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Abstract

Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and
communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small
protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a
three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate
changes in the substrate’s stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by
deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many
essential cellular functions and various aspects of human physiology and development. Recent genetic studies have
identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB
activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We
summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight
developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding
of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will
enable the identification and study of novel congenital disease-causing DUBs.

Facts recruitment to allow DUBs to integrate signals during
development and coordinate developmental cell-fate
e Deubiquitylases (DUBs) are a class of ~100 human decision.
enzymes that regulate ubiquitin signaling by proces- e DUBs regulate gene expression (through deubiquitylat-
sing ubiquitin precursors, hydrolyzing ubiquitin ing histones and modulating the stability of chromatin
chains, and cleaving ubiquitin modifications from regulators/transcription factors) and signaling pathways
substrates. to control metazoan development.
e Intricate regulatory mechanisms ensure spatial and e Mutations in particular DUBs cause developmental
temporal regulation of DUB activity and substrate disorders, but the molecular mechanisms and cognate

substrates or E3 ligases are often unknown.

e Many DUBs are intolerant to haploinsufficiency and
missense mutations in the general human population,
suggesting that their dysregulation likely causes devel-
opmental diseases.
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e  Which other DUBs cause developmental diseases? Can
we utilize tools from human genetics to identify these
DUBs and study their (patho-)physiological functions
and mechanisms?

Introduction: the ubiquitin code and DUBs in
early development

During metazoan development, stem cells of the embryo
undergo self-renewal, commit to differentiation programs,
and produce and react to signaling molecules to ensure
proper formation of specialized cell types, tissues, and
organs. The precise execution of these processes is often
controlled by ubiquitylation, an essential posttranslational
modification (PTM) that regulates the stability, activity,
localization, or interaction landscape of substrates [1-3].
The differential outcomes of ubiquitylation are accom-
plished by elaborate enzymatic cascades that synthesize
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“Ubiquitin writers”
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ubiquitin signals, which are covalently linked to substrates
and recognized and interpreted by various effector proteins
(Fig. 1A) [4-6]. Research in recent decades has elucidated
key principles of this ubiquitin code [4]. Substrates can
either be modified with ubiquitin monomers or with struc-
turally distinct ubiquitin polymers that are linked via the N
terminus or one of the seven internal lysine residues (K6,
K11, K27, K29, K33, K48, K63). These ubiquitin polymers
can be homotypic (chains with only one linkage type) or
heterotypic (chains with at least 2 different linkage types)
[7]. Mono- or multi-monoubiquitylation of substrates often
result in changes in the interaction landscape of the mod-
ified protein and play important roles during e.g., tran-
scription, translation, and endosomal sorting [8-11].
Modification of substrates with homotypic and heterotypic
ubiquitin polymers elicits various downstream effects,
which depend on the linkage type(s) and architecture of the
ubiquitin chain. Well established examples with relevance
to this review include homotypic K11- or K48-linked chains
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Fig. 1 Overview of how ubiquitin signaling regulates develop-
mental cell-fate decisions and cleavage modes of DUBs. A To
initiate ubiquitin signaling, an enzymatic cascade, consisting of ubi-
quitin E1 activating, E2 conjugating, and E3 ligating enzymes, dec-
orates substrates with topologically different ubiquitin modifications.
Effector proteins containing various ubiquitin-binding domains
(UBDs) interpret the ubiquitin signals and mediate changes in the
substrate activity, stability, localization or interacting proteins. This

proximal

e.g. USP5

substrate substrate

e.g. many OTUs, JAMMs, MINDYs, ZUP1

controls cellular behavior during many physiological processes,
including development. DUBs are important regulators of this ubi-
quitin code by reversing ubiquitin modifications, thus modulating or
terminating signaling. B Cartoons depicting different position- and
linkage-specific cleavage modes by which DUBs can act on their
substrates. The yellow arrow indicates the peptide/isopeptide bond that
is hydrolyzed in each example.
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that mediate degradation via the 26S proteasome [12, 13],
homotypic M1- or K63-linked chains that allow for for-
mation of signaling complexes during NF-kB activation
[14, 15] and DNA repair [16-18], and homotypic K63-
linked chains that mediate autophagic degradation of pro-
tein complexes, aggregates, and damaged organelles [19].

Ubiquitylation regulates biological pathways in a highly
specific and reversible manner, which enables ubiquitin
signaling to control cellular behavior and decision-making
during embryonic development [1, 3]. Specificity is
achieved by more than 600 ubiquitin E3 ligases, which bind
distinct sets of substrates and cooperate with 2 E1 and ~40
E2 enzymes to mediate transfer of ubiquitin monomers or
chains to thousands of cellular substrates [4, 20, 21].
Reversibility is ensured by ~100 human deubiquitylases
(DUBSs), a family of enzymes that processes ubiquitin pre-
cursors, edits chain architecture, or cleaves ubiquitin signals
from substrates. Through these activities, DUBs maintain a
functional ubiquitin pool for conjugation and modulate or
terminate signaling responses [1, 22-24].

DUBs can deubiquitylate a broad range of substrates in
fundamental cellular processes including transcription,
translation, cell cycle progression, vesicular trafficking,
autophagy, proteasomal degradation, and intracellular
signaling to control various aspects of stem cell main-
tenance, differentiation, and development [1, 3, 25-30].
Consistent with these essential functions, genetic deletion
of a number of DUBs are embryonic, early postnatal, or
perinatal lethal in mice (examples discussed in this
review include USP7 [31], USPS8 [32], USP9X [33, 34],
USPI6 [35], USP22 [36], BAPI [37], OTUBI [38],
AMSH [39], OTUDG6B [40], and OTUDS [41, 42]) and
kockdown of tens of DUBs has been shown to be lethal or
to cause severe defects during zebrafish development
[43, 44]. It is therefore not surprising that dysregulation
of DUBs is linked to many human diseases, including
cancer, neurodegeneration, and inflammatory syndromes
[1, 25-28, 45-47]. A growing number of studies has also
implicated aberrant activities of several DUBs as drivers
of distinct congenital diseases (Table 1), providing fur-
ther evidence for essential roles for these enzymes in
controlling ubiquitin signaling during embryonic and
postnatal development.

