad/
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MLR general scoring function trained with the random training set (N = 2073) exhibited a good perfor-
mance on tenfold cross-validation experiments (R = 0.548) and on the curated core set (R = 0.602), and a lower 
performance on the random test set (R = 0.494) (Table S7). Our MLR general scoring function has predictive 
capacity comparable to the best evaluated linear scoring functions, with performance close to X-Score:HMScore 
(R = 0.614) and X = Score::SAS (R = 0.606) reported in the v2013 core set benchmark paper39.

According to the tenfold cross-validation in the random general training set (N = 2073), it is seen that the 
SMOReg and RF models outperformed the MLR model, providing significantly better performances with 
R = 0.653 and R = 0.655, respectively (Table S7). These results confirm previous findings that nonlinear regres-
sion may better predict binding affinities than MLR and that the additive assumption adopted in the linear 
scoring functions could be too restrictive68. Using two different size training sets, the General::all one (N = 2764) 
and the General::random one (N = 2073) did not change the predictive performance of MLR model (R = 0.601 vs 
R = 0.602) while the larger training set improved the predictive performance of the SMOReg and RF models on 
the core set (Fig. 2 and Table S7), respectively RSMOReg = 0.668 vs RSMOReg = 0.687 and RRF = 0.678 vs RRF = 0.705. 
These results are consistent with other studies evaluating the influence of the training size, indicating that non-
linear scoring functions increase performance when more data is included in the training set while linear models 
seem to be less sensitive to the training set size69,70.

Target‑specific scoring functions.  Proteases.  The linear scoring function for proteases exhibited good 
performance on the cross-validation experiments (R = 0.614) and on the independent test set (R = 0.653) (Fig. 3). 
All coefficients were very similar to those obtained for the general scoring function and their signals were in ac-
cordance with the physical meaning of the corresponding terms (Table 3). Likewise to the results observed for 
general scoring function, the nonlinear models for proteases exhibited significant improvements in the predic-
tion capacity for both tenfold cross-validation experiment (RSMOReg = 0.749 and RRF = 0.735) and the independent 
test set (RSMOReg = 0.730 and RRF = 0.723).

Protein–protein interactions (PPI).  For the iPPI linear scoring function, the representation of solvation as two 
independent terms leads to an unexpected favorable contribution of polar solvation instead of penalizing the 
buried charged atoms not involved in charge-charge interactions (Table 4). Thus, we decided to consider a sin-
gle term for both polar and nonpolar solvation (called “oneSolv”), which has the same functional form of the 
nonpolar term but taking into account all heavy atoms, i.e., both polar and nonpolar ones. The solvation term 
“oneSolv” performed slightly better for the PPI-specific scoring function on cross-validation than using two sol-
vation terms (R = 0.552 versus R = 0.545). Comparing the magnitude of the coefficients in the “oneSolv” model, 
the entropic and electrostatic terms exhibited a significantly higher contribution for iPPIs (Table 4). It has been 
widely demonstrated that iPPIs have higher hydrophobicity, aromaticity and molecular weight compared to 
enzyme inhibitors, as usually interacting within flatter, larger and more hydrophobic binding sites than the 
enzyme catalytic sites41,71,72. Given this, it is expected that the hydrophobic effect due to the binding represented 
here by the lipophilic contact and “oneSolv” solvation terms exhibit a strongly favorable contribution for this 
class of complexes. The unfavorable contribution of the EvdWS term might be due to some overlapping with the 
lipophilic contact and the “oneSolv” solvation terms. Further, a larger dataset set would allow to better evaluate 
the solvation contribution for inhibiting PPI.

