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A B S T R A C T   

Large-scale and diffuse population flow amplifies the localized COVID-19 outbreak into a widespread pandemic. 
Network analysis provides a new methodology to uncover the topology and evolution of the population flow and 
understand its influence on the early dynamics of COVID-19 transmission. In this paper, we simulated 42 
transmission scenarios to show the distribution of the COVID-19 outbreak across China. We predicted some 
original (Guangzhou, Shanghai, Shenzhen) had higher total aggregate population outflows than Wuhan, indi-
cating larger spread scopes and faster growth rates of COVID-19 outbreak. We built an importation risk model to 
identify some major cities (Dongguan and Foshan) with the highest total importation risk values and the highest 
standard deviations, indicating the core transmission chains (Dongguan-Shenzhen, Foshan-Guangzhou). We built 
the population flow networks to analyze their Spatio-temporal characteristics and identify the influential sub- 
groups and spreaders. By removing different influential spreaders, we identified Guangzhou can most influ-
ence the network’s topological characteristics, and some major cities’ degree centrality was significantly 
decreased. Our findings quantified the effectiveness of travel restrictions on delaying the epidemic growth and 
limiting the spread scope of COVID-19 in China, which helped better derive the geographical COVID-19 trans-
mission related to population flow networks’ structural features.   

1. Introduction 

Nowadays, coronavirus (COVID-19) is spreading quickly and glob-
ally. As of 08:00 am (GMT + 8) on 29 July 2020, it has affected 216 
countries and territories, 16,523,815 have been confirmed positive for 
COVID-19, and 655,112 have died (World Health Organization, 2020). 
As a contact transmission, the COVID-19 transmission is mostly due to 
person-to-person contact (Baker et al., 2020). Therefore, for an epidemic 
with the human-to-human transmission characteristic, extensive popu-
lation flow has substantially increased social contacts in public, which 
caused COVID-19 to reach essentially everywhere (Bherwani et al., 
2020). Moreover, many patients with asymptomatic infection had 
traveled to other regions, which caused the confirmed case numbers to 
increase exponentially at the early stage of the COVID-19 outbreak (Tian 
et al., 2020). Enforcing strong travel restrictions was urgent, necessary, 
and effective. It might prevent further seeding of this virus to wider 
regions (Giordano et al., 2020; Lai et al., 2020). More than 130 countries 
have introduced some forms of travel restriction since the COVID-19 
outbreak began, including screening, quarantine, and banning travel 

from high-risk areas. Therefore, it is crucial to understand how the 
population flow influences COVID-19 transmission (Chen et al., 2020; 
Kraemer et al., 2020). Compared with other affected countries, China 
was the first country to respond to COVID-19. In China, COVID-19 was 
first identified and reported in Wuhan. On 31 December 2019, before 
the Chinese Lunar New Year (began on 24 January 2020), the outbreak 
of COVID-19 spread rapidly from Wuhan, a city of 11 million inhabitants 
and the most significant transport hub in Central China. Further spatial 
spread of COIVD-19 was of great concern because of the upcoming 
Spring Festival Holiday (from 24 January 2020 to 31 January 2020). 
This holiday is the most celebratory time of the year in China, during 
which a massive human migration takes place as individuals travel back 
to their hometowns (Chen et al., 2020). National Development and 
Reform Commission stated that the annual spring migration (called 
chunyun in China) often lasts 40 days. During 2020 spring migration 
(from 10 January 2020 to 18 February 2020), there had been typically 3 
billion travel movement between urban and rural areas (Chinazzi et al., 
2020). This massive travel movement formed the topology of the pop-
ulation flow network, which connected most major cities to initiate the 
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national transmission chains of COVID-19 in China (Shi et al., 2020; Wu 
et al., 2020). 

Focus on the COVID-19 outbreak in China, many epidemiology- 
inspired models, including susceptible-infectious-recovered (SIR), 
susceptible-infectious-susceptible (SIS), and susceptible-exposed- 
infectious-recovered (SEIR) models, had been built to study the spatial 
spreading pattern of COVID-19 (He et al., 2020; Hou et al., 2020; Yang 
et al., 2020). However, these models were just based on very simplified 
assumptions of the population flow, which just gave rise to the model- 
dependent transmission pattern of COVID-19. They might fail to ac-
count for the actual dynamic of population flow affecting the spreading 
of COVID-19 in a real setting (Jia et al., 2020). As a consequence, there 
was a critical need for data-driven quantitative studies. Such studies 
used the actual Spatio-temporal evolution of population flow to pre-
cisely portray the spatial variation in COVID-19 transmission, which 
ultimately provided policymakers with valuable information on how 
best to target public health interventions to some certain affected cities 
or areas. It was essential to refine future epidemiological models 
(Wiwanitkit & Joob, 2020; Yue et al., 2020). 

These facts motivated us to address and solve some central research 
questions in this paper. First, during our observation period (from 1 
January 2020 to 23 February 2020), we set Wuhan as the baseline 
scenario, simulated 42 transmission scenarios by assuming different 
major cities as the original epicentres, which showed the potential im-
plications of COVID-19 outbreak in different major cities of China. This 
could identify the specific topological properties of population flow, 
characterize the transmission patterns and outbreak sizes of COVID-19 
across China, if the original epicentre was not Wuhan but other 42 
major cities. Second, we built an importation risk model by conceptu-
alizing the importation risk value as the combination of the aggregate 
population inflow and the cumulative number of confirmed COVID-19 
cases, which quantitatively examined the effectiveness of the travel re-
strictions on COVID-19 transmission across China. Since the population 
flow can be naturally investigated from the network-theoretic perspec-
tive, network science produced an important advance in analyzing how 
the population flow network’s structure affected the spreading perfor-
mance of COVID-19 and identifying which cities can maximize the speed 
and scope of COVID-19 transmission. Third, we built the population 
flow networks to discover the underlying patterns of population flows 
among 42 major cities, which could analyze the population flow among 
multiply epicentres associated with the COVID-19 transmission. More-
over, we examined the network structure via density and average clus-
tering coefficient at the system level. This could prove whether the 
topological structure and evolution of the population flow network 
influenced the COVID-19 transmission. We then identified the influen-
tial sub-groups and the influential spreaders via k-core and degree 
centrality at the individual node level. This could demonstrate which 
sub-groups or major cities form the cores in the population flow 
network, facilitating COVID-19 transmission efficiency. When the time 
was taken into account, the temporal network analysis of the population 
flow networks highlighted the changes of these particular properties 
over time, which can provide insights into understanding the dynamics 
of COVID-19 transmission. Our findings filled the research gap in data- 
driven insights into the population flow network’s topological structure 
and how it is associated with the COVID-19 transmission. 

