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COVID-19 is now one of the most leading causes of death in the United States (US). Systemic health, social and
economic disparities have put the minorities and economically poor communities at a higher risk than others.
There is an immediate requirement to develop a reliablemeasure of county-level vulnerabilities that can capture
the heterogeneity of vulnerable communities. This study reports a COVID-19 Vulnerability Index (C19VI) for
identifying andmapping vulnerable counties.Weproposed a RandomForestmachine learning-based vulnerabil-
itymodel using CDC's sociodemographic and COVID-19-specific themes. An innovative ‘COVID-19 Impact Assess-
ment’ algorithmwas also developed for evaluating severity of the pandemic and to train the vulnerabilitymodel.
Developed C19VI was statistically validated and compared with the CDC COVID-19 Community Vulnerability
Index (CCVI). Finally, using C19VI and the census data, we explored racial inequalities and economic disparities
in COVID-19 health outcomes. Our index indicates that 575 counties (45 million people) fall into the ‘very high’
vulnerability class, 765 counties (66million people) in the ‘high’ vulnerability class, and 1435 counties (204mil-
lion people) in the ‘moderate’ or ‘low’ vulnerability class. Only 367 counties (20 million people) were found as
‘very low’ vulnerable areas. Furthermore, C19VI reveals that 524 counties with a racial minority population
higher than 13% and 420 counties with poverty higher than 20% are in the ‘very high’ or ‘high’ vulnerability clas-
ses. The C19VI aims at helping public health officials and disastermanagement agencies to develop effectivemit-
igation strategies especially for the disproportionately impacted communities.
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1. Introduction

The novel coronavirus disease (COVID-19) has been recognized as
the newest and biggest global public health crisis (Organization WH,
2020). In the first half of 2020, the COVID-19 has nearly killed half amil-
lion people worldwide, of whichmore than 25% have died in the United
States of America (COVID C, 2020). Within three months after the first
reported case in the United States in January 2020, coronavirus cases
had been confirmed in all fifty states, including the District of Columbia
and other inhabited US territories (COVID C, 2020). Shortly after, many
state-imposed policies to curb the spread (Agency. FEM, 2020; Zhao
et al., 2020). Despite these diffused efforts, a massive surge in the inci-
dence and mortality began to recur in June 2020 that placed the US as
the most affected country setting apart from other counties by a huge
margin (COVID C, 2020; Oster et al., 2020). This has clearly indicated a
lapse in effective COVID risk assessment and response at different levels.
With the added concern of the second wave and disproportionate im-
pact of the pandemic on minorities and economically poor, a reliable
country-wide assessment of COVID-19 vulnerability is a matter of ne-
cessity and urgency (COVID I and Murray, 2020).

Identification of vulnerable areas is critical for public health depart-
ments to take the appropriate measures to increase preparedness
against COVID-19. In order to identify these areas, the Centers for Dis-
ease Control and Prevention (CDC) initially used the social vulnerability
index (SVI) (Flanagan et al., 2011), which is calculated based on census
variables distributed in four distinct themes: i) socio-economic factors,
ii) household composition, iii) minority status and language, and iv) ac-
cess to housing and transportation. SVI failed to sufficiently determine
vulnerability during this unprecedented situation, mainly because its
primary objective aimed at addressing natural disaster crises during
hurricanes, earthquakes, and forest fires (Karaye and Horney, 2020;
Amram et al., 2020). Thus, the CDC and Surgo Foundation developed
COVID-19 Community Vulnerability Index (CCVI) (Foundation S,
2020) by introducing two new variables, v) epidemiological risk factors
and vi) public health system capacity, in the hope to rectify the short-
comings in the previous vulnerability assessment approach. Despite
this optimization, CCVI and SVI are based on a statistical linear algo-
rithm (Flanagan et al., 2011; Foundation S, 2020) that is unable to suffi-
ciently account for the multiplicative, non-linear nature of vulnerability
(Sambanis et al., 2019). Not only have the public health planners
(Karaye and Horney, 2020; Kim and Bostwick, 2020; Sequist, 2020)
and policy makers (Tai et al., 2020; Liu et al., 2020; Acharya and
Porwal, 2020) recognized the need for a more nuanced methodology
in the domain of vulnerability modeling, but they are also concerned
about the highly dynamic nature of the pandemic that brings unique
challenges to the existingmethods of pandemic vulnerability modeling.
The lack of a comprehensive and accurate COVID-19 Vulnerability Index
impairs the preparedness of critical areas against the pandemic as they
are blurred to public health measures. This scenario highlights the ur-
gent need for improvements of the nationwide approaches to identify
vulnerable areas amid COVID-19 pandemic.