Figure 2.   Correlation plot of the experimental and predicted binding affinities by the MLR (left) and RF (right) 
general scoring functions. Models trained on the PDBbind v2013 refined set (N = 2764) and evaluated on 
curated v2013 core set (N = 195). R is the Pearson’s correlation coefficient and RMSE is the root mean squared 
error given in kcal mol−1.
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Regarding the ligand entropy, it is clearly unfavorable for the binding. We expect that our improved entropic 
term penalizing only frozen rotatable bonds instead of all rotatable bonds is particularly important for the PPI 
class taken into account the large size of iPPIs and thus a possibly larger number of rotatable bonds. To confirm 
this hypothesis, we evaluated the linear scoring function for iPPIs on tenfold cross-validation experiments using 
the commonly used total number of rotatable bonds instead of the number of frozen torsions, and we obtained a 
slightly reduced correlation (R = 0.515). In this context, our entropic term demonstrated to be more appropriate 
for iPPIs than the total number of rotatable bonds.

As expected, the nonlinear scoring functions specific for iPPIs, mainly the SMOReg model, improved the 
predictive performance when compared with the MLR model (Fig. 4), obtaining correlations of RSMOReg = 0.600 
and RRF = 0.666 on the tenfold cross-validation, and RSMOReg = 0.613 and RRF = 0.478 on the test set. Curiously, 
despite the RF performing better on the tenfold cross-validation, the SMOReg model achieved a real improve-
ment on the test set.

Virtual screening.  In general, the DockTScore functions performed well in virtual screening experiments 
for the proteases (Table 5 and Fig. 5). According to the results, the best models achieved AUC ROC values bet-
ter than 0.70 in most of the cases, while the early recognition of active compounds according to the EF1% and 
the BEDROC values was variable between the different proteases studied, keeping in mind that BEDROC100 
is very exigent for the early recognition of actives. Following the same trend observed for the binding affinity 
prediction, the nonlinear models generally performed better than the MLR models in terms of the screening 
success. Best results were obtained when using the specific scoring functions for proteases with the SMOreg 
model being the best-performing scoring function to distinguish actives from decoys. As an exception, the 
general and target-specific scoring functions exhibited low predictive performance for the TRYB1 target, with 
AUC ROC values lower than 0.651, a maximum EF1% only of 8, BEDROC20 of 0.203, BEDROC100 of 0.167. 
In this case, the accuracy is very low, taking into consideration that depending on the library size, often one can 
screen experimentally about 1% of the in silico screened compounds. The TRYB1 is a particular case, its binding 

Figure 3.   Correlation plot of experimental and predicted binding affinities by MLR (left) and SMOReg (right) 
specific scoring functions for proteases. The scoring functions were evaluated on the independent test set for 
proteases (N = 196). R is the Pearson’s correlation coefficient and RMSE is the root mean squared error given in 
kcal mol−1.

Table 3.   Coefficients of the terms obtained for the protease-specific scoring functions trained with MLR.

Scoring functions Ecoul4 EvdWS Elipo Eentropy Epolar_solv Enp_solv c0

Proteases 0.0089 0.0399 −0.1120 0.0153 0.0515 0.0809 −4.8954

Table 4.   Coefficients of the terms obtained for the iPPI-specific scoring functions trained with MLR.

Scoring functions Ecoul4 EvdWS Elipo Eentropy Epolar_solv Enp_solv c0
iPPIs 0.0505 0.0024 −0.0130 0.1967 −0.1698 1.0569 −0.7898

iPPIs-oneSolv 0.0335 −0.0207 −0.0153 0.2038 1.1227 −1.1397
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site is remarkably exposed to the solvent. It is located in the interface of the two TRYB1 monomers belonging to 
the active tetramer8 sharing thus PPI-like properties. The co-crystallized ligand is bound with only one “frozen” 
rotatable bond in the dimer out of four rotatable bonds (Fig. 6). Therefore, we also evaluated the performance of 
the DockTScore PPI-specific scoring functions on the TRYB1 target (Fig. 7). Interestingly, the PPI-specific MLR 
scoring function outperformed the other scoring functions evaluated (i.e., general and protease-specific, linear 
and nonlinear), achieving an AUC ROC curve of 0.762 (SMOregprotease was 0.651), EF1% = 15.626 (SMOregprotease 
was 7.473), BEDROC20 = 0.291 (SMOregprotease was 0.203) and BEDROC100 = 0.272 (SMOregprotease was 0.167).