Here, we review structural, functional, and regulatory
features of DUBs that allow this class of enzymes to fulfill
their roles during development. We summarize general
mechanisms of how DUBs regulate stem cell self-renewal
and differentiation processes and our current understanding
of how mutations in particular DUBs cause congenital
diseases. Finally, we discuss how recently developed
genetic resources can help identify candidate DUBs critical
for development.
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Structural and functional features of DUBs
DUB families

Since the discovery of DUBs in the mid-1980s [48-50],
extensive studies have defined them as a structurally diverse
set of ~100 human proteases that can be divided into two
groups according to their enzymatic mechanisms. First,
zinc-dependent JAB1I/MPN/MOV34 (JAMM) metallopro-
teases (12 human members) and second papain-like cysteine
proteases that, based on their catalytic domain, are further
subclassified into six families: ubiquitin-specific proteases
(USPs, 56 members), ovarian tumor proteases (OTUs,
17 human members), ubiquitin carboxy-terminal hydrolases
(UCHs, 4 human members), the Machado—Joseph disease
proteases (MJDs, 4 human members), and two more
recently identified families, the motif interacting with
ubiquitin-containing novel DUB family (MINDYs [51], 5
human members) and zinc finger containing ubiquitin
peptidase 1 family (ZUPI, 1 human member [52-55]).
Eleven of these 99 DUBs have lost critical catalytic residues
and are thought to be catalytically inactive [56].

DUBs can remove ubiquitin from substrates or
cleave ubiquitin-linkages

Several in-depth discussions on DUB enzymology, struc-
ture, and substrate specificity have recently been published
and we refer interested readers to these seminal reviews
[22, 27, 57-60]. To provide the mechanistic framework for
the role of DUBs in development, we highlight a few
general structural and functional properties of DUBs.

To maintain free ubiquitin pools for conjugation and to
regulate ubiquitin signaling, DUBs hydrolyze peptide or
isopeptide bonds between ubiquitin and a substrate or within
ubiquitin chains. In this process, DUBs generally utilize
their catalytic domain to recognize and remove the distal
(C-terminal glycine-contributing) ubiquitin from the prox-
imal (lysine- or methionine-contributing) ubiquitin or the
substrate. By utilizing additional ubiquitin-binding sites and/
or substrate interaction motifs, DUBs have evolved specifi-
cities for cleavage at particular positions in the ubiquitin
chain or linkage types [22, 27, 57-59] (Fig. 1B). For
instance, many DUBs of the USP family encode substrate
interaction motifs and cleave ubiquitin chains from sub-
strates (base cleavage) [22], while other DUBs prefer to
cleave ubiquitin chains from the middle (endo-cleavage,
e.g., most OTU DUBs [61]) or from the distal or proximal
end of the chain (distal exo cleavage, e.g., MINDY [51, 62],
and proximal exo-cleavage, e.g., USPS [63], respectively).
In addition, some DUBs display exquisite linkage specificity
(e.g., some members of the OTUs [61], JAMMSs [64-66],
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MINDYs [51], ZUP1 [52-55] and the USPs USP30 [67-69]
and CYLD [70, 71]) and only cleave one or a distinct set of
ubiquitin-linkage types, while other DUBs (e.g., most USPs
[72]) are more promiscuous.

Regulatory principles impinging on DUBs

Ubiquitylation frequently orchestrates core signaling net-
works essential for stem cell maintenance and differentia-
tion. During these processes, it is important that ubiquitin
signals are tightly controlled. Similar to their E3-ligase
counterparts [1, 3, 73, 74], DUBs are subject to a plethora of
regulatory principles that impinge on their abundance,
localization, activity, and substrate recruitment, thus
allowing temporal and spatial regulation of deubiquitylation
[26-28, 59, 75]. Here, we will briefly summarize key
mechanisms of DUB regulation highlighting examples that
are recent and have particular relevance for development.

Regulation of DUB abundance

During development, similar to other signaling proteins,
DUBs are commonly controlled at the level of their
synthesis and degradation [11, 76-78]. For instance, two
histone-directed DUBs, USP44 and USP22, are antag-
onistically regulated in their mRNA expression to ensure
faithful stem cell differentiation [79-81]. In addition, tran-
scription of other DUBs is upregulated at stages of differ-
entiation or in specialized cell types when they are
functionally required (e.g., ATXN3, UCHLI, and
OTUD7A in neuronal cells and in the brain [77, 82-90]).
Besides transcriptional control, DUBs are also frequently
subject to regulated ubiquitin-dependent degradation. This
process can be induced by stimulus-dependent proteolytic
processing (as e.g., shown for CYLD [91, 92], A20 [93],
and USP1 [94, 95]) and some DUBs can counteract their
own degradation via auto-deubiquitylation. For example,
phosphorylation of USP4 by AKT activates and thus sta-
bilizes this DUB, a process required for proper regulation of
TGF-f signaling during embryonic development (further
discussed below) [96, 97]. Taken together, transcriptional
and posttranslational mechanisms cooperate to enable
adjustment of the cellular DUB repertoire required for a
particular developmental process or tissue function.