Pandemic vulnerability modeling techniques thus far, including that
of CDC's CCVI, only analyze some of the variables that introduce the var-
iability, such as theCOVID-19 impact (theme5: epidemiological factors)
and the counties' preparation and resources against the pandemic
(theme 6: healthcare system factors) and, they do so in a linear statisti-
cal fashion. In the current study, we developed a more reliable assess-
ment: the COVID-19 Vulnerability Index (C19VI) which quantifies the
pandemic vulnerability of each county in the United States. This relative
index processed the same six input variables as CCVI; however, instead
of using a statistical linear algorithm,we utilizedmachine learning tech-
nique. We implemented Random Forest (RF) machine learning tech-
nique to calculate C19VI. An innovative ‘COVID-19 Impact Assessment’
algorithm was also developed using homogeneity analysis and tempo-
ral trend assessment techniques for training the RF model. Our
‘COVID-19 Impact Assessment’ algorithm, for the first time, introduce
2

the concept of analyzing temporal dynamics of confirmed cases, deaths
and IFR in addition to analyzing the CDC's six themes in a non-
parametric, non-linear machine learning-integrated method. Thus, our
vulnerability modeling approach has a two-fold added advantage than
the conventional methods. First, we assessed the additional variables
that introduce variability in vulnerability modeling, i.e., temporal analy-
sis of daily confirmed cases, deaths, and IFRdata. Secondly, all of the var-
iables were processed in a non-linear, non-parametric fashion by using
RF machine learning techniques. Next, our C19VI index was compared
with CDC's CCVI using advanced statistical measures and a machine
learning model. We then tested the accuracy and checked the internal
consistency of the C19VI.

Our vulnerability assessment methodology has allowed us to ana-
lyze the impact of COVID-19 that has been unequal and widespread
across the nation (Tai et al., 2020; Moore, 2020; Dang et al., 2020;
Finch andHernández Finch, 2020). Besides, there are systemic socioeco-
nomic inequalities that increase the susceptibility and exposure of the
marginalized groups (Moore, 2020; Finch and Hernández Finch, 2020;
Ahmed et al., 2020). Thus, in addition to conducting a nationwide anal-
ysis of COVID-19 vulnerability, C19VI has allowed us, for the first time,
to explore the existing healthcare disparities in the realm of COVID-19
pandemic in great detail. This study may enhance the current
techniques in vulnerability modeling, leveraging the preparedness of
vulnerable counties to reduce the COVID-19 burden within the United
States.

2. Data and methods

2.1. Input datasets

We used publicly available datasets from Johns Hopkins University
(COVID C, 2020), Centers for Disease Control and Prevention (CDC)
(Foundation S, 2020), United States Census Bureau (Bureau UC, 2018),
and United States Department of Homeland Security (DHS, 2016) for
impact assessment, vulnerability modeling, population-specific vulner-
ability analysis, and data visualization and mapping, respectively. The
data for COVID-19 confirmed cases, including all reported infections
and reinfections, and mortality in the United States from 22nd January
2020 to 31st July 2020 were obtained from Johns Hopkins University.
Fig. 1(A) and (B) presents the normalized (per 100,000) total confirmed
cases and deaths dataset, up to 31st July 2020 for all United States
counties, respectively. The four socio-demographic SVI indicators and
twoCCVI thematic indicators, referred to as input themeswere obtained
from CDC. This results in six input themes that determine the vulnera-
bility of a region to COVID-19 pandemic (Table 1). Fig. 2 shows
(A) Socioeconomic Status, (B) Household Composition & Disability,
(C) Minority Status & Language, (D) Housing Type & Transportation,
(E) Epidemiological Factors and (F) Healthcare System Factors maps
for the United States. County wise total population, racial population
and poverty breakdown were obtained from the United States Census
Bureau. Regional boundary data of the United States was collected
from Homeland infrastructure foundation-level data (DHS, 2016) in
Geographic Information System (GIS) ready file format (ESRI shapefile
(ESRI E, 1998)). This study did not require a review by the Institutional
Review Board since publicly available, de-identified data was used.

2.2. ‘COVID-19 Impact Assessment’ algorithm

In order to understand the impact of COVID-19 pandemic in all 3142
counties in the United States, we have proposed a ‘COVID-19 Impact As-
sessment’ algorithm. This algorithm ‘Scores’ and ‘Ranks’ the impact of
COVID-19 pandemic by evaluating the temporal changes in confirmed
cases, deaths, and infection fatality rate (IFR) (Magnani et al., 2020)
datasets using trend analysis (Mann Kendall (Mann, 1945; Kendall,
1955) & Theil and Sen Slope (Theil, 1950; Sen, 1968)) and homogeneity
assessment (Pettitt's test (Pettitt, 1979)). Trend analysis characterizes
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Image of Fig. 1


Table 1
The CDC's CCVI theme indicators and corresponding variables.

Theme Indicator Type Variable Resolution

1 Socioeconomic Status Social Below poverty Census tract
Unemployed Census tract
Income Census tract
No high school diploma Census tract

2 Household
Composition &
Disability

Social Aged 65 or older Census tract
Aged 17 or younger Census tract
Older than age 5 with a
disability

Census tract

3 Minority Status &
Language

Social Minority Census tract
Speaks English “less
than well”

Census tract

4 Housing Type &
Transportation

Social Multi-unit structures Census tract
Mobile homes Census tract
Crowding Census tract
No vehicle Census tract

5 Epidemiological
Factors

COVID Cardiovascular
conditions

County

Respiratory conditions County
Immuno-compromised County
Obesity County
Diabetes County
Population density Census tract
Influenza and
pneumonia death rates