2. Data and methods 

2.1. Data sources 

Our research was based on a data set that included case reports, 
population flow, and public health interventions. Our study areas 
included 43 major cities (including Wuhan) in 31 provinces and regions 
of China. According to Chinese cities’ ranking list published by The New 
First-tier City Institute, we selected all First-tier and New First-tier, some 
Second-tier cities. They were 4 First-tier cities (Beijing, Shanghai, 

Guangzhou, Shenzhen), 15 New First-tier Cities (Chengdu, Hangzhou, 
Chongqing, Wuhan, Xi’An, Suzhou, Tianjin, Nanjing, Changsha, 
Zhengzhou, Dongguan, Qingdao, Shenyang, Ningbo, Kunming), 20 
Second-tier cities (Wuxi, Foshan, Hefei, Dalian, Fuzhou, Xiamen, Har-
bin, Jinan, Wenzhou, Zibo, Nanning, Changchun, Shijiazhuang, Tang-
shan, Guiyang, Nanchang, Taiyuan, Yantai, Lanzhou, Haikou). We 
added other 4 provincial capital cities (Xining, Hohhot, Urumqi, Yin-
chuan), which were not included in this ranking list of First-tier, New 
First-tier, and Second-tier cities. Due to lacking data in the daily 
confirmed COVID-19 cases or the daily population inflow and outflow 
indexes of some Second-tier cities, the study areas were limited to 43 
major cities (including Wuhan) across China, which were the industrial, 
financial, and commercial hearts of China. And the gross domestic 
product (GDP) of these study areas made up more than 45% of the na-
tional GDP in 2019 (National Bureau of Statistics, 2019). From 1 
January 2020 (World Health Organization declared COVID-19 as a 
public health emergency of international concern) to 23 February 2020 
(The rise in incidence was halted and reversed in China), as the first 54 
days of COVID-19 outbreak in China, our observation period included 
40 days of spring migration, 15 days before the Chinese Lunar New Year 
on 25 January 2020, and 25 days afterward. As of 23 February 2020, 
China Center for Disease Control and Prevention announced there were 
77,150 confirmed COVID-19 cases in China, of which 46, 607 occurred 
in Wuhan, and 5,500 occurred in 42 other major cities we studied. Fig. 1 
showed the geographical distribution of the confirmed COVID-19 cases 
in 43 major cities. When Wuhan was quarantined from 23 January 2020, 
the cumulative number of confirmed COVID-19 cases in these major 
cities was reported each day (Fig. 2). Considering the different popula-
tion densities, we focused on the cumulative number of the confirmed 
COVID-19 cases (per 1 million population) to indicate the growth rate of 
infections in these major cities. Until 23 February 2020, the cumulative 
number of confirmed COVID-19 cases (per 1 million population) in 
Wuhan (4146) was more than 70 times higher than that in other top ten 
cities. These top ten cities, which were ranked according to the cumu-
lative number of the confirmed COVID-19 cases (per 1 million popula-
tion), included three first-tier cities (Beijing, Guangzhou, Shenzhen), 
two famous winter resort cities (Harbin, Haikou), and two essential 
transport hubs (Hefei, Changsha) in China. The epidemic growth rates of 
43 major cities increased and reached a peak between 25 January 2020 
and 28 January 2020, which was due to the increased testing capacity in 
China. There was a second peak in most major cities between 2 February 
2020 and 4 February 2020. On 23 February 2020, except Wuhan, 
Chongqing, and Dongguan, the daily confirmed cases numbers in other 
40 major cities had reduced close to zero (National Health Commission 
of the People’s Republic of China, 2020), indicated the epidemic curves 
of most major cities were flattened. 

For investigating the effectiveness of travel restrictions on COVID-19 
transmission in China, we compared the population flow among 43 
major cities (including Wuhan) during the same observation period in 
2019 (12 January 2019–8 March 2019) and 2020 (1 January 2020–23 
February 2020). This data was extracted from Baidu Inc. (Baidu 
Migration Map-Big data on Spring Migration). Fig. 3 showed the daily 
population inflow and outflow indexes of Wuhan and other top ten cities 
(4 first-tier cities, three transport hubs, and three developed coastal 
cities in southern and eastern China) with highest average daily popu-
lation inflow and outflow indexes. In Fig. 3, the grey dotted line repre-
sented the day of Chinese Lunar New Year (6 February 2019, 25 January 
2020). Because the spring migration was set according to the lunar 
calendar, we identified the observation periods in 2019 and 2020 ac-
cording to the same lunar dates. Before the Chinese Lunar New Year, 
that was historically the peak period for spring migration with the 
increasing daily population outflow indexes of Wuhan and other top ten 
cities in 2019 and 2020 (Fig. 3c). However, in 2020, the average daily 
population outflow indexes of these cities were more than 1.1 times that 
in 2019, especially in Wuhan (1.2 times). After the Chinese Lunar New 
Year, that was also historically the peak period for traveling and 
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returning to work, with the increasing daily population inflow indexes of 
Wuhan and other top ten cities just in 2019. Travel restrictions and 
large-scale control measures were implemented in China from 23 
January 2020, which caused a rapidly decreasing daily population 
inflow and outflow indexes of these cities. During this period, the 
average daily population inflow and outflow indexes of these cities were 
30% of that in 2019, especially in Wuhan (only 9%). 

2.2. Simulating the transmission scenarios 

The population outflow from Wuhan was proved to be the primary 
driver of COVID-19 transmission before this city was quarantined on 23 
January 2020 (Yue et al., 2020). However, there is no guarantee that the 
second or third wave of COVID-19 will still origin from Wuhan in the 
future, such as a cluster of confirmed COVID-19 cases in Shulan (11 May 
2020), Beijing (13 June 2020), Dalian (23 July 2020). To test the 
different original epicentres’ contributions to seeding COVID-19 else-
where in China, we simulated 42 transmission scenarios by assuming 42 
major cities as the original epicentres, respectively. We then compared 
these transmission scenarios with the baseline scenario (Wuhan). During 
the whole observation period (1 January 2020–23 February 2020), the 
key date was 23 January 2020, when Wuhan was quarantined. 