Regulation of DUB localization

Another frequent mode of regulation in eukaryotic cells is
targeted localization [98]. Experiments in mammalian tissue
culture cells analyzing GFP-tagged DUBs by fluorescence
microscopy have revealed that at steady-state conditions,
specific DUBs are localized to distinct sites such as the

SPRINGER NATURE

cytoplasm, nucleus, select organelles, or cellular mem-
branes [99]. These subcellular localizations can be modu-
lated through various mechanisms. First, a number of DUBs
are expressed as multiple splice variants, which can encode
domains that allow for isoform-specific subcellular locali-
zation and function. Examples include USP19 (cytosolic
and ER [100, 101]), USP33 (ER and Golgi [102]), and
USP35 (cytosolic, ER, and lipid droplets [103]). Second,
several DUBs are shuttled between the nucleus and cyto-
plasm via reversible PTMs [96, 97, 104, 105]. For instance,
AKT-mediated phosphorylation relocates nuclear USP4 to
the cytoplasm and membranes to regulate TGFp signaling
during embryonic stem cell differentiation [96, 97]. In
addition, UBE20O-mediated multi-monoubiquitylation of
BAPI1 sequesters this DUB to the cytoplasm during adi-
pocyte differentiation [105]. Third, many DUBs are
recruited to their substrates with the help of adapter pro-
teins. This regulatory concept is frequently applied by
histone-directed DUBs. For example, USP44 (through the
N-CoR complex [106]), USP51, USP27X, and USP22
(through ATXN7L3 and ENY2 [107]), and BAP1 (through
FOXK1/2 and ASXL1/2/3 [37, 108, 109]) are recruited to
specific regions on chromatin, where they counteract
monoubiquitylation of H2A and H2B to regulate gene
expression changes required for various aspects of stem cell
maintenance and differentiation (see below). In addition,
DUB recruitment to substrates via adapter proteins can also
be utilized to stabilize transcription factors. This is exem-
plified by USP7, which has recently been shown to be
targeted to stemness factors SOX2, NANOG, and OCT4 via
BACHI to counteract their degradative ubiquitylation, thus
ensuring hESC self-renewal [110]. Taken together, various
mechanisms control the dynamic localization of DUBs to
enable spatial restriction of ubiquitin signaling during
development.

Regulation of DUB activity and substrate
recruitment

In addition to control of abundance and localization, DUBs
are also subject to regulation at the level of their activity and
substrate recruitment (reviewed in detail in [22, 28, 59, 75]).
We will briefly outline these principles in the following
section by describing their relevance in ubiquitin signaling
during developmental cell-fate decisions.

Regulation of DUB activity through interactions in cis or
trans

Catalytic activities of DUBs can be modified through inter-
action with accessory domains or proteins. For instance,
ubiquitin-binding and activity of BAP1, an essential, histone-
directed DUB that regulates gene expression networks during
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development [37, 111], is stimulated by binding to the
transcription regulators ASXL1, ASXL2, or ASXL3 [111-
113]. This activation is critically controlled by mono-
ubiquitylation of ASXL proteins [114]. In a different exam-
ple, USP7, a DUB with pivotal roles in stem cell self-renewal
and differentiation (see below), requires its C-terminal ubi-
quitin-like domains to fold onto the catalytic USP domain
[115, 116] resulting in increased intrinsic USP7 activity,
which can be further stimulated by binding of an interacting
protein in the form of GMP-synthase [115, 117]. Similarly,
the interaction of UAF1 and WD-repeat-containing proteins
with specific DUBs regulates their catalytic activity [118-
120]. One example is given by USP1, an important negative
regulator of osteoblastic differentiation [121]. Such allosteric
regulation is also well described for DUBs that are incor-
porated into large macromolecular complexes such as the
proteasome [122-126] and the SAGA histone acetyl-
transferase complex [127-129] (i.e., USP22, an essential
regulator of stem cell differentiation [36, 81]). Finally, also
self-association of DUBs has been shown to regulate DUB
activity. USP25, a regulator of the WNT signaling pathway
[130], forms active dimers and autoinhibited tetramers
in vitro and in cells [131-133]. Thus, various types of
interactions in cis or trans can activate or inhibit the activity
of DUBs that regulate important aspects of differentiation.
However, in most cases, how these mechanisms are imple-
mented to control ubiquitin signaling during embryonic and
postnatal development remain unclear and will require fur-
ther investigation.

DUB interactions with E3s

In addition to interacting with allosteric regulators, DUBs
also frequently associate with ubiquitin E3 ligases in cells
[134]. This coupling of opposing enzymatic activities has
emerged as a functionally important feature that can reg-
ulate ubiquitin signaling in diverse and complex ways
[135]. DUB-E3 interactions are used for mutual ubiquitin-
dependent regulation (e.g., to control each other’s stability,
see above) or for editing ubiquitin chain architecture on
particular substrates (as shown for the hybrid DUB/E3
enzyme A20 and CYLD-ITCH complexes during inflam-
matory signaling [136, 137]). Moreover, DUB-E3 com-
plexes can work in direct opposition on shared substrates,
thus fine-tuning responses during cell-fate decisions. For
instance, USP9X associates with the ubiquitin E3-ligase
WWP1 to modulate DVL2 ubiquitylation to specify cano-
nical and noncanonical responses of WNT signaling, which
controls various aspects of stem cell self-renewal and dif-
ferentiation [138—140]. Similarly, USP7, an integral part of
the ubiquitin E3-ligase complex MAGE-L2-TRIM27, acts
as a molecular rheostat to control the activity of the actin

nucleating protein WASH during neurodevelopment [141]
(further discussed below), illustrating the exquisite regula-
tion afforded by coupling opposing DUB and E3 activity
during differentiation processes.