County

6 Healthcare System
Factors

COVID Health system capacity State/hospital
region

Health system strength State/county
Health system
preparedness

State/county
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the overall pattern in daily-time series dataset and homogeneity assess-
ment identifies abrupt changes in temporal trends (Mann, 1945;
Kendall, 1955; Theil, 1950; Sen, 1968; Pettitt, 1979). Together, trend
and homogeneity analyses make the algorithm more sensitive to daily
changes in the epidemiological curve and recognize the subtle impacts
of the health policies. Thus, the algorithm classifies each county in one
of the six impact groups, ‘very high’ (Rank = 1), ‘high’ (Rank = 2),
‘moderate’ (Rank = 3), ‘low’ (Rank = 4), ‘very low’ (Rank = 5) and
‘non-significant’ (Rank = −999). See Supplementary material for the
‘COVID-19 Impact Assessment’ algorithm pseudocode. The algorithm
functions in four steps:

1. Data import and pre-processing: County-wise, daily time-series data
of the confirmed cases and deathswere obtained from the JohnHop-
kins University as mentioned above (COVID C, 2020). Then, daily
time-series data for IFR is calculated using the imported datasets.

2. Homogeneity analysis: Pettitt's test (Pettitt, 1979) was applied
county-wise to check for the homogeneity in the time-series dataset
of all three epidemiological parameters obtained after step 1. If the
data was found to be non-homogeneous, pre and post-changepoint
time series were computed and kept alongside the ‘overall’ dataset,
which was the only populated data column in the cases of homoge-
nous datasets. This expanded the time-series dataset into three as-
pects, i.e., pre-changepoint, post-changepoint, and overall, for each
of the three epidemiological parameters, i.e., confirmed cases, deaths,
and IFR for each county.

3. Trend analysis: We applied Mann Kendall's test (Mann, 1945;
Kendall, 1955) to assess the trend and its nature, i.e. increasing, de-
creasing, or no trend, in a given time-series. Next, the trend magni-
tude was quantified using the Theil and Sen slope estimator test
(Theil, 1950; Sen, 1968). Mann Kendall's, and Theil and Sen slope es-
timator test was performed on all three time-series computed at the
end of step 2 for all three epidemiological parameters in each county.

4. COVID-19 Impact ‘Score’ and ‘Rank’ determination: Impact Scorewas
determined using the trendmagnitude data obtained from the previ-
ous step.We used IFR as the most important parameter for assessing
the impact of the COVID-19 pandemic in our algorithm (Magnani
4

et al., 2020; Meehan et al., 2020). In the instances where IFR did
not show a significant trend in a given county, we first used the
deaths (Meehan et al., 2020). If the deaths did not show a significant
trend either, confirmed caseswere used to evaluate the impact of the
pandemic (Meehan et al., 2020). Thus, rank classification occurred in
three stages, each further divided according to the homogeneity
results:

a. On the basis of the IFR:

i. In a homogeneous IFR time-series with an increasing ‘overall’
trend, the county was assigned Rank 1 and its impact Score
was equal to the ‘overall’ trend magnitude.

ii. In a non-homogeneous IFR time-series with an increasing pre-
changepoint trend, the scoring and ranking were specified
based on the post-changepoint trend. Counties with increasing
post-changepoint trends were classified as Rank 1, no post-
changepoint trends as Rank 3, and decreasing post-changepoint
trends as Rank 5. The Score of the counties with increasing
(Rank 1) and no (Rank 3) post-change point trends were equal
to the trend magnitude of ‘post’ and ‘pre’ time-series data, re-
spectively. Finally, Score of the counties with decreasing post-
changepoint data (Rank 5) was equal to the negative of the
‘post’ time-series trend magnitude.

b. On the basis of the fatalities (deaths):

i. In a homogeneous death time-series with an increasing ‘overall’
trend, the county was assigned Rank 2 and its impact Score was
equal to the ‘overall’ trend magnitude.

ii. In a non-homogeneous death time-series with an increasing
pre-changepoint trend, the scoring and ranking were specified
based on the post-changepoint trend. Counties with increasing
post-changepoint trends were classified as Rank 2, no post-
changepoint trends as Rank 3, and decreasing post-
changepoint trends as Rank 5. The Score of the countieswith in-
creasing (Rank 2) and no (Rank 3) post-changepoint trends
were equal to the trend magnitude of ‘post’ and ‘pre’ time-
series data, respectively. Finally, Score of the counties with de-
creasing post-changepoint data (Rank 5) was equal to the neg-
ative of the ‘post’ time-series trend magnitude.

c. On the basis of the confirmed cases:

i. In a homogeneous time-series of confirmed cases with an in-
creasing ‘overall’ trend, the county was assigned Rank 4 and its
impact Score was equal to the ‘overall’ trend magnitude.

ii. In a non-homogeneous time-series of confirmed cases with an
increasing pre-changepoint trend, the scoring and ranking
were specified based on the post-changepoint trend. Counties
with increasing post-changepoint trends were classified as
Rank 4, no post-changepoint trends as Rank 5, and decreasing
post-changepoint trends as Rank 5. The Score of the counties
with increasing (Rank 4) and no (Rank 5) post-change point
trends were equal to the trend magnitude of ‘post’ and ‘pre’
time-series data, respectively. Finally, Score of the counties
with decreasing post-changepoint data (Rank 5) was equal to
the negative of the post time-series trend magnitude.