According to the critical date, we divided the whole observation period 
into two phases. Phase one (1 January 2020–23 January 2020) was 
when the spread of COVID-19 started from ‘one seed’. Phase two (24 
January 2020–23 February 2020) was when the local outbreak shifted 
into the national transmission. During phase one, the virus transmitted 
from person to person contagiously in an original epicentre and may 
eventually spread to other major cities due to the population outflows 
from the original epicentre. Moreover, there was a relative lack of 
awareness of this new virus and few countermeasures preventing its 
spread. COVID-19 should thus have spread randomly from the original 
epicentre to other major cities. With the imposition of the quarantine, 
population outflow from Wuhan almost completely stopped, manifested 
in a reduction of 84% in inter- and intra-provincial population flow 
(Kucharski et al., 2020). Therefore, we assumed that no people entered 
any other major cities from an original epicentre after 23 January 2020. 
In each transmission scenario, during phase one (1 January 2020–23 
January 2020), we defined the aggregate population outflow from an 
original epicentre to a specific major city as the sum of population 
outflow indexes. Because the aggregate population outflow from an 
original epicentre exhibited a highly and progressively stronger corre-
lation with infection prevalence in destination locations over that time 
(Tian et al., 2020), the geographical aggregate population outflow 

Fig. 1. Geographical distribution of the confirmed COVID-19 cases in 43 major cities until 23 February 2020.  
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Fig. 2. The cumulative number of the confirmed COVID-19 cases (per 1 million population) in 43 major cities from 23 January 2020 to 23 February 2020.  
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anticipated the following location, intensity, and timing of the COVID- 
19 outbreak in other major cities across China. These simulated trans-
mission scenarios can statistically predict the different distribution of 
infections with COVID-19 across China. 

2.3. Building the importation risk model 

After the quarantine of Wuhan and other 14 cities in Hubei Province 
(23 January 2020), there was little impact of the population outflows 
from Hubei (especially Wuhan) on the spread of COVID-19 across China 
(Xu, Chen, et al., 2020). Notably, the confirmed COVID-19 cases had 
been reported in most major cities. Therefore, there were multiple epi-
centres across China after 23 January 2020, not just Wuhan. The dy-
namics of COVID-19 transmission has shifted from the local outbreak 
into the national transmission. To investigate these meaningful shifts 
through time, we developed an importation risk model to evaluate the 
total importation risk values of 42 major cities during phase two (24 
January 2020 to 23 February 2020) as follow: 

IR
(
t|xij

)
= PI

(
t|xi, xj

)
×CC

(
t|xj

)
(1)  

TIR(t|xi) =
∑n

j=1
IR

(
t|xij

)
(2) 

In which IR(t|xij) is the importation risk value of the city xi from the 
city xj until time t, PI(t|xi,xj) is the hazard function describing the 
aggregate population inflow indexes of the city xi from the city xj until 
time t, CC(t|xj) is the vulnerability function describing the cumulative 
number of confirmed COVID-19 cases (per 1 million population) in the 
city xj until time t, TIR(t|xi) is the total importation risk value of the city 
xi until time t, i = 1,2, …n, j = 1,2, …n, n is the number of the major 
cities. 

In this model, we focused on the aggregate population inflow, rather 
than daily population inflow, to eliminate the incubation period’s effect. 

However, the COVID-19 pandemic is a dynamic process. We calculated 
and compared each city’s daily total importation risk value to represent 
the effect of the dynamic population inflow on COVID-19 transmission. 
Besides that, we just used the aggregate population inflow, not consid-
ering the aggregate population outflow, because we assumed that the 
aggregate population inflow to the city xi from the city xj was equal to 
the aggregate population outflow from the city xj to the city xi. There-
fore, a higher total importation risk value of a specific major city sug-
gested more confirmed COVID-19 cases imported into this city, either 
due to the higher aggregate population inflow to this city or more cu-
mulative confirmed COVID-19 cases in the epicentres. Our importation 
risk model’s logic differed from classic epidemiological models that 
relied on the ‘well-mixed’ population, which assumed each individual 
was equally likely to encounter every other infected individual in each 
city. In reality, infections varied considerably in the frequency, distance, 
and nature of their flows in different cities (González et al., 2008; Song 
et al., 2010; Vazquez-Prokopec et al., 2013), in ways that related to 
COVID-19 transmission (Perkins et al., 2013). By statistically deriving 
the population inflows’ temporal and spatial variation, our importation 
risk model can parsimoniously capture the dynamic shifts in distribution 
of COVID-19 across 42 major cities over time. As a validity check, we 
calculated the correlation between the total importation risk values and 
the cumulative number of confirmed COVID-19 cases (per 1 million 
population) of 42 major cities during phase two. Consistent with our 
hypothesis, all of Spearman’s correlation coefficients were above 0.877, 
which indicated a highly correlation between these two parameters. 
Therefore, this importation risk model becomes more predictive of local 
COVID-19 outbreak, which can also act as an early warning index to 
initiate the local transmission chains of COVID-19. 

2.4. Analyzing the population flow network and its influence on COVID- 
19 transmission 

During phase two (24 January 2020–23 February 2020), some cities 

Fig. 3. The daily population inflow and outflow indexes of Wuhan and other top ten cities during the same observation period in 2019 and 2020.  
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were defined as the influential spreaders due to their high speed and the 
wide scope of COVID-19 transmission. Their unique transmission pat-
terns were attributed to their dominant population flow networks (Yang 
& Jung, 2020). To identify which cities were the influential spreaders, 
and capture the dynamics of their topological properties, we modeled 
the population flow networks as graphs whose nodes represented the 
major cities and whose links represented the population inflow among 
these major cities. Mathematically, the graphs as the directed and 
weighted networks can be represented by G = (V, E, W), where V was a 
set of N nodes, E was a set of M links, each graph contained the same 
number of nodes, and different links. W was the adjacency weighted 
matrix, and the weights of the connected links can reflect the importa-
tion risk values of nodes (IR(t|xij)). Then we adopted a set of commonly 
used topological metrics to analyze the structural evolution of the 
population flow networks during phase two, both at the system level and 
the individual node level. At the system level, density and average 
clustering coefficient were used to assess the structural integration of the 
entire population flow network (Giustolisi et al., 2020). At the individ-
ual node level, degree centrality and K-core were used to address the 
node importance quantification and identify influential sub-groups and 
spreaders (Tiwari et al., 2020). All network analysis was conducted by 
using the UCINET and Pajek software. (1) Density was a direct and 
widely-used topological measure of the network. In the population flow 
networks, the most connected network was usually believed to be 
responsible for the highest importation risk. (2) Average clustering co-
efficient was a standard metric for quantifying the connection of the 
network. In the population flow networks, the highest average clustering 
coefficient indicated that the major cities tended to form tight clusters 
with a high frequency of connectivity. (3) Degree centrality provided an 
answer to the question ‘which nodes were central in the network?’ 
(Ghalmane et al., 2019). In the directed population flow networks, de-
gree centrality (including out-degree, in-degree) was used to measure 
the major cities’ different capabilities to spread COVID-19 and identify 
which major cities as the influential spreaders may be cohesive in the 
widespread of COVID-19. (4) K-core was defined as a hierarchical set of 
nodes based on the number of links and the degree of connections 
(Burleson-Lesser et al., 2020; Liu et al., 2015). In the population flow 
networks, k-core was used to identify the connected sub-structures and 
the overall relations of COVID-19 transmission within the population 
flow network. Degree centrality alone was not enough for identifying the 
influential spreaders because the nearest neighbours of a well-connected 
node might have a low degree (Zhu, 2018). Therefore, it was reasonable 
to assume that the more connective nodes were the ones who had not 
only a high degree centrality but their neighbours were also well con-
nected (Xu, Zhu, et al., 2020). Indeed, as the influential sub-groups, the 
major cities included in the maximum k-core region had well connected 
nearest neighbours to shape the transmission chains in the population 
networks. 

