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a b s t r a c t

We investigate the containment of epidemic spreading in networks from a normative point of view. We
consider a susceptible/infected model in which agents can invest in order to reduce the contagiousness
of network links. In this setting, we study the relationships between social efficiency, individual
behaviours and network structure. First, we characterise individual and socially efficient behaviour
using the notions of communicability and exponential centrality. Second we show, by computing the
Price of Anarchy, that the level of inefficiency can scale up linearly with the number of agents. Third,
we prove that policies of uniform reduction of interactions satisfy some optimality conditions in a
vast range of networks. In setting where no central authority can enforce such stringent policies, we
consider as a type of second-best policy the implementation of cooperation frameworks that allow
agents to subsidise prophylactic investments in the global rather than in the local network. We then
characterise the scope for Pareto improvement opened by such policies through a notion of Price
of Autarky, measuring the ratio between social welfare at a global and a local equilibrium. Overall,
our results show that individual behaviours can be extremely inefficient in the face of epidemic
propagation but that policy can take advantage of the network structure to design welfare improving
containment policies.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In the context of the 2020 COVID-19 pandemic, very strong
olicy measures have been implemented to contain epidemic dif-
usion. State of emergency has been declared in certain countries
nd certain civil liberties (e.g. freedom of assembly) have been
uspended. The implementation of such stringent policies, la-
elled as social distancing measures, has been justified by the role
f social interactions in epidemic diffusion. In economic terms,
he premise is that individual behaviour is extremely inefficient
n the presence of disease/network externalities. Yet, there is, to
ur knowledge, no normative analysis of the challenges posed by
he containment of epidemic spreading in a network. This is the
ssue we address in this paper.

The containment of epidemic processes defines a specific class
f externality problems: through prophylactic investment, agents
an reduce not only their own contamination risk but also reduce
he risk of contagion of their peers in the network. The external
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effect hence created has certain features of a public good as the
investment of each agent benefits to all the agents to whom it
is connected. However, the magnitude of the effect depends on
the specific connectivity between each pair of agents and thus
on the structure of the network. In this setting, our first aim is
to characterise, as a function of the network structure, individual
and socially efficient behaviours. Second, we measure, using the
notion of Price of Anarchy (PoA), the inefficiency induced by
individual behaviours. Third, we investigate policy measures that
can be implemented to overcome these inefficiencies.

We place ourselves in a setting where the network structure
is given, each agent can be initially contaminated with a certain
probability, and contagion spreads through network links propor-
tionally to their contagiousness. Once infected, agents remain so
permanently, i.e. we consider a susceptible/infected type of model
according to the epidemiological terminology. In this context,
agents aim at minimising their probability of contagion before
a given date. In a narrow interpretation, this date can be seen
as the expected date at which a treatment will be available. In a
broader sense, the objective of each individual is to reduce the
speed of incoming epidemic propagation. We assume that agents
can invest in the network to reduce the speed of contagion. More
precisely, they can decrease the contagiousness of links at a fixed

linear cost. As the impact of individual investments depends on

https://doi.org/10.1016/j.jmateco.2021.102486
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2021.102486&domain=pdf
mailto:geraldine.bouveret@ntu.edu.sg
mailto:antoine.mandel@univ-paris1.fr
https://doi.org/10.1016/j.jmateco.2021.102486


G. Bouveret and A. Mandel Journal of Mathematical Economics 93 (2021) 102486

g
e
t
o
g
T
i
t
c
c
s
t

e
s
c
e
H
p
e
p
i
i
o
c
c
ε

a
f
t
n
c
t
i
i
t
b
t
l
s
A
a
P
c
i
t
e
c

r
n
e
r
n
p
c

2

d
a
b
g
m
o

lobal contagiousness, and hence on the investment of other play-
rs, the situation defines a non-cooperative game. We consider
wo variants of the game. The local game in which an agent can
nly invest in the links through which it is connected. The global
ame in which an agent can invest in each link of the network.
he local game naturally applies to settings where agents are
ndividuals that can take individual and costly measures to limit
heir social interactions. The global game corresponds to a more
omplex setting where agents are usually organisations (regions,
ountries) that are involved in a scheme that allows one agent to
ubsidise, directly or indirectly, the investment of other agents in
he reduction of contagiousness.

Our main results characterise the relationships between social
fficiency, individual behaviours and network structure. First, we
how that individually rational and socially efficient behaviours
an be characterised using the notions of communicability and
xponential centrality (Estrada and Hatano, 2008; Estrada and
igham, 2010). It is individually rational to invest in a link pro-
ortionally to the communicability between the investor and the
dges of the link while it is socially efficient to invest in a link
roportionally to the total communicability/exponential central-
ty of its edges. Second, we derive a quantitative measure of the
nefficiency induced by individual behaviours using the notion
f PoA. We show that in worst cases the level of inefficiency
an scale up linearly with the number of agents. This strongly
alls for public policy interventions. In this respect, we show the
-optimality of a policy of uniform reduction of interactions in
wide range of networks. This latter result provides normative

oundations for the social distancing policies implemented during
he COVID-19 pandemic. The implementation of such policies
evertheless requires the existence of an authority with suffi-
ient legitimacy to implement such coercive measures. It can be
hus implemented in a domestic context but is much harder to
mplement at the global scale, unless all agents/countries have
ndividual incentives to do so. If this is not the case, we regard
he shift from a local to a global game as a type of second-
est policy. In the latter game, agents can subsidise investments
owards contagiousness reduction in the global rather than in the
ocal network. The scope for Pareto improvement generated by
uch policies is then characterised through a notion of Price of
utarky (PoK), which assesses the ratio between social welfare at
global and a local equilibrium. We derive a lower bound on this
oK, as a function of the network structure and thus give suffi-
ient conditions under which a shift to the global game actually
mproves social welfare. Overall, our results underline not only
he possible extreme inefficiency of individual behaviours to limit
pidemic propagation, but also the possibility to design efficient
ontainment policies taking into account the network structure.
The remaining of this paper is organised as follows. Section 2

eviews the related literature. Section 3 introduces epidemic dy-
amics as well as our behavioural model of the containment of
pidemic spreading. Section 4 provides our main results on the
elationship between individual behaviours, social efficiency and
etwork structure. Section 5 investigates the social efficiency of
olicy measures aiming at reducing epidemic diffusion. Section 6
oncludes the paper. All proofs are given in the Appendix.

. Related literature

The paper builds on the very large literature on the optimal
esign and defence of networks (see, e.g., Bravard et al. (2017))
nd on epidemic spreading in networks. The latter literature has
een extensively reviewed in Pastor-Satorras et al. (2015) and
enerally combines an epidemiological model with a diffusion
odel. The epidemiological model describes the characteristics
f the disease via the set of states each agent can assume, e.g.,
2

susceptible/infected (SI), susceptible/infected/susceptible (SIS),
susceptible/infected/removed (SIR), and the probabilities of tran-
sition between these. The diffusion model considers that the set
of agents is embedded in a network structure through which
the disease spreads in a stochastic manner. Overall, the micro-
level epidemic diffusion model is a continuous-time Markov chain
model whose state–space corresponds to the complete epidemi-
ological status of the population. This state–space is however
too large for the full model to be computationally or analytically
tractable. A large strand of the literature has thus focused on
the development of good approximations of the dynamics, see,
e.g., Chakrabarti et al. (2008), Draief et al. (2006), Ganesh et al.
(2005), Mei et al. (2017), Prakash et al. (2012), Ruhi et al. (2016),
Van Mieghem et al. (2009) and Wang et al. (2003). To the best of
our knowledge, the most precise approximation of the dynamics
in the SIS/SIR setting is the N-intertwined model of Van Mieghem
et al. (2009). This model uses one (mean-field) approximation
in the exact SIS model to convert the exact model into a set of
N non-linear differential equations. This transformation allows
analytic computations that remain impossible with other more
precise SIS models and renders the model relevant for any ar-
bitrary graph. The N-intertwined model upper bounds the exact
model for finite networks of size N and its accuracy improves
with N . Van Mieghem and Omic (2008) have extended the model
to the heterogeneous case where the infection and curing rates
depend on the node. Later, Van Mieghem (2013) has analytically
derived the decay rate of SIS epidemics on a complete graph,
while Van Mieghem (2014) has proposed an exact Markovian SIS
and SIR epidemics on networks together with an upper bound for
the epidemic threshold.

Most of this literature has focused on SIS/SIR models in which
there exists an epidemic threshold above which the disease
spreads exponentially. A key concern has thus been the approx-
imation of the epidemic threshold as a function of the charac-
teristics of the network, and subsequently the determination of
immunisation policies that allow to reach thebelow-the-threshold
regime (see, e.g., Chen et al., 2016, 2015; Holme et al., 2002;
Preciado et al., 2013, 2014; Saha et al., 2015; Schneider et al.,
2011; Van Mieghem et al., 2011).

A handful of studies has adopted a normative approach to the
issue using a game-theoretic setting. Omic et al. (2009) consider a
N-intertwined SIS epidemic model, in which agents can invest in
their curing rate. They prove the existence of a Nash Equilibrium
and derive its characteristics as a function of the network struc-
ture. They provide a measure of social efficiency through the PoA.
They also investigate two types of policies to reduce contagious-
ness. The first one plays with the influence of the relative prices of
protection while the second one relies on the enforcement of an
upper bound on infection probabilities. Hayel et al. (2014) have
also analysed decentralised optimal protection strategies in a SIS
epidemic model. However, in their case, the curing and infection
rates are fixed and each node can either invest in an antivirus to
be fully protected or invest in a recovery software once infected.
They show that the game is a potential one, expressed the pure
Nash Equilibrium for a single community/fully-mesh network in
a closed form, and establish the existence and uniqueness of a
mixed Nash Equilibrium. They also provide a characterisation of
the PoA. Finally, Goyal and Vigier (2015) examine, in a two-period
model, the trade-off faced by individuals between reducing inter-
action and buying protection, and its impacts on infection rates.
They analyse the equilibrium levels of interaction and protection
as well as the infection rate of the population, and show the
existence of a unique equilibrium. They highlight that individuals
investing in protection are more willing to interact than those
who do not invest, and establish the non-monotonic effects of
changes in the contagiousness of a disease.
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Yet, most of these contributions focus on situations where
(i) some form of vaccine or treatment is available and (ii) dynam-
ics are of the SIS/SIR type. Our attention is rather on situations
where there is no known cure to the epidemic and where the
objective is to delay its propagation through investments in the
reduction of contagiousness. Therefore, we focus on the transient
dynamics of the SI model. In this respect, we build on the re-
cent contribution of Lee et al. (2019) who provide an analytical
framework to represent the transient dynamics of the SI epidemic
dynamics on an arbitrary network. In particular, they derive a
tight approximation in closed-form of the solution to the SI
epidemic dynamics over all time t . The latter overcomes the
shortfalls of the existing linearised approximation (see Canright
and Engø-Monsen (2006), Mei et al. (2017) and Newman (2010))
by means of a thorough mathematical transformation of the sys-
tem governing the SI dynamics. Lee et al. (2019) have also derived
vaccination policies to mitigate the risks of potential attacks or to
minimise the consequences of an existing epidemic spread with a
limited number of available patches or vaccines over the network.

From an economic perspective, a number of contributions
have investigated the integration of epidemiological models into
dynamic general equilibrium models, including: Geoffard and
Philipson (1996), Gersovitz and Hammer (2004), Goenka and Liu
(2012), Goenka et al. (2014) and Goenka and Liu (2019) and,
more recently, Eichenbaum et al. (2020), Jones et al. (2020) and
Farboodi et al. (2020). These ‘‘epi macro‘‘ contributions generally
consider a representative agent and focus on the negative ex-
ternality induced on economic dynamics by individual reaction
to epidemic processes. We rather focus on the containment of
epidemic spreading per se and the role of social interactions in
this setting. In this respect, our contribution relates to the recent
work of Acemoglu et al. (2020) on targeted lockdown and to that
of Garibaldi et al. (2020) on individual vs social incentives for
prophylactic measures. In line with the latter analysis as well
as ours, Bayham et al. (2015) provide empirical evidences on
behavioural changes during epidemics.