Regulation by PTMs

DUB catalytic activity can be further controlled by rever-
sible PTMs such as phosphorylation, ubiquitylation,
SUMOylation, or oxidation [28, 59]. Regulation of DUB
activity by PTMs has been shown to control physiological
processes such as DNA damage responses, cell cycle pro-
gression, and innate immune signaling [26, 59]; however,
little is known how this regulatory principle is employed to
control development. In contrast, multiple recent studies
have demonstrated that substrate recruitment to DUBs is
frequently regulated by phosphorylation to ensure faithful
differentiation (Fig. 2). For instance, during osteoblast dif-
ferentiation, USP15 recognizes and deubiquitylates its tar-
get, the transcription factor f-catenin, only upon f-catenin
phosphorylation by MEKK2 [142]. Conversely, ERKI-
mediated phosphorylation of the pluripotency factor
NANOG inhibits interactions with USP21, which results in
proteasomal degradation of NANOG, thus facilitating
rewiring of transcriptional networks during mESC differ-
entiation [143]. In another example, USP9X undergoes
TGF-B-induced phosphorylation, which does not affect its
DUB activity but increases binding to its substrate ankyrin-
G, resulting in ankyrin-G stabilization required for main-
taining dendritic spines during neuronal differentiation
[144, 145] (see further details below). Thus, during devel-
opment, DUB-substrate interactions are frequently modu-
lated by signal-induced phosphorylation, which allows
DUBs to convert a particular signaling input into down-
stream cellular responses.

Mechanisms how DUBs control development

Several DUBs have been shown to control different aspects
of embryonic development by diverse mechanisms. This
includes AMSH and USP7, which regulate endosomal sort-
ing and membrane trafficking required for faithful neuronal
differentiation [141, 146] (see below) and USPS8, which
maintains high levels of autophagy in mESCs required for
self-renewal and pluripotency [147]. Most commonly how-
ever, DUBs regulate stem cell maintenance and differentia-
tion by controlling gene expression (through deubiquitylating
histones or through stabilizing chromatin regulators and cell-
identity-defining transcription factors) or by modulating
developmental signaling pathways (Fig. 3). In the following,
we will outline examples for each of these mechanisms.

SPRINGER NATURE
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Phosphorylation of substrate

Interaction-promoting

Interaction-inhibiting

Phosphorylation of DUB

signal
Interaction-promoting

Fig. 2 Stimulus-induced phosphorylation regulates DUB-substrate
recruitment during differentiation. Stimulus-induced phosphoryla-
tion is frequently used to regulate DUB-substrate recruitment during
developmental cell-fate decisions. This can occur through interaction-
promoting or -inhibiting substrate modification (upper panel).

DUBs regulating development through
deubiquitylating histones

Dynamic changes in chromatin architecture are required for
driving developmental gene expression programs. These
changes are brought about by reversible histone PTMs, which
alter the physical properties of chromatin and/or recruit effector
proteins to alter transcription. Monoubiquitylation of H2A and
H2B are an abundant and critical means for ensuring accurate
gene expression during metazoan development [1, 27]. Cata-
lyzed by a family of multi-subunit E3 ligases known as
Polycomb repressive complexes (PRC1), monoubiquitylation
of H2A at K119 is generally thought to silence downstream
genes [148-151]. Conversely, RNF20/RNF40-mediated
monoubiquitylation of H2B at K120 is generally associated
with activation of gene expression through recruiting enzymes
that decorate H3 with activating methylation marks [152, 153].
Several DUBs (including USP7, MYSMI1, USP21, USP22,
USP44, USP16, and BAP1 [79, 81, 111, 117, 143, 154-158])
have been proposed to reverse H2A and/or H2B ubiquitylation
to control transcriptional networks during development
(Fig. 3A). In this context, the mechanistic details of histone
deubiquitylation and recruitment to chromatin have been well-
characterized for only a subset of these DUBs (e.g., USP22
[107, 129, 159] and BAP1 [37, 108, 109, 111-114]). DUBs
that have been reported to control developmental processes
through deubiquitylating H2B include USP44, which represses
genes involved in lineage commitment during mESC main-
tenance [79], and USP22, which specifically inhibits expression
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e.g. USP15 and (3-catenin
during osetoblast differentiation

e.g. USP21 and NANOG
during mESC differentiation

e.g. USP9X and ankyrin-G
during neuronal differentiation

Examples in which substrate phosphorylation promotes and inhibits
DUB-substrate interaction include USPI15-p-catenin and USP21-
NANOG, respectively. Stimulus-induced phosphorylation can also
occur on DUBs to promote interactions with substrates (e.g., USP9X-
ankyrin G, lower panel).

of the pluripotency factor SOX2 during hESC differentiation
[81]. Examples of DUBs that are thought to elicit their func-
tions through H2A deubiquitylation include BAP1, USP21,
and USP16 [35, 37, 108, 111, 143, 160]. BAP1 and USP21
activity are required for stem cell self-renewal by ensuring the
expression of genes that are involved in basic cellular functions
and that are under the control of the pluripotency factor
NANOG, respectively [108, 143]. In contrast, the Down
Syndrome-associated USP16 is not essential for stem cell
maintenance, but its activity was proposed to alleviate H2A
ubiquitylation-imposed repression of lineage-specific genes
during differentiation [35, 154, 160]. Thus, multiple DUBs
likely cooperate to modulate chromatin accessibility and gene
expression during development through counteracting H2A/
H2B monoubiquitylation. In most cases, how such interplay is
spatially and temporally regulated, remains to be determined.