The screening of actives and inactives on the two PPIs datasets resulted in AUC values better than 0.70 for 
the two targets for almost all scoring functions (Table 6 and Fig. 8), while the early recognition problem was 
successfully addressed only for the Bcl2-like system, reaching high BEDROC values of 0.474 (α = 20) for SMOreg 
and 0.539 (α = 100) for MLR. For the Bcl2-like protein/BAX system, the SMOreg scoring functions generally 

Figure 4.   Correlation plot of predicted and predicted binding affinity by MLR (left) and SMOReg (right) 
specific scoring functions for iPPIs using one solvation term evaluated on the independent test set for iPPIs 
(N = 15). R is the Pearson’s correlation coefficient and RMSE is the root mean squared error given in kcal mol-1.

Table 5.   Screening success of the general and target-specific scoring functions trained with MLR, SMOreg 
and RF for the FA7, RENI, TRYB1 and UROK datasets from DUD-E. ac, dec and tot are the number of active, 
decoy compounds and the total number of molecules in the final dataset (i.e., compounds that were docked 
and rescored with DockThor and DockTScore, respectively). Only the top-scored protonation state of a 
compound according to each scoring function (SF) was kept.

Target Metrics

General SFs Protease-specific SFs

MLR SMOreg RF MLR SMOreg RF

FA7 AUC​ 0.789 0.860 0.875 0.818 0.893 0.869

ac = 112 EF1% (max = 52.973) 8.979 9.876 8.979 12.570 17.059 17.059

dec = 5,821 BEDROC20 0.299 0.346 0.328 0.350 0.478 0.397

tot = 5,933 BEDROC100 0.181 0.181 0.165 0.230 0.333 0.310

RENI AUC​ 0.786 0.769 0.763 0.807 0.771 0.782

ac = 73 EF1% (max = 86.425) 16.462 20.577 10.975 17.834 16.462 8.231

dec = 6,236 BEDROC20 0.300 0.334 0.271 0.349 0.346 0.268

tot = 6,309 BEDROC100 0.253 0.281 0.155 0.283 0.207 0.119

TRYB1 AUC​ 0.619 0.649 0.614 0.651 0.651 0.633

ac = 147 EF1% (max = 51.633) 1.359 1.359 2.038 4.076 7.473 8.153

dec = 7,443 BEDROC20 0.099 0.103 0.080 0.141 0.203 0.169

tot = 7,590 BEDROC100 0.037 0.040 0.046 0.080 0.167 0.167

UROK AUC​ 0.740 0.774 0.775 0.762 0.814 0.788

ac = 129 EF1% (max = 69.837) 7.760 8.536 6.208 11.640 14.743 10.088

dec = 8,880 BEDROC20 0.262 0.306 0.295 0.295 0.352 0.283

tot = 9,009 BEDROC100 0.123 0.147 0.118 0.179 0.232 0.182
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outperformed the other machine learning methods, whereas the PPI-specific scoring functions improved the 
EF1% and BEDROC for all algorithms. Interestingly, the linear PPI-specific scoring function, with a satisfactory 
AUC ROC value of 0.709, obtained the best EF1% value and the highest BEDROC100 value of 0.539. In the case 
of MDM2 target, the nonlinear general scoring functions outperformed the specific models in terms of AUC 
ROC, whereas the RF-based achieved the best overall screening performance. However, for this target all methods 
exhibited insufficient early recognition capacity according to the EF1% and the BEDROC values.