Our contribution also relates to the growing literature on
the private provision of public goods on network. This litera-
ture mostly focuses on the relationship between the network
structure and the individual provision of public goods. It gen-
erally considers a fixed network and that the public good/effort
provision of an agent only affects its neighbours. In particu-
lar, Allouch (2015) shows the existence of a Nash Equilibrium
in this setting under very general conditions. Bramoullé and
Kranton (2007) prove, in a more specific setting, that Nash Equi-
libria generically have a specialised structure in which some
individuals contribute and others free ride. A more recent con-
tribution by Kinateder and Merlino (2017) extends the models
of private provision of public goods to a setting with an endoge-
nous network formation process. Yet, the network is formed in
view of the benefits provided by the public good/effort offered
by connections. Hence, although related, our focus differs from
this strand of literature as, in our setting, the process of link
formation per se is the source of external effects, and effects
propagate throughout the network. Another related contribution
is (Elliott and Golub, 2019) which provides a more conceptual
view on the relationship between the network structure and
public goods. It focuses on the network of external effects per se
and characterises efficient cooperation/bargaining institutions in
this framework. Our model could be subsumed into an extended
version of their model which considers multi-dimensional ac-
tions. However, their framework abstracts away from the process
underlying the interactions, which is one of our key focuses.
3

3. The model

3.1. Notations

We consider N the set of natural numbers and N ∈ N. The
notation MN (resp. MN (R+)) denotes the set of N-dimensional
square matrices with coefficients in R (resp. R+). For a given
M ∈ MN , we write (M)i,j or mi,j, 1 ≤ i, j ≤ N , to refer to
its element in the ith−row and jth−column. Moreover, for any

∈ MN , ∥M∥ denotes its Frobenius norm and for any matrix M
nd K inMN

×MN , we writeM ≤ K if mi,j ≤ ki,j, ∀i, j = 1, . . . ,N .
dditionally, the matrix I (resp. O) stands for the N-dimensional
quare identity (resp. null) matrix.
Similarly, for a N-dimensional column vector u ∈ RN , ui, 1 ≤

i ≤ N , refers to its element in the ith−row while u⊤ denotes
its transpose and ∥u∥ its Euclidean norm. Additionally, for any
u and v in RN

× RN , we let u ⪯ v if ui ≤ vi, ∀i = 1, . . . ,N . We
define similarly u ≺ v. For a function f : R ↦→ R and a vector
u ∈ RN , f (u) denotes the N-dimensional column vector with
(ui), 1 ≤ i ≤ N , as entries. Moreover, 1 is the N-dimensional
olumn vector with one as entries.
We also consider diag(u), the N-dimensional square diagonal

atrix with ui, 1 ≤ i ≤ N , as diagonal entries. Additionally, for
he ith−vector of the canonical basis of RN , ei, 1 ≤ i ≤ N , and
ny matrix M ∈ MN , we define the product operator

ei,M⟩ :=

⎛⎝ N∑
j=1

eij × mj,1, . . . ,

N∑
j=1

eij × mj,N

⎞⎠ ,

a N-dimensional row vector.
We define SN (resp. SN (R+)) as the subset of elements of MN

(resp. MN (R+)) that are symmetric. We observe that SN is a real
ector-space of dimension N(N + 1)/2 and we consider the basis
ormed by the matrices (B{i,j})1≤i≤j≤N such that b{i,j}

i,j = b{i,j}
j,i = 1

nd b{i,j}
k,ℓ = 0 for {k, ℓ} ̸= {i, j}. Accordingly, given a matrix

∈ SN , we let d{j,k} := dj,k + dk,j. Moreover, given U ⊆ SN , a
ifferentiable function φ : U → R, and D̄ ∈ U , we denote by
∂φ

∂d{i,j}
(D̄) the partial derivative in the direction of B{i,j}, that is

∂φ

∂d{i,j}
(D̄) :=

∂φ

∂di,j
(D̄) +

∂φ

∂dj,i
(D̄) ,

where
∂φ

∂di,j
(D̄) and

∂φ

∂dj,i
(D̄) denote the partial derivatives in the

directions induced by the canonical basis of MN .
Finally, for a set B, we note Card(B) its cardinal and (B)c the

complementary set.

3.2. Model outline

We consider a finite set of agents, N = {1, 2, . . . ,N}, N ≥ 2,
connected through a weighted and undirected network. The set
of links is given by E ⊆ {{i, j} | i, j ∈ N } and their weights
by the weighted adjacency matrix A ∈ SN (R+). In particular,
for all i ∈ E , aii = 0. The agents face the risk of shifting from
a good/susceptible state to a bad/infected state. This transition
occurs in continuous time through an epidemic process over the
network. At time zero, a subset of agents idiosyncratically shifts
to the infected state. Following this initial shock, infected agents
contaminate their neighbours in the network with a probability
that is proportional to the weight of the corresponding link.
Infected agents remain so permanently and cannot revert to the
susceptible state. As intimated in Section 2, this model is known
as the SI model in the epidemiological literature (see, e.g., Pastor-
Satorras et al., 2015). This model is simpler to analyse than
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ore elaborate versions such as the SIS or SIR model. It never-
heless provides a relevant approximation of epidemic dynamics
o analyse prophylactic behaviours ‘‘ex-ante‘‘ (before contagion)
s the network contagion paths are not modified, at short time-
cales, by the possibility to revert to a susceptible/removed state.
urthermore, the SI model can be straightforwardly extended
rom the individual to an aggregate level (region or country).
ndeed the transition from susceptible to infected can be defined
s the first occurrence of contagion or the crossing of an epidemic
hreshold in the area under consideration whereas the transition
rom infected to susceptible or from infected to removed cannot
e univocally defined at the aggregate level.
We consider a socio-economic setting in which strategic agents

an invest in the network in order to reduce contagion rates.
e are concerned with the characterisation of the equilibrium
ehaviour in this context, its relation to social efficiency, and
he potential impacts of policy on these features. Such setting
aptures the behaviour of countries facing the global propagation
f an epidemic as well as that of individuals facing its local prop-
gation. It can also be applied to other socio-economic context
uch as the propagation of computer viruses (see, e.g., Pastor-
atorras and Vespignani, 2001) or the diffusion of innovation (see,
.g., Young, 2009).
In order to formally define the model, we first provide a

etailed description of the epidemic dynamics and its approxi-
ation (see Section 3.3) and then introduce a representation of
gents’ prophylactic behaviours (see Section 3.4).

.3. Epidemic dynamics

Formally, an exact model of the dynamics of epidemic spread-
ng in the SI framework is given by a continuous-time Markov
hain (X(t))t≥0 with state–space X := {0, 1}N . A state ξ ∈ X gives
he infection status of all agents. The main variable of interest is
he probability of contagion whose dynamics in the time interval
t, t + h] is given by

(Xi(t + h) = 1) = P(Xi(t) = 1)

+

∑
{ξ∈X |ξi=0}

P(Xi(t + h) = 1 | X(t) = ξ )P(X(t) = ξ ).

t is further assumed that the probability for node i to be infected
y his (infected) neighbour j can be approximated for h small
nough by βaj,ih where β is a unit contagion rate, and ai,j is the
ontagiousness of the network link {i, j} ∈ E . Thus, one has

(Xi(t + h) = 1) = P(Xi(t) = 1)

+

∑
{ξ∈X |ξi=0}

[1 −

∏
j∈N

(1 − βaj,ihξj + o(h))]P(X(t) = ξ ),

nd equivalently

(Xi(t + h) = 1) = P(Xi(t) = 1)

+

∑
{ξ∈X |ξi=0}

⎛⎝∑
j∈N

βaj,ihξjP(X(t) = ξ )

⎞⎠+ o(h),

here o(h) is a generic term such that limh→0 |o(h)|/h = 0. In turn,
his yields

(Xi(t + h) = 1) = P(Xi(t) = 1)

+

∑
j∈N

βaj,ih

⎛⎝ ∑
{ξ∈X |ξi=0}

ξjP(X(t) = ξ )

⎞⎠+ o(h),

r equivalently

(X (t + h) = 1) = P(X (t) = 1)
i i s

4

+

∑
j∈N

βaj,ihP(Xj(t) = 1 ∧ Xi(t) = 0) + o(h) .

(3.1)

q. (3.1) characterises completely the evolution of the infection
robability, as infected nodes remain so permanently. It high-
ights the role of the network in the contagion process and the
ossible heterogeneous contagiousness of different network links.
n this respect, we make the following assumption about the
etwork structure throughout the paper.

ssumption 3.3.1. The adjacency matrix A ∈ SN (R+) is irre-
ucible and aperiodic.

The irreducibility assumption amounts to considering that
very agent faces a risk of contagion as soon as at least one agent
n the network is infected. Indeed, the network is then necessarily
onnected and the asymptotic behaviour of the Markov chain
s trivial: there is an unstable steady state where none of the
gent is infected and a unique stable steady state where all agents
re contaminated.1 In the following, we shall actually consider
hat agents are concerned by the time at which they are likely
o be infected rather than by their asymptotic infection status.
ccordingly, we are concerned with the transient behaviour of
he Markov chain. Yet, the number of states of the Markov chain
ncreases exponentially with the number of nodes, and is neither
nalytically nor computationally tractable. Therefore, the con-
entional practice in epidemiological modelling is to consider a
ean-field approximation of the infection rate. In particular, the
-intertwined model of Van Mieghem et al. (2009) considers
he average behaviour over states for the infection probability.
ore precisely, the N-intertwined model assumes that the events

Xi(t) = 0} and {Xj(t) = 1} are independent for all i, j ∈ N and
hus approximates Eq. (3.1) by

(Xi(t + h) = 1) = P(Xi(t) = 1)

+

∑
j∈N

βaj,ihP(Xj(t) = 1)P(Xi(t) = 0) + o(h) .

sing the fact that P[Xi(t) = 1] + P[Xi(t) = 0] = 1, one gets

P(Xi(t + h) = 1) − P(Xi(t) = 1)
h

= (1 − P(Xi(t) = 1))
∑
j∈N

βaj,iP(Xj(t) = 1) +
o(h)
h

.

Letting xi(t) := P[Xi(t) = 1] one gets as h tends towards 0,

∂xi(t)
∂t

= (1 − xi(t))β
N∑
j=1

ai,jxj(t) . (3.2)

q. (3.2) thus provides a deterministic approximation of the dy-
amics of the contagion probability xi(t) that takes into account
he full network structure. It nevertheless disregards the pos-
tive correlation between the infection status of neighbouring
odes. This implies that Eq. (3.2) over-estimates the probability
f contagion (see Van Mieghem et al., 2009).

emark 3.1. Alternative mean-field approximations used in the
iterature are generally much coarser that the N-intertwined
odel considered here. Two common approaches are (i) to av-
rage over agents and focus on the (approximate) dynamics of
he average probability of contagion or (ii) to average over agents

1 Stability must be understood in the sense that, for any initial non-null
robability distribution, the limiting distribution of the Markov chain has full
upport on the full contamination state.
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ith equal degree and focus on the (approximate) dynamics of
he average probability of contagion for an agent of a given degree
see Pastor-Satorras et al., 2015 for an extensive review).

The non-linear equation (3.2) does not have an analytical
olution. A common approach in the literature, used in particular
o analyse the outbreak of an epidemic, is to assume xi(t) small
nough to discard the factor (1 − xi(t)) and thus focus on the

following linear equation

∂xi(t)
∂t

= β

N∑
j=1

ai,jxj(t) . (3.3)

owever, this approximation grows exponentially towards +∞,
hereas it is assumed to approximate a probability. In a recent
ontribution, Lee et al. (2019) provide a much better approxima-
ion of the solution of Eq. (3.2). More precisely, they define for
ll i ∈ N and t ∈ R+, yi(t) := − log(1 − xi(t)), and observe that

x̄ := [x̄1, . . . , x̄N ]
⊤ is a solution of the system defined by Eq. (3.2)

with initial condition x(0) := [x1(0), . . . , xN (0)]⊤ =: x0, with
at least one non-null element to avoid triviality, if and only if
ȳ := [ȳ1, . . . , ȳN ]

⊤ is a solution of the system of equations defined
for all i ∈ N by

∂yi(t)
∂t

= β
∑
j∈N

ai,j(1 − exp(−yj(t))) , (3.4)

ith the corresponding initial condition. They then show that
tight upper bound to the solution of the system defined by
q. (3.4) when x(0) = x0 ≺ 1 is provided by

y̌(t) := − ln(1−x0)+[exp (βtAdiag(1 − x0)) − I] diag(1−x0)−1x0 ,

(3.5)

and accordingly that x̌(t) := 1−exp (−y̌(t)) is a tight upper bound
to the solution x̄ of the system defined by Eq. (3.2) with initial
condition x(0) = x0 in the sense that one has (see Lee et al. (2019,
Theorem 5.1 and Corollary 5.2))

• limt→+∞ ∥x̌(t) − x(t)∥ = 0,
• for any t ≥ 0, x̄(t) ⪯ x̌(t) ⪯ x̃(t) where x̃ := [x̃1, . . . , x̃N ]

⊤

is the solution of the system defined by Eq. (3.3) with initial
condition x(0) = x0.