Every other county was classified as Rank−999 and Score−999. Fi-
nally, out of the three ranks, assigned to each county, based on the three
epidemiological variables, the highest impact group (lowest rank) and
its corresponding trend magnitude were decided as the final COVID-
19 Impact Score and Rank for a given county.
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Image of Fig. 2


Fig. 3. Flow diagram of the C19VI methodology. The figure illustrates the C19VI methodology, from input datasets to customization of the C19VI web map viewer, in step-wise details.
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2.3. Generation of COVID-19 Vulnerability Index (C19VI)

Our study methodology was built and tested in six steps (Fig. 3).
First, the training-testing data was prepared using the “most affected”
and the “non-significantly” affected counties using the proposed
‘COVID-19 Impact Assessment’ algorithm. Second, COVID-19 vulnera-
bility map was generated using the RF machine learning technique
(Breiman, 2001; Liaw andWiener, 2002). Third, vulnerability modeling
was validated using Receiver Operating Characteristic (ROC)-Area
Under the ROC Curve (AUC) technique (Altman and Bland, 1994; Fan
et al., 2006; DeLong et al., 1988) and Cronbach's α (Cronbach, 1951).
Fourth, our C19VI modeling was comparatively assessed against the
CDC's CCVI using Friedman (Friedman, 1937) and two-tailed Wilcoxon
signed rank (Wilcoxon, 1945) test and later, the input themes contribu-
tion to the respective vulnerability index, the output, were ranked
using, and Boruta technique (Kursa and Rudnicki, 2010). Fifth, C19VI
was analyzedwith racialminority population andpoverty dataset to de-
termine the disproportionate county-level impact of COVID-19 pan-
demic. Lastly, an interactive version of the C19VI map with other
results was released to the public using the ESRIWebGIS customization
toolkit (Builder EWA, 2018). Each step is further detailed below:

1. Preparation of the training-testing dataset: Proposed ‘COVID-19 Im-
pact Assessment’ algorithm was used to map the impact of COVID-
19 pandemic on all 3142 counties in the US using confirmed cases
and deaths. Out of total 3142 counties, 200 very highly affected and
200 non-significantly affected counties were selected to prepare
the COVID-19 vulnerability modeling training and testing dataset.
70% of the total counties (280) were randomly selected and imple-
mented as a training dataset while rest 30% (120) were used for
testing.

2. COVID-19 vulnerability modeling: COVID-19 vulnerability modeling
was implemented using the RF machine learning technique
(Breiman, 2001; Liaw and Wiener, 2002). This model predicts vul-
nerability of a given county on a continuous scale of 0 (least vulner-
able) to 1 (most vulnerable). The map was graded according to the
6

COVID-19 Vulnerability Index into five vulnerability classes
(Foundation S, 2020): very high (>80%), high (80%–60%), moderate
(60%–40%), low (40%–20%) and very low (<20%) (Foundation S,
2020).

3. Validation of vulnerabilitymodeling: The effectiveness of RFmachine
learning technique was specified by evaluating uncertainties in the
resulting vulnerability map using the Receiver Operating Character-
istic (ROC) - Area Under the Curve (AUC). The ROC-AUC is the stan-
dard technique most frequently employed in vulnerability
modeling studies to evaluate the modeling accuracy. The ROC curve
maps the true positive rate on the Y-axis and the false positive rate
on the X-axis. It depicts the trade-off between the two rates. In the
ROC technique, AUC (which varies from 0.5 to 1.0) are used for eval-
uating the model accuracy. The AUC for prediction curve was com-
puted, based on the trapezium method. From the list of 200 very
highly affected and 200 non-significantly affected counties, 30%
(120) of the total counties were randomly selected for model valida-
tion. The ROC-AUC analyzed the conformity between the validation
fold of the training-testing dataset and the products of the applied
technique.We computed Cronbach'sα Cronbach, 1951 for the devel-
oped C19VI index to measure reliability by assessing the C19VI
values, the output, with CDC's six theme variables, the input.

4. Comparison of the CCVI and C19VI: As both the CCVI and the C19VI
models were developed using the same six thematic indicators,
Friedman (Friedman, 1937) and two-tailed Wilcoxon signed rank
(Wilcoxon, 1945) statistical tests were implemented to compara-
tively assess model vulnerability prediction ability. Next, Boruta fea-
ture importance assessment technique (Kursa and Rudnicki, 2010)
was used to evaluate the relative importance of input indicators in
CCVI and C19VI.