DUBs regulating development through controlling
chromatin regulator and transcription factor
stability

In addition to controlling gene expression at the level of
histone deubiquitylation, DUBs also frequently target
chromatin regulators and transcription factors to modulate
their stability and function during stem cell maintenance
and differentiation [27, 41, 161] (Fig. 3A). For example,
results from somatic reprogramming studies suggest that
USP26 cleaves K48-linked ubiquitin chains from the
chromobox-containing proteins CBX4 and CBX6 during
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Fig. 3 Mechanisms of how DUBs regulate ubiquitin signaling to
determine developmental cell-fate decisions. A Schematic overview
of general principles of how DUBs controls differentiation processes.
Several indicated DUBs have been proposed to target ubiquitylated
histones, chromatin remodeling complexes, or master transcription
factors (TFs) to bring about changes in transcriptional networks
required for faithful development. B Schematic overview of how TGF-
f signaling contributes to cell-fate determination during development
highlighting regulatory concepts of how DUBs modulate the strength
and duration of signaling responses. Binding of TGF-f binding to the
TGF- receptor leads to receptor kinase activation and phosphoryla-
tion of receptor-activated SMADs (R-SMADs). Phosphorylated R-
SMADs associate with SMAD4 to form active transcription factor
complexes that translocate from the cytosol to the nucleus to elicit
transcriptional responses required for developmental cell-fate deci-
sions. This signaling cascade can be blocked by inhibitory SMADs
(I-SMAD), which recruit the ubiquitin ligases SMURF1/2 (SMURF)
to the TGF-p family receptors for ubiquitin-mediated degradation.
Also other TGF-f signaling pathway components are subject to reg-
ulation by ubiquitylation, which is counteracted by DUBSs as indicated.

mESC differentiation [162]. This was proposed to stabilize
these proteins and promote their function in the context of
the PRC1 complex to repress the expression of pluripotency
genes, ensuring faithful lineage commitment. In addition,

recent reports have shown that both, USP21 and USP7
counteract degradative ubiquitylation of NANOG to ensure
self-renewal of ESCs [110, 143]. This example showcases
how several DUBs can target the same transcription factor
and it will be interesting to further explore how such
interplay regulates ESC maintenance (e.g., through target-
ing differently localized pools of NANOG). Conversely, the
same DUB can also target several distinct transcription
factors in a cell-type-specific manner. For instance, USP7,
in addition to its function in maintaining hESCs [110], has
been shown to control the stability of several other cell-
identity-defining and lineage-promoting transcription fac-
tors, including (1) REST in neural progenitor cells to pro-
mote their maintenance [163, 164], (2) c-MYC in neural
stem cells to promote their self-renewal [165], and (3)
RUNX in skeletal stem cells to promote differentiation into
osteoblasts [166]. Taken together, DUBs frequently target
chromatin regulators or transcription factors in cell-type and
tissue-specific contexts to control developmental cell-fate
decisions.

DUBs regulating development through modulating
signaling pathways

Multiple signaling pathways—such as FGF, Hedgehog,
WNT, TGF-p/BMP, and Notch—orchestrate development,
operating repeatedly at different times and regions in the
embryo to regulate germ layer specification, patterning, and
organogenesis [167]. These core pathways are critically
controlled by ubiquitylation and many DUBs participate in
this regulation [3, 46, 168—170]. Here, to highlight concepts
of how DUBs can modulate these cascades, we will focus
on TGF-f/BMP signaling.

In the canonical pathway, secreted TGF-$ and BMP
ligands elicit their functions by activating transmembrane
serine/threonine kinase receptors and intracellular second
messengers known as SMADs (Fig. 3B). Binding of TGF-
B/BMP ligands to their cognate receptors promotes their
kinase activity, which leads to the phosphorylation of
receptor-regulated SMADs (R-SMADs) [171]. Upon
phosphorylation, both classes of R-SMADs associate with
SMAD4 to form active transcription factor complexes that
translocate from the cytoplasm to the nucleus, where they
elicit downstream transcriptional responses. Finally, inhi-
bitory SMADs such as SMAD7 are amongst TGF-/BMP-
induced genes and serve as scaffolds to recruit the ubiquitin
E3 ligases SMURF1/2 to TGF-B family receptors for
ubiquitin-mediated degradation. In addition to this negative
feedback regulation, reversible poly- and monoubiquityla-
tion of virtually all components of the TGF-f/BMP path-
way have been shown to control the strength and duration
of the signaling response. A number of DUBs participate in
this regulation at multiple levels (Fig. 3B). First, several
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DUBs have been shown to regulate turnover of the TGF-f
receptor using diverse mode of actions. This includes
DUBs that stabilize the receptor by deubiquitylation of the
receptor (USP4 [96] and USP15 [172]) and by
deubiquitylation-dependent inactivation of SMURF2
(USP15 [173]) or DUBs that promote receptor degradation
through deubiquitylating and stabilizing SMAD7 (USP26
[174]). Second, DUBs regulate protein interactions of the
TGF-p receptor. This is exemplified by USP2a, which
associates with the TGF-f type I and II receptors to cleave
K33-linked ubiquitin chains from them, thus promoting
interactions with R-SMADs and enhancing downstream
signaling [175]. Third, DUBs target ubiquitylated R-
SMADs to regulate their stability and interactions. For
example, both, USP15 and OTUBI counteract degradative
polyubiquitylation of activated R-SMADs to promote
transcriptional downstream responses [176, 177]. This
occurs by different molecular mechanisms and requires
catalytic activity of USP15, but not that of OTUBI1, which
rather binds to and inhibits the ubiquitin-conjugating
activity of the cognate E2 enzyme [176, 178]. In addi-
tion, USP15 also promotes TGF-f/BMP signaling by
opposing monoubiquitylation of R-SMADs, thereby
allowing activated R-SMAD-SMAD4 complexes to
recognize target promoters [177]. Fourth, DUBs target
monoubiquitylated SMAD4 to regulate its interactions.
Both, USP9X and USP4 have been shown to catalyze this
reaction to promote activated R-SMAD/SMAD4 complex
formation, nuclear translocation, and TGF-f-induced tran-
scriptional activation required for zebrafish development
and mESC differentiation (in case of USP4 [97]) or
Xenopus development (in case of USP9X [179]).

