Skip to main content
. 2021 Jan 22;11:617202. doi: 10.3389/fgene.2020.617202

TABLE 1.

Tools for modeling and predicting chromatin interactions.

Tool name Input features Target features Method/algorithm
See review by Xu et al. (2018) Histone marks, TFs binding, DHS Promoter–enhancer interactions See review by Xu et al. (2018)
MacPherson et al. (2018) model HP1, H3K9me3 Compartments Polymer modeling
MichroM + MEGABASE (Di Pierro et al.) Histone marks, TFs binding Compartments NN classifier + polymer modeling
Huang et al. (2015) model Histone marks TADs BART
3Disease Browser (Li et al., 2016) Enhancers and TAD boundaries Rearranged TADs Linear model
Lollipop (Kai et al., 2018) Chip-seq data, CTCF directionality Loops ML ensemble classifier (random forest)
3DEpiloop (Al Bkhetan and Plewczynski, 2018) Histone marks, TFs binding Loops ML ensemble classifier (random forest)
CTCF-MP (Zhang et al., 2018) CTCF binding, DHS, nucleotide sequence Loops ML ensemble classifier/NN (Boosted trees/word2vec)
EpiTensor (Zhu et al., 2016) Histone marks, TFs binding Loops Tensor modeling + PCA
DeepMILO (Trieu et al., 2020) Sequence of loop anchors Rearranged loops CNN and RNN
3D-GNOME (Sadowski et al., 2019) CTCF ChIA-PET Rearranged loops linear models
3DPredictor (Belokopytova et al., 2020) CTCF, RNA-seq Whole hi-c map ML ensemble regression (gradient boosting)
Hi-C Reg (Zhang et al., 2019) Histone marks, TFs binding, DHS Whole hi-c map ML ensemble regression (random forest)
Akita (Fudenberg et al., 2020) Sequence Whole hi-c map CNN
DeepC (Schwessinger et al., 2020) Sequence Whole hi-c map CNN
Yifeng Qi and Bin Zhang model (Qi and Zhang, 2019) CTCF binding, Chromatin states Whole hi-c map Polymer modeling
HiP-HoP (Buckle et al., 2018) CTCF and cohesin binding, Histone marks or DHS Whole hi-c map Polymer modeling
Rowley et al. (2017) model GRO-seq + CTCF binding Whole hi-c map Explicit algebraic model
PRISMR (Bianco et al., 2018) Wild-type Hi-C data Whole hi-c map in mutated cells Polymer modeling

DHS, DNAse I hypersensitivity sites; TFs, transcription factors; TADs, topologically associated domains; ML, machine learning; NN, neural network; CNN, convolutional neural network; RNN, recurrent neural network; BART, Bayesian additive regression trees; PCA, principle component analysis.