3. Results 

3.1. Analyzing the transmission patterns and outbreak sizes of COVID-19 
in different transmission scenarios during phase one (1 January 2020–23 
January 2020) 

During phase one (1 January 2020–23 January 2020), before 
Wuhan’s quarantine, recent studies proposed that aggregate population 
outflow from Wuhan exhibited a highly and progressively correlation 
with infection prevalence across China (Guan et al., 2020). Therefore, 
the aggregate population outflow from the original epicentre can 
parsimoniously capture the early dynamics of COVID-19 transmission. 
In this paper, we set Wuhan as the baseline scenario and assumed other 
42 major cities as the original epicentres, respectively. Then, we 
developed 42 transmission scenarios to show different distribution of 
infections with COVID-19 across China (Fig. 4). In each transmission 
scenario, the circles’ sizes represented the total aggregate population 

outflows from the original epicentres, and the widths of the links rep-
resented the aggregate population outflows from the original epicentres 
to the destination cities. Comparing 42 transmission scenarios with the 
baseline scenario (Wuhan), we found that (1) the total aggregate pop-
ulation outflow from Wuhan (12.5) just ranked 20th among 43 major 
cities. The top five were Guangzhou (85.8-Level 9), Shanghai (73.5- 
Level 8), Shenzhen (72.9-Level 8), Dongguan (71.7-Level 8), and Beijing 
(69.9-Level 6), and four of these cities were first-tier cities. Most other 
14 cities (i.e., Suzhou, Wenzhou, Nanjing, Wuxi, Ningbo, etc.), which 
also had higher total aggregate population outflows than Wuhan, were 
concentrated in the coastal areas of the Yangtze River Delta. By 
assuming a similar transmission mode as Wuhan, if COVID-19 emerged 
from one of these above cities, we inferred that more infections had been 
introduced into the destination cities over time. Substantial epidemic 
take-off in these destination cities would thus significantly contribute to 
COVID-19 transmission across China. Other 23 cities, which had lower 
total aggregate population outflows than Wuhan, were concentrated in 
the northeast (i.e., Harbin, Changchun), northwest (i.e., Urumqi, Xining, 
Yinchuan), or inland areas (i.e., Xi’An, Guiyang, Changsha) of China. (2) 
The number of destination cities in the baseline scenario (10 cities, seven 
provinces) just ranked 16th among 43 major cities. The top five were 
Nanchang (16 cities, 11 provinces), Jinan (13 cities, eight provinces), 
Qingdao (13 cities, ten provinces), Guiyang (13 cities, 11 provinces), 
and Beijing (12 cities, nine provinces). More destination cities implied 
that COVID-19 had transmitted more widely during the same observa-
tion period (1 January 2020–23 January 2020). (3) The standard devi-
ation of the aggregate population outflow in the baseline scenario (0.48) 
just ranked 35th among 43 major cities, which implies that COVID-19 
had spread uniformly across the destination cities in the baseline sce-
nario (Fig. 5). Combined with the transmission routes of top 20 original 
epicentres (include Wuhan) (Table 1), some original epicentres had both 
the highest total aggregate population outflows and the highest standard 
deviation. For example, 79.34% of Foshan’s total aggregate population 
outflows were exported into Guangzhou. Therefore, Foshan-Guangzhou 
was the leading transmission chain in this transmission scenarios. By 
assuming the number of infections is uniformly distributed in the pop-
ulation outflows, the uneven geographical distribution of the aggregate 
population outflows caused COVID-19 to spread unevenly across the 
destination cities. If a public health crisis like COVID-19 emerges from 
one of these above original epicentres, we infers that more infections 
will be introduced into some specific destination cities with the higher 
proportion of the aggregate population outflows. These destination cit-
ies experience faster growth rates of COVID-19 during the same obser-
vation period (1 January 2020–23 January 2020). Therefore, when the 
second wave of COVID-19 comes, it could be valuable for public health 
experts and government officials to strictly impose quarantines in the 
major cities with the highest total aggregate population outflows and 
implement the targeted travel restrictions in the cities with the highest 
standard deviations. The combination of these interventions will be 
beneficial to interrupt COVID-19 transmission during the early phase of 
the epidemic. 

3.2. Analyzing the importation risk of different major cities during phase 
two (24 January 2020–23 February 2020) 

During phase two (24 January 2020–23 February 2020), after 
Wuhan’s quarantine, the confirmed COVID-19 cases had occurred 
outside Wuhan. There had been multiple epicentres in China, not just 
Wuhan. The newly imported cases in some major cities caused not only 
the local transmission but also the national COVID-19 outbreak due to 
the highly population flow among these cities. To capture the spreading 
process of COVID-19 across China accurately over time, we modeled the 
importation risk of 42 major cities during phase two (24 January 
2020–23 February 2020). This model ranked 42 major cities according 
to their total importation risk values. Fig. 6 showed the top ten cities 
with the highest total importation risk values. A higher total importation 
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Fig. 4. Geographical distribution of the aggregate population outflows in different transmission scenarios during phase one.  
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risk value predicted a higher level of COVID-19 transmission. Until 23 
February 2020, the top three cities with the highest total importation 
risk values were Dongguan (522.04), Guangzhou (367.15), and Foshan 
(301.94). These three cities were located in the Pearl River Delta Eco-
nomic Zone, which was one of the largest “mega-regions” across the 
world (Vidal, 2010). Other top ten cities included three first-tier cities 
(Beijing, Shanghai, Shenzhen), and two cities (Suzhou, Hangzhou) in the 
Yangtze River Delta Economic Zone. The standard deviation of the 
importation risk values was used to test the importation risks’ uneven 
distribution (Fig. 7). Combined with the importation risk distribution of 
the top ten cities (Table 2), some cities had both the highest total 
importation risk values and the highest standard deviations (such as 
Dongguan, Foshan, Guangzhou). For example, 71.49% of Dongguan’s 
total importation risk values were from Shenzhen. It represented 
Shenzhen was the major sources of Dongguan’s importation risk. 
Therefore, it might be possible to secure the containment of COVID-19 
transmission by limiting the population flow from Shenzhen to Dong-
guan severely and immediately. Such successful, substantial, even 
draconian interventions can drastically reduce the importation risk of 
these major cities, which further controlled the early local transmission 
to not lead to a massive epidemic in these major cities. This model also 
yielded a dynamic performance metric to statistically derive the 
importation risk curves of 42 major cities, which enable to identify 
which cities perform better in controlling COVID-19 transmission. 
During phase two (24 January 2020–23 February 2020), among the top 
ten cities with the highest total importation risk values, four cities 
(Dongguan, Guangzhou, Foshan, Shenzhen) experienced the highest 
growth rates. They had maintained the highest growth rates until 23 
February 2020, consistent with the highest total importation risk values. 
Then local epidemics probably grew exponentially in these cities. The 
growth rates of the other six cities had decreased gradually, especially 
some cities (Chengdu, Beijing, Tianjin) with the lowest growth rates 
have decreased to zero until 23 February 2020, which showed that more 
public health (non-pharmaceutical) interventions had been progres-
sively and quickly implemented in these cities. 