In addition to the proteases and PPIs targets, we also evaluated the performance of our general scoring func-
tions trained with MLR, SMOreg and RF on three protein kinases datasets taken from DUD-E. Kinases are con-
sidered as challenging targets mainly due to binding site flexibility, which frequently leads to induced-fit effects 
due to ligand binding. Although DockTScore is not developed to deal with the receptor flexibility, our scoring 
functions exhibited satisfactory performances for two out of three kinases in virtual screening experiments, with 

Figure 5.   AUC ROC curves of the general (left) and protease-specific scoring functions (right) trained with 
MLR, SMOreg and RF for the FA7 (A), RENI (B), and UROK (C) datasets from DUD-E.
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AUC ROC values higher than 0.745 (Table 7 and Fig. 9). It is interesting to note that for AKT2 and MK01 targets, 
the MLR function showed better values for early the recognition metrics (e.g., EF, BEDROC20 and BEDROC100) 
than the SMOreg (AKT2and MK01) and RF (only for MK01) nonlinear functions. However, for the KIT target 
all the functions achieved insufficient performance for all evaluated metrics. It is important to note that in the 
screening experiments, we used a softened version of the MMFF94S Buf-14-7 force field to implicitly account 

Figure 6.   Surface representation of the binding sites of the proteases (A) FA7, (B) UROK, (C) RENI, and (D) 
TRYB1 colored by chain. The co-crystallized ligand is represented as sticks.

Figure 7.   AUC ROC curves of the protease-specific (left) and PPI-specific (right) scoring functions trained 
with MLR, SMOreg and RF for the TRYB1 datasets from DUD-E.
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for the protein flexibility to some extend explicitly permitting small clashes by reducing the repulsive energy 
between the protein–ligand atoms. However, the use of strategies that account for large movements of the binding 
site, such as ensemble docking with more than one representative structure of the protein, might be necessary 
to achieve better screening results on highly flexible systems such as kinases.

Table 6.   Screening success of the general and PPI-specific scoring functions trained with MLR, SMOreg and 
RF evaluated on the Bcl2-like protein/BAX and MDM2/p53 datasets. ac, inac and tot are the number of active, 
inactive compounds and the total number of molecules in the final dataset (i.e., compounds that were docked 
and rescored with DockThor and DockTScore, respectively). Only the top-scored protonation state of each 
compound according to each scoring function (SF) was kept.

Target Metrics

General SFs PPI-specific SFs

MLR SMOreg RF MLR SMOreg RF

Bcl2-like protein/BAX AUC​ 0.755 0.838 0.740 0.709 0.801 0.716

ac = 98 EF1% (max = 51.510) 22.664 20.604 20.604 29.876 23.695 22.664

inac = 4,950 BEDROC20 0.370 0.375 0.330 0.471 0.474 0.418

tot = 5,048 BEDROC100 0.386 0.368 0.378 0.539 0.445 0.430

MDM2/p53 AUC​ 0.741 0.791 0.794 0.736 0.654 0.553

ac = 114 EF1% (max = 50.991) 4.400 4.400 6.154 2.637 1.758 5.275

inac = 5,699 BEDROC20 0.204 0.251 0.262 0.163 0.114 0.117

tot = 5,813 BEDROC100 0.010 0.112 0.124 0.068 0.042 0.090

Figure 8.   AUC ROC curves of the general (left) and PPI-specific (right) scoring functions trained with MLR, 
SMOreg and RF for the Bcl2-like/BAX (A) and MDM2/p53 (B) datasets.
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Discussion
We validated our physics-based terms for the general scoring functions using MLR. Despite its simplest form, 
MLR has the advantage to provide practical insights into relationships between the predicted binding affinity 
and the individual contribution of each specific term to the scoring function. In this work, all decisions regard-
ing the selection of terms and machine-learning algorithms were made based on cross-validation experiments 
on the training set. The strategy of selecting random and independent test sets as employed here is particularly 
important in order to avoid performance overestimation. The performance of binding affinity prediction of 
the DockTScore general scoring functions are comparable with other well-known empirical scoring functions 
also tested on the v2013 PDBBind core set, e.g., X-score::HMScore (R = 0.644)57, Surflex-Dock (R = 0.388)73, 
VinaRF20 (R = 0.686)74, and RF::VinaElem (R = 0.752) (Fig. 10). We obtained better performance on the carefully 
prepared core set compared to the random test set. One reason is that the selection of the complexes to form the 
core set ensured that all protein families in this benchmarking set were also present in the training set. Also, we 
believe that a correct preparation of the system, like the protonation state assignment as done for the core set, is 
important for proper binding energy prediction and a reliable assessment of scoring functions based on a more 
sophisticated protein–ligand interactions description.