5. Community specific vulnerability analysis: Long-standing systemic,
social and economic inequities across the counties have put many
people from racial minority groups and living below the poverty
line at increased risk of getting sick and dying from COVID-19
(Finch and Hernández Finch, 2020; Ahmed et al., 2020; van Dorn
et al., 2020). By overlaying the C19VI map on racial minority

Image of Fig. 3
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population percentage data, COVID-19 vulnerability specific to racial
minority groups were identified. As recommended by CDC, a 13% of
the racial minority threshold, i.e. a given county with more than
13% racial minorities residents, was used for computing the COVID-
19 vulnerability for racial minority groups (Greener, 2019). Similarly,
by overlaying the C19VI map on poverty percentage data, COVID-19
vulnerability specific to economically poor communitieswere identi-
fied. As defined by the Economic Research Service (ERS), United
States Department of Agriculture (USDA) a 20% of the poverty
threshold, i.e. a given county with more than 20% economically
poor residents, was used to estimate the vulnerability for economi-
cally poor communities (Taylor, 2018; Mammen and Sano, 2018).
ESRI ArcGIS overlay analysis tool (ArcGIS E, 2012) was used to con-
duct the community-specific vulnerability analysis.

6. Customization of C19VI web map viewer: ESRI Web App Builder
(Builder EWA, 2018) was used to develop an interactive ‘C19VI
web map’ portal. This portal features three layers: ‘C19VI’ layer,
‘COVID-19 Vulnerability (Racial Minority) - C19VI’ layer, and
‘COVID-19Vulnerability (Poverty) - C19VI’ layer. Every layer features
its own attributes. The ‘C19VI’ layer displays the C19VI values,
COVID-19 Impact Rank, total number of confirmed cases and deaths
as of July 31st 2020 for each United States county. The ‘COVID-19
Vulnerability (Racial Minority) - C19VI’ layer displays the C19VI
and minority population percentage for each United States county.
The ‘COVID-19 Vulnerability (Poverty) - C19VI’ layer displays the
C19VI and poverty percentage for each United States county. Web
GIS portal is set to update every three months. Currently it features
both the old web maps for 31st July and new web maps for 31st
Oct 2020.

3. Results

3.1. COVID-19 impact assessment

Our ‘COVID-19 Impact Assessment’ algorithm performed a county-
wise assessment of the pandemic using the confirmed cases, deaths
and IFRs data from 22nd January 2020 to 31st July 2020. We generated
a map of our assessment that groups the impact of the pandemic on all
United States counties in one of the six categories (Fig. 4(A)). We found
A

Fig. 4. ‘COVID-19 Impact Assessment’ algorithm output. (A) Map of COVID-19 impact showing
Impact Assessment algorithm’. Themap shows countieswith very high impact (Rank 1) in yello
5) in purple, and insignificant (Rank 999) in tropical blue. (B) Bar graph depicting total number
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88 countieswith ‘very high’, 30with ‘high’, 73with ‘moderate’, 344with
‘low’, 214with ‘very low,’ and 2393with ‘non-significant’ impact due to
the COVID-19 pandemic (Fig. 4(B)). Top 200 countieswith themost im-
pact and the bottom 200 with non-significant impact were used as
training and testing datasets for our COVID-19 vulnerability model.

3.2. COVID-19 vulnerability modeling

Using the impact assessment data of the selected United States
counties, input themes and the RF technique, we developed COVID-19
Vulnerability Index (C19VI). Fig. 5(A) shows the C19VI map at the
scale of 0 to 1. As presented in Fig. 5(B), we computed C19VI for all
United States counties and classified them in one of the five vulnerabil-
ity Classes, ‘very high’, ‘high’, ‘moderate’, ‘low’, and ‘very low’. We found
that 11.68% of the counties (367) fall into the ‘very low’ category, 22.34%
(702) in the ‘low,’ 23.32% (733) in the ‘moderate,’ 24.34% (765) in the
‘high,’ and 18.30% (575) in the ‘very high’ category (Fig. 5(C)). Based
on C19VI values, 20 most and least vulnerable counties and their corre-
sponding input theme contribution to the vulnerability are displayed
alongside CDC's CCVI in Fig. 6(A) and (B), respectively.

3.3. Model validation and reliability

We used the AUC-ROC technique to validate the prediction accuracy
of our C19VI model. As shown in Fig. 7(A) and (B), we found 90% accu-
racy (AUC= 0.90) during the training phase and 84% accuracy (AUC=
0.84) during the testing phase, respectively. High internal consistency
(Cronbach'sα= 0.709) of C19VI model was revealed using Cronbach's
α test (Tavakol and Dennick, 2011; Glen, 2014). Overall, validation and
reliability results indicate that the random forest machine learning
modeling provides a high quality COVID-19 vulnerability map (C19VI)
for the United States (DeLong et al., 1988; Tavakol and Dennick, 2011;
Glen, 2014).

3.4. Comparative evaluation – CCVI & C19VI

Since we introduced a new COVID-19 vulnerability assessment
index, we quantitatively evaluated its performance against the existing
vulnerability model, CDC's CCVI, to assess C19VI's predictive power and
applicability. We used Friedman test (Friedman, 1937), two-tailed
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Wilcoxon signed rank test (Wilcoxon, 1945), and Boruta parameter im-
portance assessment technique (Kursa and Rudnicki, 2010) to compar-
atively evaluate C19VI and CCVI.