3.3. Analyzing the Spatio-temporal characteristics of the population flow 
and its influence on COVID-19 transmission during phase two (24 January 
2020–23 February 2020) 

To analyze the Spatio-temporal characteristics of the population flow 
and its influence on COVID-19 transmission during phase two (24 

Fig. 5. The standard deviation of the aggregate population outflows of 43 
major cities during phase one. 

Table 1 
Transmission routes of top 20 original epicentres during phase one.  

Top 20 original epicentres (total 
aggregate population outflow) 

Destination cities (aggregate population 
outflow) 

Baseline 
Wuhan (12.50) Chongqing (1.97), Changsha (1.90), Beijing 

(1.84), Shanghai (1.36), Zhengzhou (1.07), 
Guangzhou (1.00), Shenzhen (0.96), Chengdu 
(0.84), Nanchang (0.82), Hefei (0.74)  

Level 9 (total aggregate population outflow = 80–90) 
Guangzhou (85.83) Foshan (45.42), Dongguan (16.74), Shenzhen 

(14.15), Chongqing (4.05), Nanning (2.87), 
Changsha (2.59)  

Level 8 (total aggregate population outflow = 70–80) 
Shanghai (73.54) Suzhou (33.09), Hangzhou (9.15), Wuxi 

(6.39), Nanjing (5.63), Beijing (5.50), Hefei 
(5.37), Ningbo (4.35), Chongqing (4.06) 

Shenzhen (72.97) Dongguan (39.90), Guangzhou (17.82), 
Chongqing (5.23), Foshan (4.50), Nanning 
(2.81), Changsha (2.70) 

Dongguan (71.76) Shenzhen (37.75), Guangzhou (21.94), 
Chongqing (4.56), Foshan (4.27), Nanning 
(3.24)  

Level 6 (total aggregate population outflow = 50–60) 
Beijing (59.92) Tianjin (16.87), Shijiazhuang (7.17), Tangshan 

(5.77), Shanghai (5.15), Harbin (3.84), Xi’An 
(3.53), Zhengzhou (3.44), Chengdu (3.03), 
Jinan (2.91), Taiyuan (2.84), Chongqing 
(2.68), Shenyang (2.66) 

Foshan (59.14) Guangzhou (46.92), Dongguan (3.57), 
Shenzhen (3.57), Nanning (2.64), Chongqing 
(2.44) 

Suzhou (58.55) Shanghai (32.50), Wuxi (14.05), Nanjing 
(4.69), Hangzhou (2.94), Hefei (2.70), 
Chongqing (1.67)  

Level 5 (total aggregate population outflow = 40–50) 
Shenyang (41.64) Dalian (13.05), Beijing (8.63), Changchun 

(6.68), Harbin (5.96), Tianjin (2.46), Shanghai 
(2.38), Guangzhou (1.25), Tangshan (1.23)  

Level 4 (total aggregate population outflow = 30–40) 
Wenzhou (33.95) Hangzhou (17.78), Suzhou (5.07), Shanghai 

(4.42), Wuxi (1.35), Ningbo (1.32), Hefei 
(1.10), Chongqing (1.06), Nanjing (0.93), 
Wenzhou (0.92) 

Tianjin (33.68) Beijing (16.67), Tangshan (8.52), Shijazhuang 
(2.17), Harbin (1.28), Jinan (1.10), Shanghai 
(1.01), Xi’An (0.78), Shenyang (0.73), Taiyuan 
(0.71), Chongqing (0.69) 

Hangzhou (30.80) Shanghai (7.96), Ningbo (5.88), Wenzhou 
(5.47), Suzhou (2.46), Chongqing (2.45), 
Nanjing (2.00), Beijing (1.84), Hefei (1.66), 
Wuxi (1.08)  

Level 3 (total aggregate population outflow = 20–30) 
Chengdu (26.13) Chongqing (15.78), Beijing (2.37), Xi’An 

(2.15), Kunming (1.37), Shanghai (1.36), 
Guiyang (1.18), Guangzhou (0.99), Shenzhen 
(0.94) 

Wuxi (25.01) Suzhou (12.76), Shanghai (5.42), Nanjing 
(3.37), Hefei (1.25), Chongqing (1.12), 
Hangzhou (1.09) 

Chongqing (21.10) Chengdu (10.85), Guiyang (1.78), Beijing 
(1.47), Kunming (1.27), Shanghai (1.17), 
Xi’An (1.16), Guangzhou (0.91), Shenzhen 
(0.89), Wuhan (0.81)  

Level 2 (total aggregate population outflow = 10–20) 
Nanjing (19.64) Shanghai (4.46), Suzhou (3.99), Wuxi (3.30), 

Hefei (2.81), Beijing (1.92), Hangzhou (1.69), 
Chongqing (0.82), Wuhan (0.62) 

Tangshan (16.10) Tianjin (8.17), Beijing (5.08), Shijiazhuang 
(1.61), Shenyang (0.28), Harbin (0.26), 
Shanghai (0.16), Jinan (0.16), Changchun 
(0.15), Dalian (0.12), Xi’An (0.12) 

Jinan (15.79) 

(continued on next page) 

J. Liu et al.                                                                                                                                                                                                                                       



Cities 112 (2021) 103138

9

January 2020–23 February 2020), we constructed population flow 
networks (Fig. 8). 42 major cities were represented by nodes, whose 
sizes were proportional to their total importation risk values. Links 
among these major cities represented the population flow relationships. 
Noted that links were directional, and the widths of the links were 
proportional to their weights, which accounted for the importation risk 
values between these cities. Because the population flow evolved 
continuously, it increased the complexity of the network analysis. Here, 
according to the median incubation period of COVID-19 (four days) 
(Guan et al., 2020), we assumed that the cumulative number of the 
confirmed COVID-19 cases (per 1 million population) of 42 major cities 
had significantly changed every four days. Therefore, during phase two, 
we focused on the state of the population flow networks just at an in-
terval of four days, which extracted the information for network 
analysis. 