Hence, x̌ provides an approximation of the probability of con-
tagion that is asymptotically exact and more accurate than the
standard linear approximation, even at short time scale.

3.4. Prophylactic behaviour

From now on, we shall consider that agents base their as-
sessment of the dynamics of contagion on the approximated
contagion probabilities x̌ associated to a given and fixed initial
condition x(0) = x0 ≺ 1, having at least one non-null element.
In this sense, they make decisions on the basis of approximate
information. This approach provides a consistent representation
of the decision-making situation of actual agents which ought to
base their decisions on similar approximations.

In this respect, we recall that in our SI setting, all agents even-
tually become infected. Thus, agents cannot base their decisions
on their asymptotic infection status. Rather, they shall aim at
delaying the growth rate of the epidemic. This is notably the
strategy pursued by most countries during the recent COVID-19
pandemic. More precisely, we consider that agents consider a
target date t̄ , which can be interpreted as the planning horizon
or the expected date of availability of a treatment, and aim at

minimising the probability of contagion up to that date. We

5

further assume, for sake of analytical tractability, that they have
a logarithmic utility of the form

ui(x̌i(t̄)) := δi log(1 − x̌i(t̄)), i ∈ N ,

where x̌i(t̄) is the approximate contagion probability given by
Eq. (3.5) and δi ≥ 0 is a subjective measure of the value of avoided
contagion, or equivalently of the cost of contagion, for the agent
i. One should note that the utility is non-positive and equal to
a benchmark of zero if and only if there is no risk of contagion.
In our setting, x0, β , and t̄ being fixed, Eq. (3.5) implies that the
contagion probability is completely determined by the adjacency
matrix A. The utility of agent i ∈ N can thus be expressed directly
as

vi(A) := −δi⟨ei, exp (β t̄Adiag(1 − x0))diag(1 − x0)−1x0⟩ , (3.6)

where the constant term ln(1 − x0) + diag(1 − x0)−1x0 has been
discarded to simplify the notations.

Eq. (3.6) highlights that, for a given admissible initial proba-
bility of contagion x0, the only lever that agents can use to reduce
their contagion probability is the decrease of the contagiousness
of the network, i.e. the decrease of the value of the coefficients
of the adjacency matrix A. This is exactly the strategy put in
place during the COVID-19 pandemic, at the local scale through
social distancing measures, and at the global scale through travel
restrictions and border shutdowns (see Colizza et al., 2006 for an
analysis of the role of the global transport network in epidemic
propagation). Formally, we consider a strategic game in which
each agent can invest in the reduction of contagiousness of net-
work links. We distinguish two alternative settings to account for
potential constraints on agents’ actions:

• In the global game, we assume that each agent can invest
in the reduction of contagiousness of every network link.
Therefore, the set of admissible strategy profiles is given by
S(A) := {(Di)i∈N ∈ (SN (R+))N : A −

∑
i∈N Di

≥ 0}.
• In the local game, we assume that each agent can only invest

in the links through which it is connected. Therefore, the set
of admissible strategy profiles is given by K(A) := {(Di)i∈N ∈

S(A) : ∀ i ∈ N , ∀ k, j ∈ N , k, j ̸= i ⇒ dik,j = 0}.

Local games correspond to a setting where agents are individuals
that limit their social interactions through individual and costly
measures. On the other hand, global games apply to a more in-
volved setting where agents are organisations (regions, countries)
that have the ability to subsidise the investment of other agents
in the reduction of contagiousness, either directly or indirectly.

Remark 3.2. Both S(A) and K(A) are non-empty, convex and
compact sets.

The payoff function is defined in a similar fashion in both
settings:

• First, a strategy profile (Di)i∈N turns the adjacency matrix
into A −

∑
i∈N Di and thus yields to agent i ∈ N a utility

Ui(Di,D−i) := vi(A −

∑
i∈N

Di)

=−δi⟨ei, exp

(
β t̄(A −

∑
i∈N

Di) diag(1 − x0)

)
diag(1 − x0)−1x0⟩,

where D−i
:= (Dj)j∈N , j̸=i is the strategy profile of all agents

but i.
• Second, we consider that agents face a linear cost for their

investment in the reduction of contagion. More precisely, for
all i ∈ N , the cost associated to a strategy Di is given by

Ri(Di) := ρ1⊤Di1 = ρ
∑
j,k∈N

dij,k ,
where ρ > 0 is the cost parameter.
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• Overall, the payoff of agent i ∈ N given a strategy profile
(Di)i∈N is given by

Πi(Di,D−i) := Ui(Di,D−i) − Ri(Di)

= −δi⟨ei, exp

(
β t̄(A −

∑
i∈N

Di) diag(1 − x0)

)
× diag(1 − x0)−1x0⟩ − ρ1⊤Di1 .

few remarks are in order about the characteristics of the game.
irst, agents’ strategy sets are constrained by the choices of other
layers. Namely, given a strategy profile for the other players
−i

∈ (SN (R+))N−1, the set of admissible strategies for player i
s Si(A,D−i) := {Di

∈ SN (R+) | (Di,D−i) ∈ S(A)} (resp. Ki(A,D−i)
:= {Di

∈ SN (R+) | (Di,D−i) ∈ K(A)}) in the global (resp. local)
game. Although, it is not the most standard, this setting is com-
prehensively analysed in the literature (see, e.g., Rosen, 1965).
Second, linear cost is a natural assumption in our framework.
Indeed, the marginal cost paid to decrease the contagiousness
of a link should not depend on the identity of the player in-
vesting. Third, the payoff function is always non-positive as it
is the combination of both a utility and a cost that are always
non-positive.

3.5. Nash Equilibrium

In the following, unless otherwise specified, we consider as
implicitly given the utility weights δ := [δ1, . . . , δN ]

⊤, the time-
horizon t̄ , the unit contagion rate β , the initial contagion matrix
A, the initial contagion probabilities x0, and the investment cost
. We then define the ‘‘local game‘‘ L(δ, A, β, t̄, x0, ρ) as the game

with strategy profiles in K(A) and payoff function Π and the
‘‘global game‘‘ G(δ, A, β, t̄, x0, ρ) as the one with strategy profiles
in S(A) and payoff function Π . As emphasised above, the game is
defined on the basis of the approximated probability of contagion
not on the ‘‘actual‘‘ one, which is not computable.

In this setting, a Nash Equilibrium is defined as follows.

Definition 3.1 (Nash Equilibrium).

• An admissible set of strategies Ď := (Ďi)i∈N ∈ S(A) is a Nash
Equilibrium for the global game if

∀i ∈ N , ∀Di
∈ Si(A, Ď−i), Πi(Ďi, Ď−i) ≥ Πi(Di, Ď−i) .

• An admissible set of strategies D̄ := (D̄i)i∈N ∈ K(A) is a Nash
Equilibrium for the local game if

∀i ∈ N , ∀Di
∈ Ki(A, D̄−i), Πi(D̄i, D̄−i) ≥ Πi(Di, D̄−i).

The existence of a Nash Equilibrium follows from standard
arguments.

Theorem 3.1. There exists a Nash Equilibrium in both the local and
global games.

Remark 3.3. In our setting, equilibrium is in general not unique
as there might be indeterminacy on the identity of the play-
ers/neighbours which ought to invest in reducing the contagion
of a link (see the discussion in Section 4.5).

3.6. Social optimum

The key concern, in the remaining of this paper, is the study of
the efficiency of Nash Equilibrium. As commonly done in N-agent
games, and in particular in network games, we define as Social
Optimum, the outcome that maximises the equally-weighted sum
of individual utilities.
6

Definition 3.2 (Social Optimum). An admissible set of strategies
D̂ := (D̂i)i∈N ∈ S(A) is a Social Optimum if

D̂ = argmax(Di)i∈N ∈S(A)

∑
i∈N

Πi
(
D−i,Di) .

Note that
∑

i∈N Πi(Di,D−i) only depends on the value of∑
i∈N Di. First, this implies that the notion of Social Optimum

is the same in the local and global game. Indeed, it is straight-
forward to check that for every (Di)i∈N ∈ S(A), there exists
(D̃i)i∈N ∈ K(A) such that

∑
i∈N D̃i

=
∑

i∈N Di. Second, given a
matrix D ∈ SN (R+) such that D ≤ A, we shall let

Π̂ (D) :=

∑
i∈N

v̂i(D) − ρ
∑
j,k∈N

dj,k ,

where v̂i : D ↦→ vi(A − D), and, with a slight abuse of notation,
state that D̂ is a Social Optimum if it is such that Π̂ (D) is maximal
over D(A) := {D ∈ SN (R+) : D ≤ A}. The existence of a
Social Optimum directly follows from the continuity of Π̂ and the
compactness of D(A).

Theorem 3.2. There exists a Social Optimum in both the local and
global games.

3.7. Price of anarchy

Since the 2020 COVID-19 pandemic, stringent policy measures
have been enforced to contain epidemic spreading. In particular,
the state of emergency has been proclaimed and we have wit-
nessed a suspension of some of the civil liberties (e.g. freedom
of assembly). A normative assessment of such policies requires
a quantitative estimate of the inefficiency induced by individ-
ual behaviours. The PoA provides precisely such a metric (see,
e.g., Papadimitriou, 2001; Nisan et al., 2007). It is defined as the
ratio between the social welfare at the worst Nash Equilibrium
and the one at the Social Optimum. Hence, in our setting, the PoA
in the local and global games is defined as follows

PoALoc
:=

|Worst social welfare at a local Nash Equilibrium|

|Social welfare at a Social Optimum|
,

(3.7)

oAGlo
:=

|Worst social welfare at a global Nash Equilibrium|

|Social welfare at a Social Optimum|
.

(3.8)

By construction, the PoA is greater or equal to 1 and equal to 1
only when all Nash Equilibria of the game are socially optimal. An
increasing PoA corresponds to an increasing social inefficiency of
individual behaviours at a Nash Equilibrium.

The PoA is standardly used in the computer science litera-
ture to assess the efficiency of network structures and protocols.
Notably, Roughgarden and Tardos (2002) show that the PoA in
routing games with linear congestion costs is bounded above by
4/3, while Fabrikant et al. (2003) show that the PoA is bounded in-
dependently of the number of players in network creation games.
These and other related results indicate the relative efficiency of
decentralised process in computer networks (see also Anshele-
vich et al., 2008 in this respect). The PoA has also been used in
the epidemiological literature (see e.g. Hayel et al., 2014; Omic
et al., 2009). In particular, Omic et al. (2009) consider a game
where agents individually choose their curing strategy in an SIS
epidemic context. They show that the PoA can be arbitrarily large
and therefore argue for policy interventions in order to steer
agents towards more socially efficient behaviours.
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. Characterisation of equilibrium and optimum

In this section, we provide a characterisation of equilibrium
nd social optimum as a function of network structure. To ease
he exposition, we focus in the main text on the case where
he initial contagion probability is equal across agents (whenever
ossible, the characterisation for arbitrary initial contagion proba-
ilities x0 is provided in the Appendix and proofs in the Appendix
re given for the general case). More precisely, we focus, unless
therwise specified on α-homogeneous games defined as follows:

efinition 4.1 (α-Homogeneous Game). A game is (α)-homo-
eneous if it is such that for all i ∈ N , x0i = α for some α ∈ (0, 1).

We will abusively write x0 = α.

4.1. Characterisation of marginal utility via total communicability

As hinted by the dependency of the utility function on the
exponential of the adjacency matrix (see Eq. (3.6)), the characteri-
sation of optimal behaviours will be closely related to the notions
of communicability and exponential centrality defined as follows.

Definition 4.2 (Communicability). Let X be the adjacency matrix
of an undirected network over the set of nodes N .

• The communicability between i ∈ N and j ∈ N is defined
as

Ci,j[X] := exp(X)i,j =

∑
n∈N

1
n!

Xn
i,j.

• The exponential centrality, or total communicability, of i ∈

N is defined as

Ci[X] :=

∑
j∈N

exp(X)i,j =

∑
j∈N

∑
n∈N

1
n!

Xn
i,j.

• The subgraph centrality of i ∈ N is defined as

Ci,i[X] := exp(X)i,i =

∑
n∈N

1
n!

Xn
i,i.