Interestingly, the RF-Score::VinaElem (R = 0.752)78, a nonlinear scoring function based on 36 element-element 
distance counts, the five Vina scoring function energy terms and the number of rotatable bonds in the ligand, 
showed highest performance in comparison with other well-established scoring functions validated on the same 

Table 7.   Screening success of the general scoring functions trained with MLR, SMOreg and RF evaluated on 
the AKT2, KIT, and MK01 datasets from DUD-E. ac, dec and tot are the number of active, decoy compounds 
and the total number of molecules in the final dataset (i.e., compounds that were docked and rescored with 
DockThor and DockTScore, respectively). Only the top-scored protonation state of each compound according 
to each scoring function (SF) was kept.

Target Metrics

General SFs

MLR SMOreg RF

AKT2 AUC​ 0.769 0.800 0.814

ac = 116 EF1% (max = 60.414) 24.166 15.535 13.809

dec = 6,892 BEDROC20 0.421 0.378 0.379

tot = 7,008 BEDROC100 0.394 0.288 0.269

KIT AUC​ 0.640 0.635 0.657

ac = 166 EF1% (max = 63.934) 3.016 2.413 5.428

dec = 10,447 BEDROC20 0.148 0.146 0.176

tot = 10,613 BEDROC100 0.063 0.043 0.090

MK01 AUC​ 0.786 0.766 0.745

ac = 78 EF1% (max = 59.308) 10.314 12.893 7.736

dec = 4,548 BEDROC20 0.352 0.364 0.340

tot = 4.626 BEDROC100 0.153 0.220 0.193

Figure 9.   AUC ROC curves for the general scoring functions trained with MLR, SMOreg and RF evaluated on 
the AKT2, KIT and MK01 kinase datasets from DUD-E.
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v2013 core set39. On the other hand, it has been recently suggested that linear scoring functions, which can be 
less-accurate for binding affinity prediction but are composed of meaningful protein–ligand interaction terms, 
can be more robust than nonlinear scoring functions based only on element-element distance counts4. Definitely, 
element-element pair approaches are less sensitive to the proper dataset preparation, discarding the necessity 
of the time-consuming task of a careful assignment of the protonation states and atom types. However, scoring 
functions based on the calculation of physics-based binding energy terms might capture free energy changes 
arising from subtle protein–ligand interaction changes, useful particularly for hit-to-lead optimization.

It is widely recognized that target-specific scoring functions increase the efficiency of virtual screening 
exercises21,24,27. Different targeted docking-scoring strategies have been employed during the last decade. Some 
recent studies focused on combining scoring and pharmacophore/fingerprint filtering showed to improve target-
specific pose/ligand selection22,79,80. We decided to develop new target-specific scoring functions for two protein 
classes to directly improve the prediction of the binding affinity by considering physics-based protein–ligand 
interaction terms. We obtained a remarkable improvement for the best nonlinear scoring function specific 
for PPIs (i.e., the SMOReg model) compared to the general scoring function, achieving a significantly higher 
performance R = 0.613 against R = 0.431 obtained by the SMOReg general scoring function. For protease, such 
direct comparison is not reliable since most of the protease complexes present in the respective test set were also 
present in the training set used to derive the general scoring functions. Specific scoring functions have already 
been developed for well-established key protease targets as HIV-1 protease28 and their performances are compa-
rable with our SMOreg models. The advantage of our targeted scoring functions for proteases compared to the 
above-cited studies is the physical interpretability of the terms describing the protein–ligand interactions and 
good performances on virtual screening experiments evaluated with AUC ROC, EF1% and BEDROC metrics 
for the screening assessment.