1. Friedman and Wilcoxon tests: The Friedman and the two-tailed
Wilcoxon signed rank tests detected significant differences
(p < 0.0001) between the indices given by the two models, C19VI
and CCVI. The mean rank of C19VI is 1.614 while mean rank of
CCVI is 1.386. The full results of the Friedman and Wilcoxon tests
can be found in Tables 2 and 3, respectively.

2. Boruta test: Individual importance of each CDC input themes in de-
termining C19VI and CCVI were quantified using Boruta, a wrapper
algorithm. The most important parameter in C19VI was theme 5
(135.17), while in CCVI, it was theme6 (131.36) (Table 4).Moreover,
theme 3 (Minority Status & Language) ranked second in parameter
importance in the C19VI model as compared to CCVI, where it is
ranked fourth (Table 4). The full results of the Boruta test on CCVI
and C19VI are presented in Fig. 8(A) and (B), respectively.

3.5. Community specific vulnerability analysis

The racial minority populations of the United States reside more
densely in the southern states and in urban areas (Bureau UC, 2018;
Newkirk, 2020; Snyder and Parks, 2020). Our community-specific anal-
ysis reveals that the racial minorities disproportionately reside in
8

counties that are more vulnerable to COVID-19 (Fig. 9(A)). We found
that 77.62% counties with racial minority populations >13%, have very
high or high (CCVI >0.60) COVID19 vulnerability. Similar to racial mi-
norities, economically poor communities are more likely to be affected
by the virus and have higher mortality rates (Snyder and Parks, 2020).
The C19VI derived COVID-19 vulnerability with reference to poverty is
presented in Fig. 9(B). We find that 82.84% of economically poor
counties, where poverty >20%, have very high or high (CCVI >0.60)
COVID-19 vulnerability.

3.6. C19VI web map viewer

The Urban Data Visualization Lab (UDVL) at the University of Illinois
at Chicago (UIC) have featured an interactive version of the C19VI map
which can be accessed at the following URL https://udv.lab.uic.edu/
national-covid-19-vulnerability-index-c19vi. This map portal is easily
accessible on personal computers and mobile devices. See Supplemen-
tarymaterial Fig. 1(A), (B) and (C) for snapshots of thewebmapviewer.

4. Discussion

Ever since the United States declared a national emergency due to
the COVID-9 pandemic in March 2020, the country is grappling against

https://udv.lab.uic.edu/national-covid-19-vulnerability-index-c19vi
https://udv.lab.uic.edu/national-covid-19-vulnerability-index-c19vi
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Fig. 7. C19VImodel validation using ROC-AUC technique. (A) ROC-AUC curvewith 90% accuracy during the training phase. (B) ROC-AUC curvewith 84% accuracy during the testing phase.

Table 2
Results of Friedman test for CCVI and C19VI.

Index Degrees of freedom Chi-squared value p-Value Mean rank

C19VI
1 3.841 <0.0001

1.614
CCVI 1.386
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a huge continuous surge in the incidence and mortality rates (COVID C,
2020; Liu et al., 2020). In the last month alone, June 30th, 2020 to July
31st, 2020, the total number of confirmed cases has risen from
2,729,764 to 4,713,014 while the total death count has increased from
130,313 to 156,826 (COVID C, 2020). It is expected that the United
States' COVID-19 death toll will double, potentially reaching more
than 0.4 million by the beginning of 2021 (COVID I and Murray,
2020). Thus, keeping in mind the uncontrollable spread, ineffective
strategies to check the transmission, disproportionate impact based on
systemic inequalities, and heterogeneous impact on different regions,
we have developed a county-level COVID-19 Vulnerability Index
9

(C19VI) that assess the vulnerability of a region using an innovative
methodology. This methodology considers the limitations of the
existing vulnerability modeling techniques to assess COVID-19

Image of Fig. 6
Image of Fig. 7


Table 3
Comparison of CCVI and C19VI using two-tailed Wilcoxon signed-rank test.

Pairwise comparison z-Statistic p-Value

CCVI – C19VI −12.461 <0.0001

Table 4
Importance assessment of the input themes in CCVI and C19VI using Boruta algorithm.

Theme Indicator CCVI - mean
importance

C19VI - mean
importance

1 Socioeconomic Status 74.56 105.60
2 Household Composition &

Disability
43.20 34.45

3 Minority Status & Language 68.69 112.98
4 Housing Type &

Transportation
47.81 67.86

5 Epidemiological Factors 102.84 135.17
6 Healthcare System Factors 131.36 72.25
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vulnerability nationwide and performs a disproportionate analysis that
points out the existing health disparities in the country. In the following
sections, we discuss the unique characteristics of our C19VI model and
the utility of C19VI in the nationwide and community-specific vulnera-
bility assessment.