Thus, as outlined in the above examples, multiple DUBs
modulate TGF-/BMP signaling at the receptor or effector
level through prevention of degradation or control of
protein—protein interactions. In this context, to achieve a
certain biological outcome, the same DUB can regulate the
pathway at different levels (e.g., USP15 and USP4 promote
signaling by targeting the TGF-f receptor and the effector
SMADs) or multiple DUBs can act on the same target (e.g.,
USP15 and OTUBI1 promote signaling through stabilizing
R-SMADs). Future experiments are required to further
examine how DUB interplay at these different levels is
spatially and temporally regulated to ensure proper TGF-p/
BMP signaling responses during embryonic development.

Dysregulation of DUBs results in
developmental diseases

Extensive studies over the last decades have established that
dysregulation of DUBs leads to human diseases, in particular
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cancer, neurodegeneration, and inflammation [1, 25-
28, 45, 46]. In addition, mutations in DUBs frequently cause
severe developmental disorders (summarized in Table 1). In
general, these disorders are characterized by early-onset
neurologic deficits and are thought to be caused by loss-of-
function mechanisms. In the following, we will discuss select
examples of DUBs that have been directly linked to mono-
genic developmental disorders and the proposed mechanisms
of pathogenesis.

Microcephaly-capillary malformation (MIC-CAP)
syndrome (MIM:614261) caused by mutations in
STAMBP/AMSH

Recessive loss-of-function mutations in STAMBP, also
known as AMSH, causes MIC-CAP syndrome [146]. These
patients have severe microcephaly with progressive cortical
atrophy, intractable epilepsy, profound developmental
delay, and multiple small capillary malformations on the
skin. A variety of disease-causing mutations have been
identified including frameshift, nonsense, splicing, and
missense mutations, implicating loss-of-function as a
mechanism of disease [146, 180-183]. Indeed, Amsh-defi-
cient mice exhibit defects in cortical development similar to
those in patients [39]. AMSH is a DUB that, through its
K63-specific ubiquitin cleavage activity [184], controls the
fate of endosomal cargos that undergo ubiquitin-dependent
sorting into degradation or recycling compartments by the
ESCRT pathway [65, 185]. The reported disease-causing
missense mutations in AMSH are located either in the
catalytic domain reducing its K63-cleavage activity [186] or
in the MIT domain potentially affecting binding to com-
ponents of the ESCRT pathway [146, 185]. During the
pathogenesis of MIC-CAP, dysregulation of endosomal
sorting likely interferes with appropriate responses to
downregulate RAS/PI3K signaling, ultimately leading to
the congenital anomalies observed in patients. In support of
this, phenotypes of MIC-CAP syndrome closely resemble
those of RASopathies, developmental disorders caused by
activating mutations in the RAS-ERK signaling pathway
[187]. However, the molecular details of how the loss of
AMSH activity results increased RAS/PI3K signaling and
the key substrates involved remain to be determined.

Hao-Fountain syndrome (MIM:616863) caused by
heterozygous mutations in USP7

USP7 encodes an essential DUB for which disruption of one
allele, whether via heterozygous deletions or nonsense/mis-
sense mutations, results in Hao-Foutain syndrome, a devel-
opmental disorder with seizures, behavioral abnormalities,
hypogonadism, and hypotonia [141, 188]. Surprisingly, the
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molecular origin of this disease was not primarily linked to
dysregulation of the many essential functions of USP7 in
DNA repair, transcription, immune responses, or viral repli-
cation [189, 190], but rather to an aberrant role in cellular
protein trafficking [141]. Elegant cell biological and bio-
chemical studies demonstrated that USP7 is a component of
the MAGE-L2-TRIM27 complex, a multi-subunit ubiquitin
E3 ligase with well-established roles in retromer-dependent
endosomal recycling of membrane proteins. MAGE-L2-
TRIM27 regulates endosomal sorting through conjugation
of K63-linked ubiquitin chains to WASH, thereby activating
this actin nucleation promoting factor and facilitating endo-
somal actin assembly [191]. USP7 acts as a rheostat for
this reaction by (1) deubiquitylating TRIM27 to protect it
from auto-degradation and (2) by deubiquitylating WASH to
limit its activity, thus fine-tuning endosomal actin assembly
[141]. MAGE-L2 is located within the Prader—Willi
imprinting region [192] and was identified as the causative
gene in Schaaf-Yang syndrome [193, 194]. These two dis-
orders share many disease manifestations with Hao-Fountain
syndrome, further suggesting that the USP7-deficiency-
induced patient phenotypes are caused by aberrant endoso-
mal sorting.