The notion of exponential centrality is widely used for the
nalysis of complex networks in natural sciences (see e.g. Estrada
nd Hatano, 2008; Benzi and Klymko, 2013 and references
herein) and is very similar to that of Katz–Bonacich central-
ty (Katz, 1953; Bonacich, 1987), which is widely used in eco-
omics (see e.g. Ballester et al., 2006). In both cases, centrality is
efined as a weighted sum of network paths leading to a node.
et, while the Katz–Bonacich centrality is based on ‘‘exponential‘‘
iscounting of the length of paths for a parametric discount
actor, exponential centrality uses a discounting scheme that
ncreases more rapidly with path length and that is parameter
ree. It is also worth pointing out that for adjacency matrices of
he form tX with t ∈ R+, i.e. adjacency matrices whose con-
ectivity increases linearly in time (such as the ones considered
ere), it is known that for asymptotically large t , exponential
entrality produces the same rankings as eigenvector centrality
see Theorem 5.1 in Benzi and Klymko, 2015).

The marginal utility induced by investments in the reduction
f the contagiousness of a link can then be directly expressed in
erms of communicability. Namely, one has.2

2 The notations for the partial derivatives of a symmetric matrix are given
n Section 3.1
7

Lemma 4.1. For every i ∈ N , for any strategy profile (Di,D−i) ∈

(A), and for all k, ℓ ∈ N ,

∂Ui(·,D−i)
∂di

{k,ℓ}
(Di) =

∂Ui(·,D−i)
∂dik,ℓ

(Di) +
∂Ui(·,D−i)

∂diℓ,k
(Di)

= δiαβ t̄

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

Dj)]

+ Ci,ℓ[(1 − α)β t̄(A −

∑
j∈N

Dj)]

⎞⎠ (4.1)

urthermore, the marginal utility is non-negative and the map
i(·,D−i) is concave on Si(A,D−i).

Let us first remark that, as the network of contagion is as-
sumed undirected, investments in the link {k, ℓ} ∈ E induce, from
the point of view of agent i, a reduction of contagiousness from
k to i on the one hand and from ℓ to i on the other hand. More
precisely, the marginal utility of investment in link {k, ℓ} for agent
i is equal, up to the factor δiαβ t̄ , to the sum of communicability
between i and k and between i and ℓ. In turn, the communicability
depends on the initial structure of the contagion network A,
the strategic investments in the reduction of contagiousness D,
the unit contagion rate β , the time-horizon t̄ , and the initial
contagion probabilities α. Overall, the marginal impact of agents’
actions on contagiousness depends on the characteristics of the
disease, measured through the initial contagion probability α
and the diffusion rate β , the time horizon t̄ and the structure
of the contagion network modified by the agents’ investments
A −

∑
j∈N Dj.

4.2. Characterisation of equilibrium behaviour

From Lemma 4.1, one can straightforwardly deduce a differen-
tial characterisation of Nash Equilibria in both the local and global
games, as reported in the following two propositions.

Proposition 4.1. A strategy profile D̄ ∈ K(A) is a Nash Equilibrium
of the local game L(δ, A, β, t̄, α, ρ) if and only if for all {k, ℓ} ∈ E ,
the following two conditions hold:

(1) One of the following alternative holds:

(a) ρ < maxi∈{k,ℓ} δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N D̄j)] + Ci,ℓ[(1 − α)

β t̄(A −
∑

j∈N D̄j)]
)
and d̄k

{k,ℓ} + d̄ℓ
{k,ℓ} = a{k,ℓ} ,

(b) ρ > maxi∈{k,ℓ} δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N D̄j)] + Ci,ℓ[(1 − α)

β t̄(A −
∑

j∈N D̄j)]
)
and d̄k

{k,ℓ} = d̄ℓ
{k,ℓ} = 0,

(c) ρ = maxi∈{k,ℓ} δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N D̄j)] + Ci,ℓ[(1 − α)

β t̄(A −
∑

j∈N D̄j)]
)
and d̄k

{k,ℓ} + d̄ℓ
{k,ℓ} ∈ [0, a{k,ℓ}].

(2) For any i ∈ N , one has d̄i
{k,ℓ} > 0 only if

δiαβ t̄

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

Dj)] + Ci,ℓ[(1 − α)β t̄(A −

∑
j∈N

Dj)]

⎞⎠
≥ ρ.

Proposition 4.2. A strategy profile Ď ∈ S(A) is a Nash Equilibrium
of the global game G(δ, A, β, t̄, α, ρ) if and only if for all {k, ℓ} ∈ E ,
the following two conditions hold:

(1) One of the following alternative holds:

(a) ρ < maxi∈N δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N Ďj)] + Ci,ℓ[(1 − α)β t̄(A−∑

j∈N Ďj)]
)

and
∑

i∈N ďi
{k,ℓ} = a{k,ℓ} ,

(b) ρ > maxi∈N δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N Ďj)] + Ci,ℓ[(1 − α)β t̄(A−∑

Ďj)]
)

and
∑

ďi = 0,
j∈N i∈N {k,ℓ}
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c) ρ = maxi∈N δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N Ďj)] + Ci,ℓ[(1 − α)β t̄(A−∑

j∈N Ďj)]
)

and
∑

i∈N ďi
{k,ℓ} ∈ [0, a{k,ℓ}].

(2) For any i ∈ N , one has ďi
{k,ℓ} > 0 only if

δiαβ t̄

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

Ďj)] + Ci,ℓ[(1 − α)β t̄(A −

∑
j∈N

Ďj)]

⎞⎠
≥ ρ.

The difference between Propositions 4.1 and 4.2 stems from
the fact that different sets of agents can invest in a given link:
the agents at the edges of the link in the local case and all
agents in the global case. Otherwise, their interpretation is sim-
ilar. Equilibrium investment in a link is determined by the re-
lationship between cost and communicability (or equivalently
marginal utility). If the investment cost is large with respect to
the communicability of the edges, there is no investment in the
link. If the investment cost is smaller than the communicability
from the edges to a player, there is full investment in the link,
i.e. it is completely suppressed. Finally, there is the ‘‘interior‘‘ case
in which only the agents with the largest communicability to the
edges invest in the link. They do so up to the point where the
communicability is exactly proportional to the investment cost.
The following definition highlights specific classes of equilibria in
which investment behaviour is qualitatively similar across links.

Definition 4.3 (Equilibrium Classification).

• A Full Investment Equilibrium is an equilibrium that sat-
isfies, for all {k, ℓ} ∈ E , case (a) of Proposition 4.1 (resp.
4.2).

• A No Investment Equilibrium is an equilibrium that satisfies,
for all {k, ℓ} ∈ E , case (b) of Proposition 4.1 (resp. 4.2).

• An Interior Equilibrium is an equilibrium that satisfies, for
all {k, ℓ} ∈ E , case (c) of Proposition 4.1 (resp. 4.2).

• A local (resp. global) Homogeneous Interior Equilibrium is
a special case of local (resp. global) Interior Equilibrium
where, for each {k, ℓ} ∈ E , the marginal utilities of agents
k, ℓ (resp. all agents) are equal.

We observe that in the case of a Full Investment Equilibrium
r an Interior Equilibrium, there can be an indeterminacy on the
dentities of the agents that invest. Namely, let

G
{k,ℓ}(D) :=

⎧⎨⎩i ∈ N | δiαβ t̄

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

Dj)]

+ Ci,ℓ[(1 − α)β t̄(A −

∑
j∈N

Dj)]

⎞⎠ ≥ ρ

⎫⎬⎭ ,

e the set of players susceptible to invest in the link {k, ℓ} ∈ E at
an equilibrium D of the global game and

EL
{k,ℓ}(D) :=

⎧⎨⎩i ∈ {k, ℓ} | δiαβ t̄

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

Dj)]

+ Ci,ℓ[(1 − α)β t̄(A −

∑
j∈N

Dj)]

⎞⎠ ≥ ρ

⎫⎬⎭ ,

be the set of players susceptible to invest in the link {k, ℓ} ∈ E
t an equilibrium D of the local game. Proposition 4.3, resulting
rom Proposition 4.1–4.2, highlights a form of substitutability of
nvestments that arises at equilibrium.
8

Proposition 4.3. Let D be an equilibrium of the global game
G(δ, A, β, t̄, α, ρ) (resp. local game L(δ, A, β, t̄, α, ρ)). Assume that
D̃ ∈ S(A) (resp. D̃ ∈ K(A)) is such that for all {k, ℓ} ∈ E , one has:

(1)
∑

i∈N d̃i
{k,ℓ} =

∑
i∈N di

{k,ℓ},
(2) For any i ∈ N , d̃i

{k,ℓ} > 0 only if i ∈ EG
{k,ℓ} (resp. i ∈ EL

{k,ℓ}).

Then D̃ is an equilibrium of the global (resp. local) game.

Hence, each player that has a large enough marginal utility
is willing to invest in a link up to the equilibrium level indepen-
dently of the actions of other players. This leads to indeterminacy
on the allocation of investments (and thus of the related costs)
among players that have a large enough marginal utility.

Remark 4.1. Consider the game G(δ, A, β, t̄, α, ρ) (resp. L(δ, A,

β, t̄, α, ρ)) and its equilibrium D. We observe that, whenever for
some i, j, k, ℓ ∈ N ,

δiαβ t̄

(
Ci,k[(1 − α)β t̄(A −

∑
h∈N

Dh)] + Ci,ℓ[(1 − α)β t̄(A −

∑
h∈N

Dh)]

)
≥

δjαβ t̄

(
Cj,k[(1 − α)β t̄(A −

∑
h∈N

Dh)] + Cj,ℓ[(1 − α)β t̄(A −

∑
h∈N

Dh)]

)
,

then j ∈ EG
{k,ℓ} (resp. j ∈ EL

{k,ℓ}) implies i ∈ EG
{k,ℓ} (resp. i ∈ EL

{k,ℓ}
provided that i = k or ℓ).

Finally, Proposition 4.1–4.3 imply that Full Investment Equi-
libria and Interior Equilibria have a notable property: they in-
duce equilibria in each network that is more strongly connected
than the equilibrium network (i.e. with a weight on each link
higher than the one of the corresponding link in the equilib-
rium network). This property is formally stated in the following
proposition.

Proposition 4.4. Let D be a Full Investment Equilibrium or an
Interior Equilibrium of the global game G(δ, A, β, t̄, α, ρ) (resp. local
game L(δ, A, β, t̄, α, ρ)). Then for all Ã ≥ A −

∑
i∈N Di, any

strategy profile D̃ ∈ S(Ã) (resp. D̃ ∈ K(Ã)) such that
∑

i∈N D̃i
:=∑

i∈N Di
+Ã−A is a Full Investment Equilibrium or an Interior Equi-

librium of G(δ, Ã, β, t̄, α, ρ) (resp. L(δ, Ã, β, t̄, α, ρ)). Moreover,
both equilibria induce the same equilibrium network.

4.3. Characterisation of social optima

Using Lemma 4.1, one can provide a differential characterisa-
tion of social optima, as reported in the following proposition.

Proposition 4.5. A strategy profile D̂ ∈ D(A) is a social optimum if
and only if for all {k, ℓ} ∈ E , one of the following alternative holds:

(a) ρ <
∑

i∈N δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N D̂j)]+

Ci,ℓ[(1 − α)β t̄(A −
∑

j∈N D̂j)]
)
and d̂{k,ℓ} = a{k,l},

(b) ρ >
∑

i∈N δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N D̂j)]+

Ci,ℓ[(1 − α)β t̄(A −
∑

j∈N D̂j)]
)
and d̂{k,ℓ} = 0,

(c) ρ =
∑

i∈N δiαβ t̄
(
Ci,k[(1 − α)β t̄(A −

∑
j∈N D̂j)]+

Ci,ℓ[(1 − α)β t̄(A −
∑

j∈N D̂j)]
)
and d̂{k,ℓ} ∈ [0, a{k,l}].

Hence at a Social Optimum, there is investment in a link only if
the sum of marginal utilities induced by the investment is larger
than or equal to the investment cost. If the cost is smaller than the
sum of marginal utilities, then the link is completely suppressed
(case (a)). On the other hand, if the solution is interior, then the
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evel of investment is such that the sum of marginal utilities is
xactly equal to the investment cost (case (c)). By analogy with
he case of Nash Equilibria, we can then introduce the following
pecific classes of social optima.

efinition 4.4 (Classification of Social Optima).

• A Full Investment Optimum is an optimum that satisfies, for
all {k, ℓ} ∈ E , case (a) of Proposition 4.5.

• A No Investment Optimum is an optimum that satisfies, for
all {k, ℓ} ∈ E , case (b) of Proposition 4.5.

• An Interior Optimum is an optimum that satisfies, for all
{k, ℓ} ∈ E , case (c) of Proposition 4.5.