During phase two (24 January 2020–23 February 2020), network 
analysis of the population flow networks revealed their properties. 
Moreover, evolving in time, we tracked the evolution of these proper-
ties. At the system level, the density and the average clustering coeffi-
cient defined the population flow networks’ topological characteristics 
in their unweighted versions. The densities (Fig. 9a) have increased from 
0.30 to 0.44, which indicated that 14% of potential connections were 
actually realized until 23 February 2020. The average clustering co-
efficients (Fig. 9b) have increased from 0.54 to 3.34, which implied that 
the population flow networks had become significantly more clustered 
until 23 February 2020. Compared to the random network, these pop-
ulation flow networks exhibited a significantly higher average clustering 
coefficient, which were related to the more closely and tightly connected 
networks. 

The k-core, combined with degree centrality, was used to recognize 
the influential sub-groups and the influential spreaders more accurately 
(Pei et al., 2014). As shown in Fig. 10, 42 major cities’ connections in the 
population flow networks were visually displayed based on k-core re-
gions. Eleven kinds of colours corresponded to 11 k-core partitions, and 
the red dotted circles corresponded to the top 5 cities with the highest 
degree centrality values. During phase two (24 January 2020–23 
February 2020), in each population flow network, three or four con-
nected sub-groups were identified with the k-core algorithm. And most 
of the major cities were included in the maximum k-core region, which 
had increased from 13-core to 19-core, and the number of these major 
cities had increased from 25 (59.5%) to 37 (88.1%). For example, 
Urumqi, Lanzhou, Xining, and Yinchuan had been included in the 
maximum k-core (16-core) from 28 January 2020. A larger k value 
implied a higher degree of connections in the sub-group. These growing 
and expanding population flow relationships among most major cities 
increased the transmission risk over time. Therefore, the sub-group with 
maximum k-core was defined as the influential sub-group in each pop-
ulation flow network. However, some major cities (such as Foshan 
included in 9-core region until 24 January 2020, Nanning and Dongguan 

Table 1 (continued ) 

Top 20 original epicentres (total 
aggregate population outflow) 

Destination cities (aggregate population 
outflow) 

Zibo (3.99), Qingdao (3.27), Yantai (2.31), 
Beijing (2.28), Tianjin (0.74), Shanghai (0.69), 
Shijiazhuang (0.43), Nanjing (0.40), 
Zhengzhou (0.40), Chongqing (0.35), Xi’An 
(0.33), Harbin (0.32), Chengdu (0.30) 

Ningbo (14.25) Hangzhou (5.34), Shanghai (3.25), Wenzhou 
(1.61), Chongqing (1.59), Suzhou (1.08), Hefei 
(0.74), Nanjing (0.64) 

Yantai (12.51) Qingdao (6.72), Jinan (1.92), Beijing (0.93), 
Zibo (0.86), Dalian (0.66), Shanghai (0.41), 
Tianjin (0.30), Harbin (0.25), Xi’An (0.17), 
Zhengzhou (0.16), Chongqing (0.15)  

Fig. 6. The total importation risk values of top ten cities during phase two.  

Fig. 7. The standard deviation of the importation risk values of 42 major cities 
during phase two. 
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included in 12-core region until 28 January 2020) included in the 
minimum k-core regions were periphery nodes, which had the lowest 
degree of connections with other major cities. These major cities may 
further decreased the transmission risk. 

The cities with the highest degree centrality, marked in the red 
dotted circle, were defined as the influential spreaders in each popula-
tion flow network. Due to the weighted population flow networks, the 
degree centrality did not only account for the number of links connected 
between the major cities, but also, how the importation risk values as the 
link weights were distributed. Therefore, two factors contributed to 
increasing the degree centrality: (i) more connections with other major 
cities and (ii) related higher importation risk values. During phase two 
(24 January 2020–23 February 2020), the degree centrality of these 
influential spreaders had increased significantly, such as the top three 
cities, Shenzhen (from 4.02 to 887.20), Guangzhou (from 3.56 to 
809.34), and Dongguan (from 1.60 to 793.52). 

Some cities (i.e., Guangzhou) had been the well-characterized 
influential spreaders during the whole phase two, which held a promi-
nent structural advantage in facilitating continued COVID-19 trans-
mission to other major cities. Some cities (i.e., Foshan) had become the 
potential influential spreaders during the late period of phase two, 
which played a pertinent role in generating new transmission chains to 
fuel and drive the COVID-19 transmission to more major cities. By 
contrast, the other cities (i.e., Chengdu) had not been the influential 
spreaders during the late period of phase two. 

For analyzing the different impacts of these major cities on COVID- 
19 transmission, these three cities (Guangzhou, Foshan, Chengdu) 
were removed from the network, respectively. At the system level, the 

Table 2 
The importation risk distribution of top ten cities during phase two.  

Top ten cities (total 
importation risk value) 

Imported city (importation risk value) 

Dongguan (522.04) Shenzhen (373.21), Guangzhou (97.45), Chongqing 
(31.94), Foshan (12.54), Nanning (6.80), Beijing 
(0.04), Shanghai (0.03), Changsha (0.01), Chengdu 
(0.01) 

Guangzhou (367.15) Foshan (159.85), Shenzhen (105.70), Dongguan 
(80.50), Chongqing (18.16), Nanning (1.46), 
Changsha (0.87), Beijing (0.37), Shanghai (0.15), 
Chengdu (0.06), Hangzhou (0.02) 

Foshan (301.94) Guangzhou (242.04), Shenzhen (29.12), Dongguan 
(14.43), Chongqing (11.68), Nanning (4.50), Beijing 
(0.13), Shanghai (0.03), Changsha (0.01), Chengdu 
(0.01) 

Shenzhen (280.34) Dongguan (166.85), Guangzhou (62.44), Chongqing 
(30.60), Changsha (8.81), Foshan (6.83), Nanning 
(4.09), Beijing (0.32), Nanchang (0.20), Shanghai 
(0.11), Chengdu (0.05) 

Shanghai (191.87) Suzhou (57.47), Hefei (37.36), Chongqing (20.15), 
Wenzhou (22.29), Hangzhou (19.43), Ningbo 
(15.89), Wuxi (13.43), Nanjing (4.65), Beijing 
(0.62), Guangzhou (0.24) 

Suzhou (157.07) Shanghai (100.81), Wuxi (26.10), Hefei (13.88), 
Nanjing (10.72), Wenzhou (2.60), Chongqing (2.33), 
Hangzhou (0.39), Beijing (0.11), Ningbo (0.07), 
Guangzhou (0.02) 

Hangzhou (155.97) Wenzhou (91.44), Ningbo (26.13), Shanghai (19.09), 
Chongqing (8.71), Hefei (6.36), Suzhou (1.96), 
Beijing (1.18), Nanjing (0.68), Chengdu (0.13), 
Guangzhou (0.10) 

Chengdu (126.42) Chongqing (95.18), Shenzhen (7.75), Beijing (7.29), 
Xi’An (4.45), Shanghai (4.18), Guangzhou (2.94), 
Kunming (2.75), Guiyang (0.89), Wenzhou (0.79), 
Xining (0.16) 