4.1. Novel approach of vulnerability modeling

Recently, many researchers (Boldog et al., 2020; Amiri et al.,
2020; Acharya and Porwal, 2020; Kim and Bostwick, 2020;
Sarkar and Chouhan, 2020; Mishra et al., 2020; Cahill et al.,
2020; Marvel et al., 2020) have internationally conducted
COVID-19 risk and vulnerability assessment using mathematical
modeling (Amiri et al., 2020) or linear statistical techniques with
sociodemographic, economic, and health indicators. Notorious ex-
amples of such analytical approaches are: i) equal weight assign-
ment (Foundation S, 2020; Acharya and Porwal, 2020); ii)
principal component analysis (PCA) (Kim and Bostwick, 2020;
Sarkar and Chouhan, 2020); and iii) heuristic modeling (Mishra
et al., 2020). In addition, a few studies were conducted by
Fig. 8. Importance assessment of the six input theme indicators in CCVI and C19VI using Boru
importance assessment of CCVI and C19VI, respectively. (A) Box plot (mean, median, minim
X-axis for the CCVI model. (B) Box plot (mean, median, minimum, and maximum Z) for each
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performing numerical simulations of the total confirmed cases,
deaths, and IFRs using statistical (Boldog et al., 2020; Cahill
et al., 2020) and machine learning (Marvel et al., 2020) tech-
niques to compute COVID-19 specific vulnerability. While these
approaches have enhanced the domain of pandemic vulnerability
modeling, they show at least one of the three underlying limita-
tions recognized by the public health planners and policy makers
that impair an optimal modeling process. Either they implement
an equal weight assignment approach in vulnerability assessment,
assume steady transmission rates in mathematical modeling, or
treat confirmed cases, deaths, and IFR as constants for vulnerabil-
ity assessment. However, it is known that 1) not all input themes
variables are equally important in determining vulnerability
(Acharya and Porwal, 2020), 2) confirmed cases, deaths, and IFR
are not biological constants in a pandemic and thus, they do re-
flect the severity of the pandemic in a particular context, at a par-
ticular time (Ritchie and Roser, 2020), 3) selection of constant
pandemic transmission rates for both mathematical analysis and
data fitting is unrealistic in nature and does not encounter the im-
plications of government implemented disease control actions and
individuals' voluntary responses against COVID-19 (Ritchie and
Roser, 2020; Wang, 2020).

Thus,we optimized these limiting factors by introducing RFmachine
learning, a non-linear, non-parametric predictive modeling technique
which can efficiently compute large datasets and account for complex
interactions between variables (Breiman, 2001; Liaw and Wiener,
2002). Additionally, in comparison to other machine learning tech-
niques, RF is easier to tune and does not overfit the data making it suit-
able for the pandemic vulnerability modeling (Liaw andWiener, 2002).

Furthermore, we optimized the dynamic characteristics of the pan-
demic by developing novel ‘COVID-19 Impact Assessment’ algorithm,
which assesses the regional pandemic impact by performing trend
and homogeneity analysis on daily datasets rather than static values
for a defined period. Trend and homogeneity assessments help charac-
terize the course of the pandemic and point out the COVID-19 response
through changes in healthcare infrastructure or policies in a given re-
gion by identifying subtle changes in daily datasets (Mann, 1945;
Kendall, 1955; Theil, 1950; Sen, 1968; Pettitt, 1979). Moreover, besides
optimization, our impact assessment algorithm also serves to enhance
ta algorithm. Panel A and B shows the box plot summary of the Boruta input parameter
um, and maximum Z) for each input theme in the increasing order of importance on the
input theme in the increasing order of importance on the X-axis for the C19VI model.
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Fig. 9. C19VI facilitated community-specific vulnerability assessment. C19VI of all US countieswas overlaidwith racialminority population percentage data and poverty percentage data to
generate panel A and B, respectively. (A) Map of the US counties showing COVID-19 vulnerability of the racial minorities. The map shows counties with high vulnerability (C19VI > 0.6)
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20% poverty in pink, high vulnerability (C19VI > 0.6) and lower than 20% racial minorities in orange, and low vulnerability (C19VI < 0.6) and lower than 20% poverty in chardonnay.
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vulnerability modeling to be driven by the chronic disease burden,
healthcare infrastructure, and policy impact such as lockdown phases.

In conjunction with the optimized impact assessment algorithm,
high training (90%) and testing (84%) accuracy with favorable internal
reliability score (Cronbach's α = 0.709) of the RF machine
learning-derived predictive modeling technique makes C19VI an accu-
rate and reliable index. Besides, despite using the same input, our
machine-learning derived C19VI produced significantly different and
consistent results in contrast to the CDC's CCVI as elucidated through
the Friedman and Wilcoxon signed-rank tests. Moreover, Boruta
algorithm-based importance assessment of the variables for both
methods shows that both methods handled the variables with major
notable differences. The divergence between the twomethods indicates
that the C19VI was able to capture non-linear relationships in the vari-
ableswhichwere not capturedwith the linear ‘equalweight assignment
approach’ used in the CDC's CCVI model (Foundation S, 2020).

The ability of capturing non-linearity in the input variables alongside
the unique characteristics of the C19VI methodology makes the C19VI
an optimal index to be considered for vulnerability assessment.