Despite the insufficient accuracy exhibited by our linear scoring function specific for iPPIs on the independ-
ent test set, it served as a basis for the development of nonlinear models using SMOReg and RF techniques. 
As expected, the nonlinear scoring function specific for iPPIs, in particular SMOReg, showed a significant 
improvement of the predictive performance when compared with the MLR model in terms of binding affinity 
prediction. However, analyzing the virtual screening metrics for the Bcl2 target, we observe distinct results. 

Figure 10.   Scoring power of DockTScore linear and nonlinear models compared to the scoring functions 
evaluated on the core set 2013. Performances collected from the literature: BT-Score75, CompSPA76, 
AutoDockHybrid23, and the remaining were recalculated from raw data in the recent work of T. Gaillard77. 
Nonlinear models are highlighted with a star. Scoring functions with Pearson’s correlation coefficients higher or 
equal than 0.7 are colored purple and those lower than or equal to 0.4 are colored red.
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The AUC values obtained using the SMOReg specific functions are better than the values obtained using MLR 
specific ones, yet the MLR specific function outperformed following the early recognition metrics (principally 
for EF1% and BEDROC 100). Thus, both the affinity prediction and ranking of compounds are important to 
properly evaluate the scoring functions performance. Our PPI-specific scoring functions were trained with 45 
different PPI complexes covering thus a larger PPI interaction space than the previously used one for the only 
one reported linear scoring function specific for iPPIs HADDOCK2P2I36. The two PPI-specific scoring func-
tions SMOReg and HADDOCK2P2I seem to perform similarly in terms of binding affinity prediction, yet the 
studies have been done on different PPI targets. To the best of our knowledge, the present SMOReg DockTScore 
is the first reported nonlinear scoring function tailored for the iPPI class that facilitates further optimization of 
the terms and the machine-learning algorithm used for training. In addition, the screening results obtained for 
the two PPI systems indicate that our PPI-specific scoring function trained with MLR is sufficiently robust to be 
used in virtual screening experiments, despite being trained with a small training set. Taking into consideration 
the very few scoring functions dedicated to score properly inhibitors of PPI both HADDOCK2P2I and Dock-
TScore scoring functions can be very helpful e.g., for consensus scoring strategies. Furthermore, the growth of 
the number of experimentally derived iPPI structures available with associated affinity data enables the further 
development of more robust scoring functions specific for PPIs.

The variable performances achieved by the DockTScore models on the screening validation for the three 
different classes of proteins (e.g., proteases, PPIs and kinases) are in agreement with other works published in 
the literature showing that the accuracy of scoring functions is strongly target-dependent. Further, although 
our scoring functions consider most of the interactions key for ligand binding, yet we do not take into account 
some contributions like the vibrational entropy16 or particular cases as water molecules present in the binding 
pocket. The vibrational entropy is strongly related to the protein flexibility and to solvent entropy, and their 
precise estimation is not evident to be included in classical scoring functions. Other approaches as molecular 
dynamics or normal mode analysis can help to resolve such problems, however they are unpractical for a huge 
number of ligands and thus they are out of the scope of this work. Kinases are known to be very flexible proteins, 
and in our study KIT is the kinase protein for which our models exhibited the lowest performances on both AUC 
ROC and early recognition capacity evaluated through EF1% and BEDROC. The protein conformation of KIT 
provided by the DUD-E database and used here as the reference structure is complexed with the kinase inhibitor 
sunitinib. That KIT state corresponds to a more closed conformation of the ATP-binding site. The superposition 
of the autoinhibited KIT complexed with sunitinib (PDB code 3G0E) and the KIT-ponatinib complex (PDB code 
4U0I), ponatinib being larger than sunitinib, shows an induced inactive DFG-out conformation of the enzyme, 
illustrating thus two possible distinct conformations adopted by the enzyme due to different ligands (Figure S1). 
Such results reinforce the importance of a careful selection of the receptor conformation to be used for virtual 
screening campaigns and the consideration of the protein flexibility to some extent81.