A significant corollary of Proposition 4.5 is that in the case
here δi is constant among agents, the social optimum can
e completely characterised in terms of exponential centrality.
amely, one has the following.

efinition 4.5 (δ-Homogeneous Game). A game is δ-homogeneous
f for all i ∈ N , δi = δ for some δ > 0.

orollary 4.1. A strategy profile D̂ ∈ D(A) is a Social Optimum of
δ-Homogeneous Game if and only if for all {k, ℓ} ∈ E , one of the

ollowing alternative holds:

(a) ρ < δαβ t̄
(
Ck[(1 − α)β t̄(A −

∑
j∈N D̂j)] + Cℓ[(1 − α)β t̄

(A −
∑

j∈N D̂j)]
)
and d̂{k,ℓ} = a{k,l},

(b) ρ > δαβ t̄
(
Ck[(1 − α)β t̄(A −

∑
j∈N D̂j)] + Cℓ[(1 − α)β t̄

(A −
∑

j∈N D̂j)]
)
and d̂{k,ℓ} = 0,

(c) ρ = δαβ t̄
(
Ck[(1 − α)β t̄(A −

∑
j∈N D̂j)] + Cℓ[(1 − α)β t̄

(A −
∑

j∈N D̂j)]
)
and d̂{k,ℓ} ∈ [0, a{k,l}].

Hence, at a social optimum, investment in link {k, ℓ} is de-
termined by the relationship between investment cost and to-
tal communicability/exponential centrality. Links between nodes
that have high exponential centrality ought to be completely
severed (case a). Links between nodes that have low exponential
centrality do not need to be altered (case b). Finally, at an interior
optimum, investment in each link {k, ℓ} must be such that the
sum of the exponential centrality of nodes k and ℓ is equal to
ρ/2δαβ t̄.

The comparison between Proposition 4.5 on the one hand and
Propositions 4.1 and 4.2 on the other hand underlines the fact
that investment in contagion reduction has all the features of
a public good problem. At a Nash equilibrium, the investment
level is determined by the marginal utility of a single agent (the
one with the largest willingness to pay) while social efficiency
requires the investment level to be determined by the sum of
all marginal utilities. To quantify more precisely this inefficiency,
Theorems 4.1 and 4.2 provide a partial characterisation of the PoA
in our setting.

4.4. Price of anarchy

In this section, we restrict our attention to complete networks
in the following sense (for technical reasons related to the proofs).

Definition 4.6 (Complete Network). A network is complete if for
all k, ℓ ∈ N , k ̸= ℓ, ak,ℓ > 0.

To characterise the PoA, we build on the following relation-
ships between utility and marginal utility that are straightforward
consequences of Lemma 4.1 (and Lemma A.2 in the Appendix).
9

Namely, the exponential form of the utility function induces the
following relationships between marginal utility and utility.

Lemma 4.2. Consider an (α)-Homogeneous Game, and let M ⊆ N .
For every i ∈ N , and for any strategy profile (Di,D−i) ∈ S(A),∑

k,ℓ∈N
k or ℓ∈M

∂Ui(·,D−i)
∂di

{k,ℓ}
(Di) = −2Card(M)δiβ t̄α

×

∑
k∈N

(
exp(β t̄(1 − α)(A −

∑
i∈N

Di))

)
i,k

= −2Card(M)β t̄(1 − α)Ui(·,D−i)(Di) .
(4.2)

emma 4.3. Consider an (α)-Homogeneous Game, and let M ⊆ N .
or every i ∈ N , and for any Social Optimum D ∈ D(A),∑
k,ℓ∈N

k or ℓ∈M

∂v̂i(D)
∂d{k,ℓ}

= −2Card(M)β t̄(1 − α)v̂i(D) . (4.3)

These relationships between marginal utility and utility allow
to characterise the utility level prevailing at an equilibrium or at
a social optimum using first-order conditions and therefrom to
infer the following bounds on the price of anarchy.

Theorem 4.1. Consider a global α-Homogeneous Game G(δ, A, β, t̄,
α, ρ) with a complete network such that the worst Nash equilibrium
Ď is not a Full Investment Equilibrium and a social optimum D̂ is not
a Null Investment Optimum. Then

PoAGlo
≤

N2

2β t̄(1−α) + 1⊤
∑

i∈N Ďi1

N
2β t̄(1−α) + 1⊤D̂1

≤ N +
2β t̄(1 − α)

N
1⊤A1.

The upper bound for PoALoc has a stronger dependence on the
structure of the network.

Theorem 4.2. Assume N ≥ 3 and consider a local α-Homogeneous
Game L(δ, A, β, t̄, α, ρ) with a complete network such that the
worst Nash Equilibrium D̄ is not a Full Investment Equilibrium and
a Social Optimum D̂ is not a Null Investment Optimum. Then

PoALoc

≤

1
2β t̄(1−α)

[
N2ρ +

(N−2)α
(N−1)

∑
i∈N Ki(δi, A, D̄, D̄, β, t̄, α)

]
+ ρ1⊤

∑
i∈N D̄i1

ρ

[
N

2β t̄(1−α) + 1⊤D̂1
]

≤ N +
(N − 2)α
N(N − 1)ρ

∑
i∈N

Ki(δi, A,O, A, β, t̄, α) +
2β t̄(1 − α)

N
1⊤A1 ,

where for any adjacency matrix B and strategy profiles D,D′,

Ki(δi, B,D,D′, β, t̄, α)

:= δiβ t̄

⎛⎜⎝∑
k∈N
k̸=i

Ci,k[(1 − α)β t̄(A −

∑
j∈N

Dj)] − Ci,i[(1 − α)β t̄(A −

∑
j∈N

Dj′ )]

⎞⎟⎠ .

In particular, for all i, k ∈ N , k ̸= i,

0 ≤ ρ + αδiβ t̄

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

D̄j)] − Ci,i[(1 − α)β t̄(A −

∑
j∈N

D̄j)]

⎞⎠
≤ 2

⎛⎝ρ − αδiβ t̄Ci,i[(1 − α)β t̄(A −

∑
j∈N

D̄j)]

⎞⎠ .

Theorems 4.1 and 4.2 imply that the PoA grows at most

linearly with the number of agents. Furthermore, Proposition 4.7
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ill show that one cannot improve upon this linear bound. These
esults are in strong contrast with those recalled in
ection 3.7 for network and routing games in which the PoA is
ounded independently of the number of agents. This emphasises
he fact that in our setting, Nash equilibrium, can become ex-
remely inefficient as the number of agents grow. In other words,
n unbounded PoA strongly calls for policy interventions. These
re investigated in detail in Section 5.

.5. Equilibrium and optimum in stylised network structures

In this subsection, we highlight the impact of network struc-
ure on epidemic containment strategies by characterising equi-
ibrium and social optimum for a set of stylised network struc-
ures.

xample 4.1. We first focus on a completely homogeneous
etwork such that for all (i, j) ∈ N × N , ai,j = a for some a > 0.

We further consider that the game is α and δ homogeneous and
hat N ≥ 3. The game is then symmetric and, using the non-
mptiness, convexity and compactness properties of the strategy
pace as well as the continuity and concavity properties of the
ayoff, one can ensure there exists a symmetric equilibrium in
oth the local and global games (see Cheng et al. (2004, Theorem
)). We shall show that equilibria for both games coincide and
hat, for ρ in an appropriate range, they are interior. Indeed,
et Ď ∈ S(A), be a symmetric equilibrium of the global game.
ccording to Eq. (4.1), one has for all i, k, ℓ ∈ N ,

∂Ui(·, Ď−i)
∂di

{k,ℓ}
(Ďi) = δβ t̄α

(
Ci,k(H) + Ci,ℓ(H)

)
= δβ t̄α

(
exp(H)i,k + exp(H)i,ℓ

)
(4.4)

here H is of the form

:=

⎛⎜⎜⎜⎜⎝
0 h . . . h

h
. . .

. . .
...

...
. . .

. . . h
h . . . h 0

⎞⎟⎟⎟⎟⎠
with h := β t̄(1 − α)(a −

∑
i∈N

ďik,ℓ), k, ℓ ∈ N , k ̸= ℓ . (4.5)

sing a Taylor expansion, one can prove that exp(H) is of the form

exp(H)

:=

⎛⎜⎜⎜⎜⎜⎝
χ (h) χ (h) − exp(−h) . . . χ (h) − exp(−h)

χ (h) − exp(−h)
. . .

. . .
.
.
.

.

.

.
. . .

. . . χ (h) − exp(−h)
χ (h) − exp(−h) . . . χ (h) − exp(−h) χ (h)

⎞⎟⎟⎟⎟⎟⎠ ,

here χ (h) := 1 +
∑

k≥1 uk/k!, with (uk)k∈N\{0} satisfying the
ollowing recursive system3

u1 = 0 and v1 = h
uk = h(N − 1)vk−1 and vk = h [(N − 2)vk−1 + uk−1] for k ≥ 2.

s χ (h) > χ (h) − exp(−h), it follows from Eq. (4.4) that for all
istinct elements i, k, ℓ ∈ N , one has

∂Ui(·, Ď−i)
∂di

{i,ℓ}
(Ďi) >

∂Uk(·, Ď−k)
∂dk

{i,ℓ}
(Ďk).

3 This system has a closed-form solution that can be determined by elemen-
ary methods. However, its expression is too inconvenient to report it in full
ength here.
 M

10
Using Proposition 4.2, this yields the following characterisation:

(1) The symmetric equilibrium is such that h = 0, or equiv-
alently

∑
i∈N Ďi

= A, leading to χ (0) = 1, if only if
ρ ≤ δβ t̄α.

(2) The symmetric equilibrium is such that h = β t̄(1− α)a, or
equivalently

∑
i∈N Ďi

= 0 if and only if ρ ≥ δβ t̄αζ (β t̄(1−

α)a) where ζ (β t̄(1−α)a) := 2χ (β t̄(1−α)a)−exp(−β t̄(1−

α)a).
(3) The symmetric equilibrium is interior if and only if

ρ/(δβ t̄α) ∈
(
1, ζ (β t̄(1 − α)a)

)
.

In the third case, the equilibrium is a local Homogeneous Interior
Equilibrium, while, in the first two cases, there exists an equi-
librium in local strategies that is equivalent to Ď in the sense of
Proposition 4.3.

In view of Proposition 4.4, the equilibria put forward in
Example 4.1 are also equilibria in games where the network
is more strongly connected than in the example, even if the
level of connectivity is not uniform among nodes. This defines a
broader class of networks in which one can partially characterise
equilibrium as follows.

Proposition 4.6. Consider an α and δ homogeneous game where
there exists γ > 0 such that for all k, ℓ ∈ N , k ̸= ℓ, ak,ℓ ≥ γ . Then,
one has in both the local and global games:

(1) If ρ/(δβ t̄α) < ζ (β t̄(1 − α)γ ), there exists a Full Investment
Equilibrium or an Interior Equilibrium.

(2) If, moreover ρ/(δβ t̄α) > 1, there exists an Interior Equilib-
rium.

Example 4.1 also implies that one cannot improve upon the
linear upper bound on the PoA. Indeed, by concavity of Π̂ , we
know the set of Social Optima is convex. Moreover, given the
symmetry of the game, the set of Social Optima shall be invariant
by permutation. Thus, the average of all socially optimal profiles
is socially optimal and must be symmetric, i.e. of the form D̂ such
hat:

ˆ :=

⎛⎜⎜⎜⎜⎝
0 d̂ . . . d̂

d̂
. . .

. . .
...

...
. . .

. . . d̂
d̂ . . . d̂ 0

⎞⎟⎟⎟⎟⎠ , for some d̂ ≥ 0.

The sum of utilities at such an optimum can be computed as
above and one can then derive the following analytical expression
for the price of anarchy.

Proposition 4.7. Consider the game given in Example 4.1 and
assume that ρ/(δβ t̄α) ∈

(
2, ζ (β t̄(1 − α)a)

)
, and let Ď (resp. D̂) be

the worst Nash Equilibrium (resp. a Social Optima). Then

PoAGlo
= PoALoc

=

N2ρ

2β t̄(1−α) −
N(N−2)δα exp(−h)

2(1−α) + ρ1⊤
∑

i∈N Ďi1

Nρ

2β t̄(1−α) + ρ1⊤D̂1

≤ N −
(N − 2)δβ t̄α exp(−h)

ρ
+

2β t̄(1 − α)
N

1⊤A1 ,

here h := β t̄(1−α)(a−
∑

i∈N ďik,ℓ) > 0, for any k, ℓ ∈ N , k ̸= ℓ.
n particular, ρ − δβ t̄α exp(−h) ≥ 0.

xample 4.2. A second salient class of examples (still in the class
f α-Homogeneous Games) is that where the network consists in
series of fully connected clusters weakly linked to each other.
ore precisely, we consider a network with N = M × L nodes in
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hich nodes in Lℓ := {(ℓ− 1)M + 1, . . . , ℓM} form the łth cluster
in the sense that the adjacency matrix A is such that:

• For all ℓ = 0, . . . , L − 1 and all i, j ∈ Lℓ one has ai,j = a,
• For all k, ℓ ∈ {0, . . . , L − 1}, one has aℓM+1,kM+1 = a,
• ai,j = 0 otherwise.