Beijing (105.08) Tianjin (35.36), Harbin (20.48), Tangshan (15.65), 
Shijiazhuang (7.19), Chongqing (6.79), Xi’An (5.24), 
Changchun (2.65), Shenyang (2.63), Jinan (3.01), 
Taiyuan (1.57) 

Tianjin (101.08) Beijing (62.07), Tangshan (25.15), Harbin (6.88), 
Shijiazhuang (2.60), Jinan (1.36), Changchun (0.98), 
Shenyang (0.40), Chongqing (0.14), Yantai (0.10)  
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population flow network’s topological characteristics were most influ-
enced by removing the Guangzhou. The density and the average clus-
tering coefficient had averagely reduced by 2.55% and 8.98%, 
respectively. Therefore, targeting interventions or implementing a par-
tial or total “travel restriction” in Guangzhou will significantly reduce 
the connections of the whole network during phase two, which can 
further strongly affect the dynamics of COVID-19 transmission. At the 
individual node level, by removing Guangzhou and Chengdu respec-
tively, all connected sub-groups in the population flow networks were 
changed with the significantly decreased k values. The maximum k-core 
region included most major cities was decreased from 19-core to 17- 
core, which implied a highly decreased degree of connections in the 
influential sub-group. While removing Foshan, all connected sub-groups 
in this population flow network were not changed, which indicated the 
unchanged relations of COVID-19. 

3.4. Analyzing the effectiveness of the travel restrictions among major 
cites 

The transmission control (non-pharmaceutical) measures initiated 
during the spring migration, including the unprecedented Wuhan city 
travel ban and the level one national emergency response, had been 
proved to be strongly associated with, although not necessarily the cause 
of, a delay in epidemic growth and a reduction in confirmed case 
numbers (Tian et al., 2020). However, there has been no research to 
prove that the prohibiting travel among major cities (i.e., the suspended 
intercity public transport in 136 cities and the prohibited intercity travel 
in 219 cities) has reduced the numbers of confirmed COVID-19 cases. To 
test the effectiveness of travel restrictions among major cities in China, 
we estimated the total importation risk values of 42 major cities by using 
the population flow data during the same observation period (6 
February 2019–8 March 2019) in 2019. By assuming the same impor-
tation ratio and the cumulative number of confirmed COVID-19 cases, 
our findings suggested that with the travel restrictions alone (without 
the Wuhan travel ban), the total importation risk values of 42 major 
cities had been decreased between 34.82% and 86.62%, with an average 
of 66.02% until the end of our observation period. Furthermore, most 
major cities’ total importation risk values had been decreased up to 50% 
in the first ten days of the travel restrictions implemented, and the 
reduced rate and magnitude significantly had reached the peak in the 
first three days. Therefore, travel restrictions had sharply reduced the 
population flow among 42 major cities, which produced a much more 
significant effect on decreasing the total importation risk values of these 
major cities. Fig. 11 showed the percentage decrease of the total 
importation risk values (more than 70%) of the top ten cities with the 

biggest percentage decrease during phase two (24 January 2020–23 
February 2020). Due to the highly correlation between the total 
importation risk values and the cumulative number of confirmed 
COVID-19 cases, the sharp decrease of the total importation risk values 
represented the substantial reduction of the cumulative number of 
confirmed COVID-19 cases in the top ten cities, which explained the 
halted and reversed transmission of COVID-19. 

4. Discussion and conclusion 

In the early stage of COVID-19 outbreak, especially lacking the 
vaccine and the specific drug treatment for COVID-19, limiting the 
population flows among cities even countries by implementing the 
travel restrictions can drastically reduce initial imported seeding cases 
or even early local transmission (Bouchnita & Jebrane, 2020; Kraemer 
et al., 2020). However, precisely when and where the travel restrictions 
should be implemented is highly contextually specific. There is no one- 
size-fits-all set of prescriptive interventions being appropriate across all 
affected areas (Nishiura et al., 2020). Therefore, analyzing the dynamic 
of population flow and its influence on COVID-19 transmission could be 
crucial for public health response planning and control domestically and 
internationally. That is the critical contribution of our research. In 
summary, from 1 January 2020 to 23 January 2020 (phase one), for 
testing the contributions of different original epicentres to seeding epi-
demics elsewhere in China, we set Wuhan as the baseline scenario. We 
simulated 42 transmission scenarios by assuming different major cities 
as the original epicentres. From 24 January 2020 to 23 February 2020 
(phase two), for testing the contribution of population flow among 
multiple epicentres to spreading COVID-19, we modeled the importation 
risk model to evaluate which cities had higher total importation risk. 
Then, the population flow networks weighted with the importation risk 
values were built to capture the distribution and evolution of COVID-19 
transmission across China and identify influential sub-groups and 
influential spreaders. By removing different influential spreaders, we 
analyzed the different impacts of these influential spreaders on COVID- 
19 transmission. Targeting these vital sub-groups and major cities helps 
design strategies to either increase public health interventions’ effi-
ciency or hinder the diffusion of COVID-19. 

The detailed findings of our research included as follows: first, dur-
ing phase one, when exported infections from an original epicentre were 
dominant to determinate COVID-19 transmission pathways, we assumed 
42 major cities as the original epicentres to simulate 42 transmission 
scenarios, separately. These transmission scenarios characterized the 
structure or relative distribution of infections across different 
geographical cities, driven by fundamentally total aggregate population 