Mental retardation, X-linked 99 (MRX99,
MIM:300919, 300968) caused by mutations in
USP9X

Mutations in USP9X, encoding an X-linked DUB, cause
syndromic and non-syndromic intellectual disability. Initial
studies reported three male individuals with non-syndromic
X-linked intellectual disability, all carrying missense var-
iants in USP9X [195]. Consistent with this, brain-specific
knockout of Usp9x causes aberrant cortical architecture
similar to that found in patients [196]. Reijinders et al.
showed that heterozygous loss-of-function alleles present in
females, as opposed to males, lead to a syndromic form of
X-linked intellectual disability associated with characteristic
facial features, short stature, cardiac, and structural brain
abnormalities [197]. Together with more recent studies, this
solidified a spectrum of neurodevelopmental disease in male
and females with variable phenotypes, decreased pene-
trance, and likely variant-specific mechanisms of disease,
contributing to the different sex-specific manifestations
[198, 199]. USP9X is an essential DUB that, through
counteracting mono- and polyubiquitylation of specific
substrates, has been implicated in a plethora of cellular
processes [200]. Dysregulation of several of these functions
have been proposed to lead to the phenotypes observed in
patients. First, as described above, USP9X regulates TGF-f
signaling through deubiquitylating SMAD4 and this path-
way is defective in patient fibroblasts [199]. Second,

USP9X has been shown to control centriole duplication and
centrosome biogenesis through e.g., deubiquitylating and
stabilizing the centriole duplication factor STIL [201-203]
as well as cilia assembly through regulating the localization
and stability of the ciliogenesis-promoting factor NPHPS5
[204]. Mutations in genes regulating these processes
(including STIL and ICQBI encoding for NPHPS) fre-
quently result in primary microcephaly [205, 206] and
ciliopathies [207, 208], respectively, with considerable
phenotypic overlap with USP9X patients, thus suggesting
that aberrant centrosome duplication and cilia assembly
could contribute to MRX99. Third, USP9X has been shown
to regulate dendritic spine development and maintenance
[144]. This occurs through deubiquitylation and stabiliza-
tion of ankyrin-G, a scaffold protein that links plasma
membrane proteins to the actin/p-spectrin cytoskeleton and
thereby regulates multiple neurobiological processes such
as synaptogenesis and synaptic plasticity [209-211]. Var-
iants in ANK, encoding for ankyrin-G are associated with
neurodevelopmental disorders [212] and USP9X patient
mutations were shown to reduce interaction with ankyrin-G,
strongly suggesting that abnormal ankyrin-G degradation is
a pathogenic mechanism in MRX99. Consistent with this,
Usp9X knockout mice exhibit synaptic abnormalities,
ankyrin-G aggregates, and hyperactivity [144].

It is interesting to note that TGF- promotes cortical spine
development through promoting USP9X-dependent stabili-
zation of ankyrin-G [145] and that TGF-f signaling can rely
on primary cilia [213]. This raises the intriguing possibility
that the aforementioned pathogenic mechanisms may be
interconnected and that USP9X orchestrates neurodevelop-
ment by acting on several distinct substrates in different
pathways. Future research should focus on such interplay
and test the relative contributions of different substrates and
functions to the sex-specific MRX99 manifestations.

Intellectual developmental disorder with
dysmorphic faces, seizures, and distal limb
anomalies (MIM:617452) caused by recessive
mutations in OTUD6B

Bi-allelic loss-of-function of OTUDG6B causes global
developmental delay, feeding difficulties, structural brain
abnormalities, and congenital heart disease [40, 214].
OTUDG6B is a poorly characterized OTU DUB with no
clearly assigned in vitro deubiquitylation activity or
ubiquitin-linkage preference [61]. It has been connected to
protein translation [215] and may regulate proteasome sta-
bility [40]; however, further mechanistic studies are
required to establish whether loss of these or other functions
of OTUD6B drive the aberrant differentiation processes
observed in OTUD6B patients.
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15q13.3 microdeletion syndrome (MIM:612001)
caused in part by haploinsufficiency of OTUD7A

OTUD7A, encoding a poorly studied K1l1-specfic OTU
DUB [61], is located in the 15q13.3 locus, which when
deleted causes a wide spectrum of neurodevelopmental and
psychiatric disorders [216-219]. 15q13.3 microdeletion
syndrome is the most common genetic cause of epilepsy
[220]. Recent studies have shown that out of the six protein-
coding genes that are typically encompassed in the dele-
tions, OTUD7A is the most likely candidate to cause asso-
ciated epilepsy. First, studies in mice have shown that
OTUD7A controls dendritic branching of cortical neurons
[86]. Second, knockout of Ofud7a recapitulated neurode-
velopmental deficits including abnormal EEGs [87]. Third,
an individual with neurodevelopmental phenotypes and
epilepsy carrying biallelic OTUD7A missense variants has
been reported [221]. These findings highlight an important
role in OTUD7A in controlling neurodevelopment; yet, the
molecular underpinnings of this regulation, including cel-
lular mechanisms and cognate E3 ligases and substrates,
have remained largely unclear. Their identification will have
important implications for understanding distinct forms of

epilepsy.

Linkage-specific deubiquitylation deficiency-
induced embryonic defect (LINKED) syndrome
caused by mutations in OTUD5