Hence each cluster Lℓ is fully connected and is connected to other
clusters through its ‘‘bridge‘‘ node bℓ := ℓM + 1. We denote by
B = {b1, . . . , bL} the set of bridge nodes.

Remark 4.2. In this setting, one can show (see proof in the
Appendix) that there exist local equilibria D̄ that are ‘’symmetric’’
in the sense that:

• Each non-bridge node i ∈ N/B uses the same strategy which
consists in investing δnn ≥ 0 in its links towards non-bridge
nodes in its cluster and δnb ≥ 0 in its links towards the
bridge node in its cluster (it is not connected to any other
node).

• Each bridge node j ∈ B uses the same strategy which
consists in investing δbn ≥ 0 in its links towards non-bridge
nodes in its cluster and δbb ≥ 0 in its links towards other
bridge nodes.

In other words, D̄ is such that for all (i, j) ∈ N , one has

d̄i,j =

⎧⎪⎨⎪⎩
δnn if (i, j) ∈ E ∩ (N/B × N/B)
δnb if (i, j) ∈ E ∩ (N/B × B)
δbn if (i, j) ∈ E ∩ (B × N/B)
δbb if (i, j) ∈ E ∩ (B × B) .

The equilibrium network H = A−
∑

i∈N D̄i then is of the form

hi,j =

⎧⎨⎩ hnn
:= a − 2δnn if (i, j) ∈ E ∩ (N/B × N/B)

hnb
:= a − δnb − δbn if (i, j) ∈ E ∩ (N/B × B)

hbb
:= a − 2δbb if (i, j) ∈ E ∩ (B × B) .

Let us then show that, if M ≥ 3 and β t̄(1 − α) is sufficiently
small, one must have hbb

≥ hbn. If hbn
= 0, this is trivial. Let us

then consider the case where hbn > 0. Assume, by contradiction,
that hbb < hbn. This implies in particular hbb < a and thus using
Proposition 4.1 that

ρ

δαβ t̄
≤ Cb,b[(1 − α)β t̄H] + Cb,b′ [(1 − α)β t̄H] , (4.6)

here, with a slight abuse of notation, Cb,b[(1 − α)β t̄H] de-
notes the subgraph centrality of an arbitrary bridge node and
Cb,b′ [(1−α)β t̄H] denotes the communicability between two arbi-
trary bridge nodes. These two quantities are independent of the
bridge nodes under consideration given the symmetry properties
of H .

Moreover hbb < hbn implies hbn > 0 and thus using
Proposition 4.1 one has

ρ

δαβ t̄
≥ Cb,b[(1 − α)β t̄H] + Cb,n[(1 − α)β t̄H] , (4.7)

here, with a slight abuse of notation, Cb,n[(1 − α)β t̄H] denotes
he communicability between an arbitrary bridge node and a non-
ridge node in its cluster, which is independent of the non-bridge
ode under consideration given the symmetry properties of H .
Combining Eqs. (4.6) and (4.7) one gets

b,b[(1 − α)β t̄H] + Cb,b′ [(1 − α)β t̄H]

≥ Cb,b[(1 − α)β t̄H] + Cb,n[(1 − α)β t̄H],

nd thus

b,b′ [(1 − α)β t̄H] ≥ Cb,n[(1 − α)β t̄H] . (4.8)

ow:
 C
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• There is a single path of length 1 in H between b and b′ with
weight hbb and a single path of length 1 in H between b and
n with weight hbn > hbb.

• There is no path of length 2 in H between b and b′ and there
are M − 2 paths of length 2 between b and n with weight
hbnhnn (these are paths going through another node in the
cluster).

or β t̄(1 − α) sufficiently small one can discard paths of length
or more in the computation of Cb,b′ [(1 − α)β t̄H] and Cb,n[(1 −

)β t̄H]. Using hbb < hbn, the preceding then shows that there
re strictly more paths of length 1 and 2 between b and n than
etween b and b′. Thus, one has Cb,n[(1 − α)β t̄H] > Cb,b′ [(1 −

)β t̄H], which contradicts Eq. (4.8). Thus, one has shown by
ontradiction that hbb

≥ hbn. Hence, if the clusters are sufficiently
arge, i.e. M ≥ 3, at a symmetric Nash equilibrium, there is
ore investment in the intra-cluster link than in the inter-cluster

ink. In other words, there is little investment made to prevent
pidemic transmission across clusters.
With respect to social optimum, using the concavity of the

ayoff function and the symmetry properties of the game, it is
traightforward to show that there exists a social optimum D̂with
he same symmetry properties as the Nash Equilibrium D̄ above.
ccordingly, there exist knn, knb, kbb ∈ [0, a] such that the socially
ptimal network is of the form

i,j =

⎧⎨⎩ knn if (i, j) ∈ E ∩ (N/B × N/B)
knb if (i, j) ∈ E ∩ (N/B × B)
kbb if (i, j) ∈ E ∩ (B × B) .

et us then show that, if M ≥ 3, L is sufficiently large, and
t̄(1 − α) is sufficiently small, one has kbb ≤ kbn. If kbb = 0, this
s trivial. Otherwise, assume kbb > kbn. This implies in particular
bb > 0 and thus using Corollary 4.1 that

≥ 2δαβ t̄2Cb[(1 − α)β t̄K ] , (4.9)

here, with a slight abuse of notation, Cb[(1 − α)β t̄H] denotes
he exponential centrality of an arbitrary bridge node, which is
ndependent of the bridge nodes under consideration.

Moreover, kbb > kbn implies kbn < a and thus using
orollary 4.1 that

≤ δαβ t̄
(
Cb[(1 − α)β t̄K ] + Cn[(1 − α)β t̄K ]

)
, (4.10)

here, with a slight abuse of notation, Cn[(1 − α)β t̄H] denotes
he exponential centrality of an arbitrary non-bridge node, which
s independent of the non-bridge node under consideration. Com-
ining Eqs. (4.9) and (4.10) one gets

Cb[(1 − α)β t̄K ] + Cn[(1 − α)β t̄K ]
)

≥ 2Cb[(1 − α)β t̄K ],

nd thus

n[(1 − α)β t̄K ] ≥ Cb[(1 − α)β t̄K ] . (4.11)

ow:

• The sum of paths of length 1 to b is (L− 1)kbb + (M − 1)knb.
Indeed there are L−1 path coming from other bridge nodes,
M − 1 paths coming from its cluster.

• The sum of paths of length 1 to n is knb + (M −2)knn. Indeed
there is one path coming from the bridge node and M − 2
paths coming from the non-bridge nodes in the cluster.

or β t̄(1− α) sufficiently small one can discard paths of length 2
r more in the computation of Cn[(1−α)β t̄H] and Cb[(1−α)β t̄H].
sing kbb > kbn, the preceding then shows that, if L is sufficiently
arge, the sum of paths of length 1 to b is strictly greater than
he sum of paths of length 1 to n. In turn, this implies that

¯ ¯
n[(1 − α)βtK ] < Cb[(1 − α)βtK ], which contradicts Eq. (4.11).
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hus, one has shown by contradiction that kbb ≤ hbn. Hence, if
here are sufficiently many clusters, i.e. if L is large enough, at
symmetric social optimum, there is more investment in the

nter-cluster links than in the intra-cluster links.
Overall, this example highlights a major qualitative difference

etween local equilibrium and social optimum in a setting where
he network is formed by a series of fully connected clusters
inked by bridge nodes. At equilibrium, the reduction of conta-
iousness within a cluster is prioritised over the prevention of
nter-cluster diffusion. At a social optimum, the reverse holds:
he reduction of inter-cluster diffusion is prioritised over the
revention of intra-cluster diffusion.

. Policy response

.1. Uniform social distancing

Our previous results highlight the fact that individual strategic
ehaviours can lead to major inefficiencies in the containment of
pidemic spreading. In particular, there may be complete free-
iding of other players on the investment of the agent that is the
ost affected by the epidemic (Propositions 4.1 and 4.2) and the

nefficiency can scale up linearly with the number of agents (The-
rems 4.1 and 4.2 and Proposition 4.7). In other words, individual
trategic behaviours can be highly inefficient in terms of social
elfare as soon as there are a large number of agents involved.
his is the case in real-world applications whether one considers
pidemic spreading between individuals at the domestic scale or
etween countries at the global scale.
Against this backdrop, it is natural to search for a public

olicy response for the prevention of epidemic spreading. During
he recent COVID-19 outbreak, a widespread policy response has
een the implementation of social distancing measures that have
educed, in a uniform way, the scale of social interactions. For-
ally, we can define the social distancing policy at level κ ∈ R+

s restricting social interactions to Q (A, κ) := (ci,j)i,j∈N such that
for all i, j ∈ N , ci,j := κai,j/

∑
k∈N ai,k and thus

∑
j∈N ci,j = κ . This

mounts to using the strategy A−Q (A, κ). The level κ ∈ R+ must
be such that A − Q (A, κ) ≥ O. Hence, the social distancing policy
amounts to bounding the level of social interactions of each agent
to a fixed level. In practice, this has been implemented by massive
restrictions on socio-economic activities such as interdiction of
public gatherings, closing of schools and businesses, and travel
restrictions. A formal analysis of this policy in our framework
shows it can be socially efficient, at least if the initial contagion
probability and the disutility are assumed to be uniform. Namely,
it is optimal in the following sense.

Proposition 5.1. Consider an α and δ homogeneous game and
assume that

∑
k∈N ai,k > 0 for all i ∈ N .

1. If 2δβ t̄α ≥ ρ, then κ = 0 is optimal and the optimal social
distancing measure involves the suppression of every link.

2. If 2δβ t̄α < ρ, then for every ε > 0, there exists T̄ > 0 such
that for t̄ ≥ T̄ , one can find 2δβ t̄α < ρ ≤ 2δβ t̄α exp(β t̄(1−

α) × mini∈N
∑

k∈N ai,k) for which there exists an admissible
κ > 0 satisfying

Π̂ (A − Q (A, κ)) ≥ max
D∈D(A)

Π̂ (D) − ε .

Hence, uniform reduction of social interactions appears as
being an extremely efficient policy in our framework. This ap-
pears as a natural counterpart to existing results in the literature
that emphasise the role of highly connected nodes, e.g., ‘‘super
spreaders‘‘, in epidemic propagation (see, e.g., Pastor-Satorras
12
and Vespignani, 2001; Pastor-Satorras et al., 2015). Indeed uni-
form restriction of interactions necessarily leads to the fading of
super-spreaders.

5.2. Global actions and the price of Autarky

Social distancing measures can be implemented at the do-
mestic scale in order to reduce the propagation of epidemics
between individuals. However, at the international scale, there is
no authority entitled to implement such coercive measures. Fur-
thermore, individual countries can take measures to reduce their
interactions with other countries, e.g., border closures, but cannot
directly reduce interactions between two other countries. They
are thus, by default, in the framework of a local game. One could
nevertheless consider schemes in which countries with a higher
disutility from infection subsidise investments in other parts of
the network to reduce global contagiousness. This would turn
the problem into a global game. In order to compare outcomes
in these two situations, we introduce the notion of PoK, which
corresponds to the ratio between the social welfare at the worst
equilibrium of the local game and at the best equilibrium of the
global game.

PoK :=
|Worst social welfare at a Nash Equilibrium of the local game|
|Best social welfare at a Nash Equilibrium of the global game|

.

The PoK measures the welfare gains that can be induced by
a policy that allows agents to invest in the reduction of con-
tagiousness across the network. Such policies can notably be
implemented through international cooperation frameworks. The
policy induces welfare gains if PoK > 1, i.e. if global equilibria
are better than local ones. The policy is useless if PoK = 1,
i.e. if global and local equilibria coincide as in Example 4.1. The
latter implies in particular that an increase in the set of admis-
sible strategies does not necessarily induce an increase in social
welfare. Sometimes it could even lead to more free riding.