Next, many inhibitors of proteases such as TRYB1 and UROK are known to displace water molecules inter-
acting with catalytic residues of the binding site, however, in some cases such molecules can serve as a bridge 
between the receptor and the ligand. The analysis of the nine experimental complexes used in the virtual screen-
ing experiments showed that some of them contain ligands able to displace water molecules (e.g., the proteases) 
and/or contain bridging waters in the experimental structure of the protein used in the virtual screening experi-
ments (e.g., FA7, TRYB1, and MDM2). In the case of MDM2-like protein, there is a complex network of water 
molecules mediating hydrogen bonds with the receptor important for the ligand binding. Such data support 
the importance of the enthalpic and entropic contributions of the water molecules in the binding pocket for the 
binding energy. The consideration of the contribution arising from bridged water molecules is a complex problem 
usually treated with more sophisticated methods that take into account the flexibility of the entire system and 
explicit water molecules. We have previously developed the AMMOS2 web server82, which permits to take into 
consideration the presence of explicit water molecules in the binding pocket in order to optimize the predicted 
protein–ligand interactions.

The better performance of our MLR scoring function specific for PPIs on the protease TRYB1 dataset indicates 
that it could be applied on targets with similar profiles with those observed for PPI interfaces, such as those with 
highly solvent-exposed binding sites. We have recently reported similar observations when analyzing solvent-
exposed co-crystallized ligands to support the design of novel protein–protein interaction inhibitors83. Our 
scoring function specific for PPIs also reinforces the fact that nonlinear scoring functions are more dependent 
on larger training sets, while robust linear models can be developed even when scarce data for training is avail-
able. Future growth of data for new PPI interfaces including dimer interfaces will allow to develop more robust 
nonlinear scoring functions specific for protein targets with binding site profiles similar to those found in PPIs.

Conclusion
In this work, we developed general and target-specific scoring functions using physics-based features for predict-
ing binding affinities of protein–ligand complexes. Target-specific scoring functions were derived to account 
for binding characteristics specific for a target class of interest, focusing here on proteases and protein–protein 
interactions (PPIs). With regard to the increasing interest toward targeting PPIs by small-molecule inhibitors, 
here we reported the first and well-performing SVM-based scoring function specific for PPI binding sites that 
can serve as a valuable tool for discovering new iPPIs. Improved solvation and ligand torsional entropy terms 
were implemented in DockTScore for a reliable representation of ligand binding. DockTScore scoring functions 
demonstrated to be competitive with state-of-the-art scoring functions in reported benchmarking studies. As 
expected, the nonlinear scoring functions generally performed better than the respective MLR models. Finally, 
we demonstrated that the scoring functions developed in this work also exhibited good performances on vir-
tual screening experiments to distinguish actives from inactive/decoy compounds for various protein targets. 
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DockTScore functions are independent of docking software and can be used for affinity prediction or consensus 
scoring to improve the performance of docking-scoring approaches on virtual screening experiments. Currently, 
the MLR DockTScore predictions are provided for the DockThor docking at the DockThor-VS web server (avail-
able at www.dockt​hor.lncc.br). All the developed scoring functions in this work are under implementation in a 
dedicated web server.

Data availability
The curated PDBbind core set v2013, manually prepared to insure the correct protonation states of the protein–
ligand complexes, is freely available at www.dockt​hor.lncc.br.
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