Fig. 9. The density and average clustering coefficient of the population flow networks during phase two.  
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Fig. 10. Geographical distribution of the influential sub-groups and the influential spreaders in population flow networks during phase two transmission in the population flow network. The degree centrality of some 
major cities had also decreased significantly, and the newly influential spreaders had been identified by removing these three cities, respectively. For example, when removing Guangzhou, the degree centrality of the top 
3 cities with the biggest percentage decreases were Foshan (80.85% decrease), Nanning (23.53% decrease), and Shenzhen (21.45% decrease). Hangzhou had become the newly influential spreader, Beijing and 
Chongqing had changed into the well-characterized influential spreaders, while Foshan had not been the potential influential spreaders. When removing Chengdu, the degree centrality of the top 3 cities were Chongqing 
(39.00% decrease), Kunming (20.67% decrease), and Xining (14.23% decrease). Hangzhou also have become the newly influential spreader, while Chongqing had not been the influential spreaders. When removing 
Foshan, the degree centrality of the top 3 cities were Guangzhou (38.73% decrease), Nanning (14.64% decrease), and Shenzhen (10.19% decrease). Replaced Guangzhou, Beijing had become the well-characterized 
influential spreaders. 
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outflows from these original epicentres. Compared with the baseline 
scenario (Wuhan, ranked 20th), the top five cities were global transport 
hubs with huge total aggregate population outflows (i.e., Guangzhou, 
Shanghai, Shenzhen, Dongguan, and Beijing). Four of these cities were 
first-tier cities. Other cities (i.e., Suzhou, Wenzhou, Nanjing, Wuxi, 
Ningbo, etc.), which also had higher total aggregate population outflows 
than Wuhan, were concentrated in the coastal areas of the Yangtze River 
Delta. If the COVID-19 outbreak occurs in one of these major cities, not 
Wuhan, there will be probably a substantially bigger scope and greater 
extent of transmission to other major cities. Furthermore, some original 
epicentres (i.e., Foshan) had both the highest total aggregate population 
outflows and the highest standard deviation, which made some trans-
mission chains stronger (i.e., Foshan-Guangzhou). In the early stage of a 
new outbreak, this result highlights the strict control measures, 
including travel restrictions, that should be implemented in these 
certain transmission scenarios, which will provide the greatest benefit 
for mitigating the spread of COVID-19. Second, during phase two, when 
COVID-19 had already spread from Wuhan to other major cities within 
China, there were multiple epicentres forming multiple risk sources. We 
built the importation risk model to estimate the precise extent of the 
importation risk of 42 major cities. The total importation risk value was 
defined as the combination of the aggregate population inflow and the 
cumulative number of confirmed COVID-19 cases, explaining the spatial 
variation of the transmission rate. The correlation between the total 
importation risk and the cumulative number of confirmed COVID-19 
cases provided support for our model’s validity. Until 23 February 
2020, three major cities (i.e., Dongguan, Guangzhou, Foshan) had the 
highest total importation risk values and growth rates. The highest 
number of infections imported into these major cities led to the expo-
nential epidemic growth sharply. Furthermore, some cities’ highest 
standard deviations indicated some specific core transmission chains (i. 
e., Dongguan-Shenzhen, Foshan-Guangzhou). Third, this research pre-
sented the first attempt to use network science to quantitatively char-
acterize the structural evolution of the population flow networks, which 
gave a new perspective that analyzing and profiling the population flow 
network was fundamentally important for uncovering the dynamics of 
COVID-19 transmission. During phase two, we built the population flow 
networks as directed and weighted graphs. We investigated the char-
acteristics of network properties both at the system level and the indi-
vidual node level. At the system level, our results showed that the 
densities and the average clustering coefficients related to the popula-
tion flow networks’ topological characteristics had both increased 

sharply. Therefore, until 23 February 2020, the population flow net-
work’s overall structure formed a more closely and tightly connected 
network. For the individual node level, our results showed that the 
major cities included in the maximum k-core region were highly 
mutually connected in each population flow network. These well con-
nected major cities were defined as influential sub-groups. Until 23 
February 2020, more major cites (from 25 to 37) had been included in 
the maximum k-core region, and the maximum k-core value had 
increased from 13-core to 19-core. The increasing size of the influential 
sub-group showed that more major cities were connected with stronger 
links, which increased their spreading capability of COVID-19. While 
other major cities not included in the influential sub-groups were 
defined as the peripheral nodes, which were less important for COVID- 
19 transmission. Then combined with degree centrality analysis, it 
was also worth recognizing the influential spreaders in these influential 
sub-groups. During the whole phase two, some cities (Shenzhen, 
Guangzhou) had always been the well-characterized influential 
spreaders, some major cities (Shanghai, Dongguan, Foshan) had become 
the influential potential spreaders later, and the other cities (Beijing, 
Chongqing, Chengdu) had not been the influential spreaders later. By 
removing these influential spreaders from the population flow network, 
respectively, we analyzed their different impacts on COVID-19 trans-
mission. Removing Guangzhou can most influence the network’s topo-
logical characteristics with the biggest reduced density and the average 
clustering coefficient. Moreover, the connections were uniformly 
distributed in the population flow network. Removing Guangzhou and 
Chengdu can significantly change the structure of all sub-groups with 
the decreased k values. The dominant roles of other influential spreaders 
had been changed by removing these influential spreaders. When 
Guangzhou and Chengdu were removed, respectively, some major cities 
(i.e., Foshan, Chongqing) had not been the potential influential 
spreaders due to the biggest percentage decrease of degree centrality, 
some major cities (i.e., Hangzhou) had become the newly influential 
spreader. Therefore, infection prevention and control policies aimed at 
these targeted influential sub-groups and influential spreaders can 
effectively limit the spread of COVID-19. 

Since 23 January 2020, strict travel restrictions were initiated be-
tween major cities or provinces across China. Combined with other 
public health interventions, including suspending intracity public 
transport, closing entertainment venues, banning public gatherings, and 
isolating suspected and confirmed patients, there was no evidence to 
prove the travel restrictions’ effectiveness on reducing the numbers of 

Fig. 11. The percentage decrease of the total importation risk values of the top ten cities during phase two (24 January 2020–23 February 2020).  
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confirmed COVID-19 cases. Using the population flow data during the 
same observation period (6 February 2019–8 March 2019) in 2019, our 
results showed that the total importation risk values of 42 major cities 
had been averagely reduced 66.02%, just due to the travel restrictions 
alone. Therefore, when there are multiple epicentres across a country, 
prohibiting travel in targeted influential sub-groups and influential 
spreaders will be the most effective control measure to contain COVID- 
19 transmission strongly. 

Despite the comprehensive findings, this research has several limi-
tations. First, due to the current limited open access availability of data, 
our observation period was just limited to the first 54 days of COVID-19 
in China. The observation period’s length could be adapted to capture 
the “epidemic peak” of COVID-19, which may change from city to city or 
even country to country. Second, the importation risk model was built 
based on the population flow networks. For simplicity, we assumed that 
the importation risk value was only defined as the combination of the 
aggregate population inflow and the cumulative number of confirmed 
COVID-19 cases. It would be beneficial to identify other possible pa-
rameters, such as travel passengers’ different demographic characteris-
tics and travel behaviour’s different patterns associated with different 
travel restrictions, which are crucial to affect the importation risk value. 
A further limitation is that, a wide range of other public health in-
terventions had been implemented together in addition to travel re-
strictions. Owing to lack of valid and reliable data, we could not separate 
their individual effects, or conduct a comparative effectiveness analysis 
of specific interventions in this research. Therefore, in this research, we 
only provide a rapid and relatively crude assessment of travel re-
strictions at a relatively early stage of the COVID-19 outbreak. During 
the second wave of COVID-19, the comprehensive prevention in-
terventions (i.e., full-covered COVID-19 testing, tracing and isolating all 
close contacts) were implemented in most major cities in China. 
Therefore, as the COVID-19 pandemic continues to evolve, this epidemic 
was effectively contained in some cities which were located in the 
coastal areas of the Yangtze River Delta, though they had higher total 
aggregate population outflows or higher importation risk values. Future 
research will be needed to examine which interventions should be 
implemented first as the epidemic curve grew or which interventions 
should be lifted first as the epidemic curve flattened. 
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