In general, the value of the PoK is determined by the network
structure and the individual disutilities associated to contagion,
measured by the coefficients δi, i ∈ N . In particular, following the
lines of the proofs of Theorem 4.1–4.2, one can provide an explicit
lower bound on the PoK, as detailed in the theorem below.

Theorem 5.1. Consider an α-Homogeneous Game and a complete
network with N ≥ 3. Assume that the local game L(δ, A, β, t̄, α, ρ)
and global game G(δ, A, β, t̄, α, ρ) are such that: the worst local
Nash Equilibrium D̄ is a Homogeneous Interior Equilibrium and the
best global Nash Equilibrium Ď is not a Full Investment Equilibrium.
Then (5.1) is given in Box I.

In particular, for all i, k ∈ N , k ̸= i,

0 ≤ ρ + αδiβ t̄

×

⎛⎝Ci,k[(1 − α)β t̄(A −

∑
j∈N

D̄j)] − Ci,i[(1 − α)β t̄(A −

∑
j∈N

D̄j)]

⎞⎠
= 2

⎛⎝ρ − αδiβ t̄Ci,i[(1 − α)β t̄(A −

∑
j∈N

D̄j)]

⎞⎠ . (5.2)

In the case of Example 4.1, the conditions of Theorem 5.1 are
satisfied and PoK = 1. More broadly, Eqs. (5.1)–(5.2) highlight
that the PoK increases when there exist agents i ∈ N with a large
disutility of contagion δi that are highly connected to other nodes
in the network, as measured by the communicability Ci,k(·), i, k ∈

N , k ̸= i. A salient example is that where one of the agents has a
much higher disutility of contagion than its peers. We thus intend
to study this example and more specifically to consider the limit
case where δ = δei for some i ∈ N , i.e. where the disutility of all
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PoK ≥

1
β t̄(1−α)

[
N(N − 1)ρ − (N − 2)α

∑
i∈N δiβ t̄Ci,i

(
(1 − α)β t̄(A −

∑
j∈N D̄j)

)]
+ ρ1⊤

∑
i∈N D̄i1

ρ

[
N2

2β t̄(1−α) + 1⊤
∑

i∈N Ďi1

] (5.1)

≥

N
β t̄(1−α)

N2

2β t̄(1−α) + 1⊤A1

Box I.
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ther agents is negligible with respect to that of agent i. In this
etting there is no indeterminacy on the agent that is investing
nd we can give a necessary condition for global strategies to
ominate local ones. This is the aim of the following proposition.

roposition 5.2. Consider an α-Homogeneous Game with a com-
letely homogeneous network such that for all (i, j) ∈ N ×N , ai,j =

for some a > 0. Assume that N ≥ 3 and that there is a single i ∈ N
uch that δi > 0. We denote this game by L(δei, A, β, t̄, α, ρ). If

iβ t̄α < ρ < δiβ t̄α
(
sinh(

√
N − 1β t̄(1 − α)a)
√
N − 1

+ cosh(
√
N − 1β t̄(1 − α)a)

)
,

then one has:

(1) Any local equilibrium D̄ is a Homogeneous Interior Equilib-
rium and is such that D̄j

= O, for all j ∈ N , j ̸= i, and
d̄ii,k = d̄ik,i = h for all {i, k} ∈ E for some h ∈ [0, a].

(2) Global strategies dominate local ones if and only if the param-
eters β, t̄, α, and a are such that

sinh(
√
N − 1β t̄(1−α)(a−h)) >

√
N − 1 cosh(

√
N − 1β t̄(1−α)(a−h)).

Hence, Proposition 5.2 provides a characterisation of net-
ork/contagion structure for which a policy/agreement that al-

ows agents to invest in links across the network is welfare
mproving. In contrast with Example 4.1, it shows that such policy
easures are particularly relevant when agents have heteroge-
eous disutilities from contagion. Hence, such policies of ‘‘sub-
idised containment‘‘ can be seen as a second-best alternative to
he ‘‘uniform containment‘‘ policies considered in
roposition 5.1 when the latter are not socially acceptable be-
ause of the heterogeneity of preferences.

. Conclusion

In this paper, we have investigated the prophylaxis of epi-
emic spreading from a normative point of view in a game-
heoretic setting. Agents have the common objective to reduce
he speed of propagation of an epidemic of the SI type through
nvestments in the reduction of the contagiousness of network
inks. Despite this common objective, strategic behaviours and
ree-riding can lead to major inefficiencies. We have shown that
he PoA can scale up linearly in our setting. This strongly calls for
ublic intervention to reduce the speed of diffusion. In this re-
pect, we have shown that a policy of uniform reduction of social
nteractions, akin to the social distancing measures enforced dur-
ng the COVID-19 pandemic, can be ε-optimal in a wide range of
etworks. Such policies thus have strong normative foundations.
ur results however assume that the cost of reducing interactions
s uniform among agents. Further research is required to inves-
igate to which extent one could relax this assumption. Indeed,
t neglects the fact that certain actors might value more social
 e

13
nteractions because of their economic, psychological, or social
haracteristics. Hence, the validity of this assumption strongly
epends on the scope of the analysis: it is a much more benign
pproximation when the focus is on public health than in the case
here economic and financial considerations ought to be taken

nto account. Additional results on the determination of the opti-
al level of social distancing would also be welcome. In practice,

he level of social distancing has been determined according to
olicy decisions about the socially/economically acceptable rate
f contagion, rather than inferred from individual preferences.
We have partly accounted for heterogeneity as far as the ben-

fits of prophylaxis are concerned. In this respect, we have shown
hat allowing agents to subsidise investments in the reduction
f contagiousness in distant parts of the network can be Pareto
mproving. This result calls for further research on the design
f mechanisms to improve the efficiency of cooperation against
pidemic spreading.
Finally, this preliminary paper does not account for the possi-

ility of local virus elimination, through natural immunisation or
accination. Individual strategies in this respect might strongly
nteract with network-based prophylactic strategies considered
n this paper. This is of particular relevance in a context such
s the one of the current COVID-19 pandemic, where availability
f vaccines is likely to differ across locations. Further research
s thus required to gain a broader understanding of individual
nd collective strategies when both social distancing and virus
radication can be, partially, implemented.
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ppendix

.1. Remark about notations

In the following to simplify notations, we use the contracted
otation Ci,j(A,D, β, t̄, x0) instead of Ci,j(β t̄(A−

∑
j∈N Dj) diag(1−

0))

.2. Characterisation results for arbitrary initial contagion probabil-
ties

The results of Section 4 on the characterisation of Nash equi-
ibria and social optima extend to a setting with an arbitrary
nitial contagion probability vector. The proofs below are given
n this extended setting in which our main results are stated as
ollows.4

4 Proposition 4.3, Remark 4.1, Proposition 4.4 and discussions in between also
xtend to this case. We do not provide the details for sake of brevity.
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emma A.1 (Extension of Lemma 4.1). For every i ∈ N , for any
trategy profile (Di,D−i) ∈ S(A), and for all k, ℓ ∈ N ,

∂Ui(·,D−i)
∂di

{k,ℓ}
(Di) =

∂Ui(·,D−i)
∂dik,ℓ

(Di) +
∂Ui(·,D−i)

∂diℓ,k
(Di)

= δiβ t̄[Ci,k(A,D, β, t̄, x0)x0ℓ
+ Ci,ℓ(A,D, β, t̄, x0)x0k ]

(A.1)

nd the marginal utility is non-negative. Moreover, the map
i(·,D−i) is concave on Si(A,D−i).

roposition A.1 (Extension of Proposition 4.1). A strategy profile
¯ ∈ K(A) is a Nash Equilibrium of the local game L(δ, A, β, t̄, x0, ρ)
f and only if for all {k, ℓ} ∈ E , the following two conditions hold:

(1) One of the following alternative holds:

(a) ρ < maxi∈{k,ℓ} δi
(
β t̄Ci,k(A, D̄, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A,

D̄, β, t̄, x0)x0k
)
and d̄k

{k,ℓ} + d̄ℓ
{k,ℓ} = a{k,ℓ},

(b) ρ > maxi∈{k,ℓ} δi
(
β t̄Ci,k(A, D̄, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A,

D̄, β, t̄, x0)x0k
)
and d̄k

{k,ℓ} = d̄ℓ
{k,ℓ} = 0,

(c) ρ = maxi∈{k,ℓ} δi
(
β t̄Ci,k(A, D̄, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A,

D̄, β, t̄, x0)x0k
)
and d̄k

{k,ℓ} + d̄ℓ
{k,ℓ} ∈ [0, a{k,ℓ}].

(2) For any i ∈ N , one has d̄i
{k,ℓ} > 0 only if

δi
(
β t̄Ci,k(A, D̄, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A, D̄, β, t̄, x0)x0k
)

≥ ρ.

roposition A.2 (Extension of Proposition 4.2). A strategy profile
ˇ ∈ S(A) is a Nash Equilibrium of the global game G(δ, A, β, t̄, x0, ρ)
f and only if for all {k, ℓ} ∈ E , the following two conditions hold:

(1) One of the following alternative holds:

(a) ρ < maxi∈N δi

(
β t̄Ci,k(A, Ď, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A,

Ď, β, t̄, x0)x0k
)
and

∑
i∈N ďi

{k,ℓ} = a{k,ℓ},

(b) ρ > maxi∈N δi

(
β t̄Ci,k(A, Ď, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A,

Ď, β, t̄, x0)x0k
)
and

∑
i∈N ďi

{k,ℓ} = 0,

(c) ρ = maxi∈N δi

(
β t̄Ci,k(A, Ď, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A,

Ď, β, t̄, x0)x0k
)
and

∑
i∈N ďi

{k,ℓ} ∈ [0, a{k,ℓ}].

(2) For any i ∈ N , one has ďi
{k,ℓ} > 0 only if

δi

(
β t̄Ci,k(A, Ď, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A, Ď, β, t̄, x0)x0k
)

≥ ρ.

roposition A.3 (Extension of Proposition 4.5). A strategy profile
ˆ ∈ D(A) is a Social Optimum if and only if for all {k, ℓ} ∈ E , one of
he following alternative holds:

(a) ρ <
∑

i∈N δi

(
β t̄Ci,k(A, D̂, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A, D̂, β, t̄,

x0)x0k
)
and d̂{k,ℓ} = a{k,l},

(b) ρ >
∑

i∈N δi

(
β t̄Ci,k(A, D̂, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A, D̂, β, t̄,

x0)x0k
)
and d̂{k,ℓ} = 0,

(c) ρ =
∑

i∈N δi

(
β t̄Ci,k(A, D̂, β, t̄, x0)x0ℓ

+ β t̄Ci,ℓ(A, D̂, β, t̄,

x0)x0k
)
and d̂{k,ℓ} ∈ [0, a{k,l}].

.3. Proofs for Section 3.5

roof of Theorem 3.1. We know from Remark 3.2 that the sets
(A) and K(A) of admissible strategies are compact and convex,

nd from Lemma 4.1 that the objective function Π is concave

14
n Si(A,D−i) and Ki(A,D−i) with i ∈ N and D−i
∈ (SN (R+))N−1.

oreover, since Π is continuous in its arguments, we therefore
onclude from Rosen (1965, Theorem 1) that a Nash Equilibrium
xists.

.4. Proofs for Section 4.1

roof of Lemma 4.1. Let i ∈ N and (Di,D−i) be a strategy profile
n S(A). For k, ℓ ∈ N , one has

∂Ui(·,D−i)
∂di

{k,ℓ}
(Di)

= δi⟨ei, β t̄ exp (β t̄(A −

∑
j∈N , j̸=i

Dj
− Di) diag(1 − x0))(Îk,ℓ + Îℓ,k)x0⟩,

here for any k, j ∈ N , Îk,j is the N-dimensional square matrix
ith null entries except on the kth−row and jth−column for

which the entry is equal to one. This leads to Eq. (A.1). Moreover,
for all k, ℓ, p, q ∈ N , we compute

∂Ui(·,D−i)
∂dik,ℓ∂dip,q

(Di)

= −⟨ei, (β t̄)2 exp (β t̄(A −

∑
j∈N , j̸=i

Dj
− Di)diag(1 − x0))Îp,qdiag(1 − x0)Îk,ℓx0⟩

=

⎧⎨⎩−(β t̄)2
(
exp (β t̄(A −

∑
j∈N , j̸=i D

j
− Di)diag(1 − x0))

)
i,p

(1 − x0q )x0ℓ
if k = q

0 otherwise.

Therefore the Hessian matrix of Ui(·,D−i) on Si(A,D−i) is the
matrix of a quadratic form that is negative semi-definite. The
concavity property thus follows.