Hemizygous missense and deletion variants in OTUDS,
encoding an X-linked OTU DUB that prefers cleavage of
K48- and K63-linked ubiquitin chains [61, 222-224], have
recently been shown to cause a male-specific multiple con-
genital disorder [41]. Affected patients suffer from a spectrum
of central nervous system, craniofacial, cardiac, skeletal, and
genitourinary anomalies. OTUDS has previously been impli-
cated in regulating innate and adaptive immune signaling
[224-226]; however, the reported patient phenotypes suggest
an additional role of this enzyme during embryonic cell-fate
determination. Indeed, knockout of Otud5 is embryonic lethal
in mice and OTUDS-depleted hESCs are defective in neu-
roectodermal differentiation, which can be rescued by re-
expression of wild-type OTUDS [41]. Interestingly, a patient
variant that affects K48- but not K63-ubiquitin chain cleavage
activity, is not able to rescue the differentiation defects, sug-
gesting that the disease originates from loss of OTUDS’s
activity towards degradative K48-linked ubiquitin chains.
Corroborating this notion, OTUDS prevents the degradation of
multiple chromatin remodelers to coordinate enhancer acti-
vation during neuroectodermal differentiation. Amongst these
OTUDS substrates are ARID1A/B, HDAC2, and HCF1,
mutations of which underlie different developmental disorders
(Coffin—Siris and Cornelia de Lange syndromes [227, 228],
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X-linked mental retardation 3 [229]) that exhibit considerable
phenotypic overlap with LINKED patients. Thus, this work
reveals K48-ubiquitin chain cleavage of functionally related
substrates as an essential signaling mode coordinating chro-
matin remodeling during early human development. Addi-
tional experiments are required to determine the molecular
details of this regulation in the broader context of
embryogenesis.

Conclusion and perspectives

Since the initial discovery of DUBs almost 40 years ago,
numerous studies have provided insights into their struc-
tures, substrate/cleavage specificities, and regulatory
mechanisms that allow this versatile enzyme family to
contribute to diverse cellular processes. In particular, we
here highlight principles of how DUBs modulate ubiquitin
signaling during embryonic and postnatal development and
the emerging roles of their dysregulation in congenital
disorders. Despite many recent advances in our under-
standing of DUBs in these (patho-)physiological processes,
many open questions remain. First, for more than half of
the human DUBs, substrates and linkage specificities have
remained unclear [26]. Moreover, as several DUBs are
relatively large proteins challenging to produce in bacteria,
many biochemical activities have been determined with
truncation variants, which could lack important specificity
determinants encoded in the full-length protein. Similarly,
as detailed in this review, PTMs and co-factors have been
shown to regulate DUB activity and linkage-specificities in
cells and those contributions are not captured during
in vitro activity assays using bacterial proteins. Therefore,
characterizing DUB mechanisms and specificities by
in vitro and cell-based assays, particularly focusing on full-
length proteins, will be important to further define phy-
siological roles of DUBs and elucidate their role in disease.
Second, as alluded to throughout this review, it is often
unclear how the intricate regulatory mechanisms that can
regulate DUB localization, activity, and substrate recruit-
ment in vitro are implemented to ensure faithful embryonic
and postnatal development in vivo. Third, while mutations
in ~10 DUBs have been convincingly demonstrated to
cause developmental disease (Fig. 4), the underlying
mechanisms, E3 ligases, and/or substrates are often ill-
defined (e.g., OTUDG6B and OTUD7A). Fourth, knockout or
knockdown of tens of DUBs has been shown to be lethal or
to cause severe defects during embryogenesis of model
organisms such as zebrafish and mice [43, 44]. In many
cases, these DUBs have not yet been associated with
congenital disorders and/or their precise functions and
underlying mechanisms in early human development are
not known (e.g., OTUD4, USP25).
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Fig. 4 Many DUBs are intolerant to genomic variation in humans
and are likely to cause developmental disease when mutated.
Graph depicting a plot of missense (Z) and loss-of-function intolerance
(pLI) scores of all human DUBs (as determined using gnomAD [233]).
Highlighted in color are DUBs whose mutations have been demon-
strated to cause monogenic diseases that are inherited in an autosomal
dominant manner (orange), autosomal recessive manner (green), or X-
linked dominant/recessive manner (blue). Mutations in USP8 (high-
lighted in black) cause corticotroph adenomas and Cushing’s disease

With the rapid increase in databases of exome and gen-
ome sequences from healthy individuals, it has now become
possible to quantify the tolerance of genes to loss-of-
function and missense mutations in control populations.
[230-233] Genes that are highly restricted in such variation
are likely to be essential and, when mutated, either result in
embryonic lethality or developmental disease. As recently
demonstrated for OTUDS and LINKED syndrome [41],
such genomic constraint metrics can be used to prioritize
candidate disease variants and, combined with mechanistic
studies, facilitate the discovery of novel developmental
pathways. Intriguingly, there are many DUBs, not yet
associated with congenital disorders, but that are likely to be
disease-causing based on how constrained they are from
mutations in the healthy population (highlighted in violet in
Fig. 4). We propose that systematic search for missense
variants in these genes in patients with undiagnosed dis-
eases, will likely allow identification of novel develop-
mental disorders and may yield variants that can be used to
dissect functions and mechanisms of these DUBs during
embryogenesis. Even if such patients are not readily iden-
tified, these tools provide clues about enzymes important for
human health to prioritize for mechanistic studies. Such
genomic constraint-based genotype-first approaches would
be especially interesting for poorly characterized DUBs
such as USP24, USP48, and USP32. It would be equally
attractive to apply this methodology to the linkage-specific

in the somatic state. Note that DUBs associated with autosomal
dominant and X-linked disease are constrained in their genomic var-
iation within the healthy human population (pLI= 1, Z-score > 1).
Many other DUBs, previously not linked to monogenic diseases, are
also highly intolerant to missense and loss-of-function mutations and
thus likely cause embryonic lethality or developmental disease when
mutated. The strongest of these candidates are highlighted in violet in
the zoomed-in panel of the plot on the right.

OTU DUBs OTUD4, OTUBI, VCPIP, and ZRANB] [61] to
uncover potentially novel roles of particular ubiquitin chain
types during early development. Finally, such methodolo-
gies could provide important mechanistic insights to help
improve disease diagnosis and patient management and,
given the growing ability to target the activity of specific
DUBs with small molecules [26, 45, 234], potentially open
new avenues for therapeutic intervention to ameliorate
disease symptoms.
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