4.2. Nationwide vulnerability analysis

Our nationwide vulnerability analysis reveals interesting patterns of
vulnerability distributions around the country. We found that most of
the vulnerable counties are concentrated in the southern states. As
shown in the Fig. 5(B), nine of the top ten states with themost percent-
age of ‘very highly’ and ‘highly’ vulnerable counties—Alabama (94%),
Mississippi (90%), Louisiana (89%), Georgia (76%), South Carolina
(76%), Arkansas (76%), Tennessee (76%), North Carolina (74%), Florida
(70%) and New Mexico (70%)—are southern states. Secondly, although
the counties in the northeastern states had a significant number of con-
firmed cases, many states in this region showed low vulnerability. Four
of the top ten states with the highest percentage of ‘very low’ and ‘low’
vulnerable counties—Connecticut (100%), NewHampshire (100%), Wy-
oming (96%), North Dakota (91%), Wisconsin (83%), Nebraska (83%),
Montana (82%), Maine (81%), Vermont (79%), Minnesota (78%)—are
northeastern states. Thus, we see that the counties with high and low
vulnerability are clustered together, respectively, and the similar vul-
nerability classes are distributed discretely in the different geographical
regions of the United States. This non-uniform, region-dependent
11
distribution of COVID-19 vulnerability in the United States can be asso-
ciatedwith adoption of different public health strategies on a state-level
and with the regional sociodemographic distribution in the United
States.

This index can also be used alongside other epidemiological data,
such as disease transmission, infection fatality rate, the proportion of
cases needing hospitalization, intensive care unit admissions, or ventila-
tor support to heighten the preparedness of a district or state, as well as
planning and executing the response. We also recommend the use of
our C19VI index alongside the CDC's Social Vulnerability Index (SVI)
for developing disaster risk assessment and preparedness plans in
COVID-19 affected regions. For example, in the times of COVID-19 pan-
demic, the C19VI should be used alongside the SVI for the disasterman-
agement in counties with frequent forest fires, tornadoes or hurricanes.

4.3. Racial/economic disproportionality using vulnerability

COVID-19 has brought previously unaddressed health disparities of
racially marginalized and economically poor communities to the fore-
front of both disaster management officials and government concern.
By overlaying the C19VI with the race and poverty data, we found that
racial minorities and economically poor Americans disproportionately
reside in communities that are more vulnerable to COVID-19. This find-
ing is consistent with other evidences highlighting the disproportionate
incidence of COVID-19 among minority groups and poor communities
(Moore, 2020; Finch and Hernández Finch, 2020; van Dorn et al.,
2020; Fortuna et al., 2020; Gaynor and Wilson, 2020; Sequist, 2020).
The currently available county-level cases and deaths dataset, that is
segregated byminority population and economic status, is not sufficient
to generate reliable COVID-19 risk estimates. The analysis proposed
here provides an excellentway to help the communities that dispropor-
tionately bear the burden of this crisis, by precisely identifying these
areas.

Thus, the C19VI is intended to help policy makers, non-profit enti-
ties, private companies, local organizations, and the general public to
improve the COVID-19 contingency planning. This index may also be
useful for: i) a better management of distribution of resources; ii) ad-
dressing pandemic-associated healthcare disparities; iii) providing
businesses with opportunities to grow where support is needed the
most; and iv) raising public awareness of the COVID-19 pandemic.

Image of Fig. 9
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Additionally, this methodologymay be useful to develop advanced pre-
dictive modeling techniques by professionals in academia.

4.4. Limitations

Ideally, it would be possible to calculate the index at a census-tract
level. However, several important variables used to define vulnerability
were not available at this level. Hence, this analysis is restricted to the
county-level. Secondly, being based on the ranking of counties for CDC
six themes, our C19VI is a relative index of each county rather than
being an absolute score. Thirdly, wewere unable to test the external va-
lidity of C19VI since no accurate and stablemeasure of vulnerabilitywas
available. Fourthly, the ‘COVID-19 Impact Assessment’ algorithm re-
quires to be evaluated for space and time complexity, and internal er-
rors. Finally, more sophisticated techniques like Deep Learning,
Heuristic and Statistical (weighted sum) with confirmed cases, deaths
and IFR with hospitalized, ICU and asymptomatic patients can be used
for accessing the detailed impact of pandemic in the future.

5. Conclusions

In this work, we proposed an innovative approach to conduct the
vulnerability assessment of COVID-19 within the United States at the
county level. This approach integrates the reliable and high-
functioning domains of machine learning and predictive modeling. RF
machine learning technique in conjunction with novel ‘COVID-19 Im-
pact Assessment’ algorithm constituted the basis of our vulnerability
model. In our model, the input data is processed under a non-linearly
fashion, with high training-testing accuracy and favorable internal va-
lidity to generate a COVID-19 Vulnerability Index of the United States.
Besides promising validation results, comparative assessment of our
technique confirms that the C19VI predictive model is a reliable and
pragmatic alternative to the CDC's CCVI. Of note, our innovative ap-
proach used to develop a vulnerability index has enhanced the nation-
wide capacity to predict the potential harms accurately which may
help curtail the distressing course and consequences of the pandemic.
When combined with the racial minority and poverty dataset, C19VI
demonstrated its efficiency in disproportionate vulnerability analysis
and helped validate the existing disparities. Thus, as a COVID-19 risk as-
sessment tool, this indexmay assist the public health officials and other
authorities in formulating and implementing policies to manage the
pandemic. Lastly, the concept of our methodology could also be useful
for vulnerability model in general, representing a potential progress in
digital public health applications.
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