A.5. Proofs for Sections 4.2–4.3

Proof of Proposition 4.1. For 1 ≤ i ≤ N , the optimisation
programme for characterising the Nash Equilibria is written as

max
Di∈MN

Πi(Di, D̄−i)

subject to:

dik,ℓ = diℓ,k, ∀ k, ℓ ∈ N , ℓ < k , (A.2)

dik,ℓ = 0, ∀ k, ℓ ∈ N , ℓ > k, k and ℓ ̸= i ,

dik,ℓ ≥ 0, ∀ k, ℓ ∈ N , ℓ > k, k or ℓ = i ,

(A − D̄−i
− Di)k,ℓ ≥ 0, ∀ k, ℓ ∈ N , ℓ ≥ k . (A.3)

Applying the Karush–Kuhn–Tucker conditions, we obtain that
D̄i

∈ Ki(A, D̄−i) is a solution if and only if, for any {k, ℓ} ∈ E , one
of the following cases holds, assuming without loss of generality
that ∂Uk(·, D̄−k)/∂dk

{k,ℓ}(D̄
k) ≤ ∂Uℓ(·, D̄−ℓ)/∂dℓ

{k,ℓ}(D̄
ℓ):

(a) (i) ρ < ∂Uk(·, D̄−k)/∂dk
{k,ℓ}(D̄

k) and d̄k
{k,ℓ} + d̄ℓ

{k,ℓ} = a{k,ℓ},
(ii) ∂Uk(·, D̄−k)/∂dk

{k,ℓ}(D̄
k) < ρ < ∂Uℓ(·, D̄−ℓ)/∂dℓ

{k,ℓ}(D̄
ℓ)

and d̄k
{k,ℓ} = 0, d̄ℓ

{k,ℓ} = a{k,ℓ},
(iii) ∂Uk(·, D̄−k)/∂dk

{k,ℓ}(D̄
k) = ρ < ∂Uℓ(·, D̄−ℓ)/∂dℓ

{k,ℓ}(D̄
ℓ)

and d̄k
{k,ℓ} ∈ [0, a{k,ℓ}], d̄ℓ

{k,ℓ} = a{k,ℓ} − d̄k
{k,ℓ},

(b) ρ > ∂Uℓ(·, D̄−ℓ)/∂dℓ
{k,ℓ}(D̄

ℓ) and d̄k
{k,ℓ} = d̄ℓ

{k,ℓ} = 0,
(c) (i) ∂Uk(·, D̄−k)/∂dk

{k,ℓ}(D̄
k) < ρ = ∂Uℓ(·, D̄−ℓ)/∂dℓ

{k,ℓ}(D̄
ℓ)

and d̄k
{k,ℓ} = 0, d̄ℓ

{k,ℓ} ∈ [0, a{k,ℓ}],
(ii) ∂Uk(·, D̄−k)/∂dk

{k,ℓ}(D̄
k) = ρ = ∂Uℓ(·, D̄−ℓ)/∂dℓ

{k,ℓ}(D̄
ℓ)

and 0 ≤ d̄k + d̄ℓ
≤ a .
{k,ℓ} {k,ℓ} {k,ℓ}
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roof of Proposition 4.2. For 1 ≤ i ≤ N , the optimisation
rogramme for characterising the Nash Equilibria is written as

max
Di∈MN

Πi(Di, Ď−i)

subject to:
ondition (A.2)–(A.3) ,
i
k,ℓ ≥ 0, ∀ k, ℓ ∈ N , ℓ > k .

Applying the Karush–Kuhn–Tucker conditions, we obtain that
ˇ i

∈ Si(A, Ď−i) is a solution if and only if, for any {k, ℓ} ∈ E , one
f the following cases holds:

(a) (i) ρ < mini∈N

(
∂Ui(·, Ď−i)/∂di

{k,ℓ}(Ď
i)
)
and

∑
q∈N ďq

{k,ℓ}
= a{k,ℓ},

(ii) there exists i, j ∈ N , such that ∂Ui(·, Ď−i)/∂di
{k,ℓ}(Ď

i)
< ρ < ∂Uj(·, Ď−j)/∂dj

{k,ℓ}(Ď
j) and ďq

{k,ℓ} = 0 for all
q ∈ Ai(Ď),

∑
q∈Āj(Ď) ď

q
{k,ℓ} = a{k,ℓ}, where for a given

h ≥ 1,

Ah(Ď) :=

{
1 ≤ r ≤ N :

∂Ur (·, Ď−r )
∂dr

{k,ℓ}
(Ďr ) ≤

∂Uh(·, Ď−h)
∂dh

{k,ℓ}
(Ďh)

}
,

and

Āh(Ď) :=

{
1 ≤ r ≤ N :

∂Ur (·, Ď−r )
∂dr

{k,ℓ}
(Ďr ) ≥

∂Uh(·, Ď−h)
∂dh

{k,ℓ}
(Ďh)

}
,

(iii) there exist i, j ∈ N , such that ∂Ui(·, Ď−i)/∂di
{k,ℓ}(Ď

i)
= ρ < ∂Uj(·, Ď−j)/∂dj

{k,ℓ}(Ď
j) and 0 ≤

∑
q∈Âi(Ď) ď

q
{k,ℓ}

≤ a{k,ℓ}, ď
q
{k,ℓ} = 0 for all q ∈

(
Āi(Ď)

)c
,
∑

q∈Āj(Ď) ď
q
{k,ℓ}

= a{k,ℓ} −
∑

q∈Âi(Ď) ď
q
{k,ℓ}, where for a given h ≥ 1,

Âh(Ď) :=

{
1 ≤ r ≤ N :

∂Ur (·, Ď−r )
∂dr

{k,ℓ}
(Ďr ) =

∂Uh(·, Ď−h)
∂dh

{k,ℓ}
(Ďh)

}
,

(b) ρ > maxi∈N
(
∂Ui(·, Ď−i)/∂di

{k,ℓ}(Ď
i)
)
and

∑
q∈N ďq

{k,ℓ} = 0,

(c) there exist j ∈ N , such that ρ = ∂Uj(·, Ď−j)/∂dj
{k,ℓ}(Ď

j) and

ďq
{k,ℓ} = 0 for all q ∈

(
Āj(Ď)

)c
, 0 ≤

∑
q∈Âj(Ď) ď

q
{k,ℓ} ≤ a{k,ℓ}.

Proof of Proposition 4.5. For 1 ≤ i ≤ N , the optimisation
programme for characterising the Social Optima is written as

max
D∈MN

Π̂ (D)

subject to:
dk,ℓ = dℓ,k, ∀ k, ℓ ∈ N , ℓ < k ,

dk,ℓ ≥ 0, ∀ k, ℓ ∈ N , ℓ > k ,

(A − D)k,ℓ ≥ 0, ∀ k, ℓ ∈ N , ℓ ≥ k .

The proof is then a straightforward adaptation of the proof of
Propositions 4.1 and 4.2.

A.6. Proofs for Section 4.4

We first note that we have an exact counterpart of Lemma 4.1
for the auxiliary utility function v̂i used in the definition of the
social optimum. Namely, one has:

Lemma A.2. For every i ∈ N , for any Social Optimum D ∈ D(A),
and for all k, ℓ ∈ N , one has:
∂v̂i(D)
∂d{k,ℓ}

= δiαβ t̄
(
Ci,k[(1 − α)β t̄(A − D)] + Ci,ℓ[(1 − α)β t̄(A − D)]

)
≥ 0.

Moreover, the map v̂ (·) is concave on D(A).
i

15
We then proceed with the proofs of Theorems 4.1 and 4.1.

Proof of Theorem 4.1. It follows from the assumption on Ď that
for all i ∈ N ,∑
k,ℓ∈N
k̸=ℓ

∂Ui(·, Ď−i)
∂di

{k,ℓ}
(Ďi) ≤ N(N − 1)ρ . (A.4)

Therefore appealing to Eq. (4.2) and Eq. (A.4), we obtain∑
i∈N

Πi(Ďi, Ď−i) =

∑
i∈N

Ui(Ďi, Ď−i) − ρ1⊤
∑
i∈N

Ďi1

= −
1

2(N − 1)β t̄(1 − α)

×

∑
i∈N

∑
k,ℓ∈N
k̸=ℓ

∂Ui(·, Ď−i)
∂di

{k,ℓ}
(Ďi) − ρ1⊤

∑
i∈N

Ďi1

≥ −ρ

[
N2

2β t̄(1 − α)
+ 1⊤

∑
i∈N

Ďi1

]
. (A.5)

Similarly, it follows from the assumption on D̂ that it is such that
for all k, ℓ ∈ N , k ̸= ℓ,

∑
i∈N

∂v̂i(D̂)
∂d{k,ℓ}

≥ ρ . (A.6)

e deduce from Eq. (4.3) and Eq. (A.6),

ˆ (D̂) =

∑
i∈N

v̂i(D̂) − ρ1⊤D̂1

= −
1

2(N − 1)β t̄(1 − α)

∑
i∈N

∑
k,ℓ∈N
k̸=ℓ

∂v̂i(D̂)
∂d{k,ℓ}

− ρ1⊤D̂1

≤ −ρ

[
N

2β t̄(1 − α)
+ 1⊤D̂1

]
. (A.7)

Combining Eq. (A.5) and (A.7) and using Eq. (3.8), we obtain the
result.

Proof of Theorem 4.2. We know from Eq. (A.1) that for all
i, k, ℓ ∈ N ,

∂Ui(·, D̄−i)
∂di

{k,ℓ}
(D̄i) = αβ t̄δi[Ci,k(A, D̄, β, t̄, x0) + Ci,ℓ(A, D̄, β, t̄, x0)] .

(A.8)

Therefore, it follows from the assumption on D̄ that for all i, ℓ ∈

N , i ̸= ℓ,

∂Ui(·, D̄−i)
∂di

{i,ℓ}
(D̄i) = αδiβ t̄[Ci,i(A, D̄, β, t̄, x0) + Ci,ℓ(A, D̄, β, t̄, x0)] ≤ ρ .

(A.9)

Hence Eqs. (A.8)–(A.9) give that for all distinct i, k, ℓ ∈ N ,

∂Ui(·, D̄−i)
∂di

{k,ℓ}
(D̄i) ≤ ρ + αδiβ t̄[Ci,k(A, D̄, β, t̄, x0) − Ci,i(A, D̄, β, t̄, x0)]

(A.10)

≤ 2[ρ − αδiβ t̄Ci,i(A, D̄, β, t̄, x0)] . (A.11)
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e deduce from Eqs. (A.10)–(A.11) that for all i ∈ N ,

∑
k,ℓ∈N
k̸=ℓ

∂Ui(·, D̄−i)
∂di

{k,ℓ}
(D̄i)

=

∑
ℓ∈N
ℓ̸=i

∂Ui(·, D̄−i)
∂di

{i,ℓ}
(D̄i) +

∑
k∈N
k̸=i

∂Ui(·, D̄−i)
∂di

{k,i}
(D̄i) +

∑
k,ℓ∈N
k̸=ℓ
k,ℓ̸=i

∂Ui(·, D̄−i)
∂di

{k,ℓ}
(D̄i)

≤ N(N − 1)ρ + (N − 2)αδiβ t̄
∑

k∈N , k̸=i

(Ci,k(·) − Ci,i(·))(A, D̄, β, t̄, x0)

(A.12)
≤ 2(N − 1)[(N − 1)ρ − (N − 2)αδiβ t̄Ci,i(A, D̄, β, t̄, x0)] .

n particular, we observe from the non-decreasing property of
arginal utilities (recall Lemma 4.1), that for all i ∈ N ,

+ αδiβ t̄[Ci,k(·) − Ci,i(·)](A, D̄, β, t̄, x0) ≥ 0∀ k ∈ N , k ̸= i, and

ρ − αδiβ t̄Ci,i(A, D̄, β, t̄, x0) ≥ 0.

inally, after appealing to Eq. (4.2) and Eq. (A.12), we obtain∑
i∈N

Πi(D̄i, D̄−i) =

∑
i∈N

Ui(D̄i, D̄−i) − ρ1⊤
∑
i∈N

D̄i1

= −
1

2(N − 1)β t̄(1 − α)

∑
i∈N

∑
k,ℓ∈N
k̸=ℓ

∂Ui(·, D̄−i)
∂di

{k,ℓ}
(D̄i) − ρ1⊤

∑
i∈N

D̄i1

≥ −
1

2β t̄(1 − α)

[
N2ρ +

(N − 2)α
(N − 1)

∑
i∈N

Ki(δi, A, D̄, D̄, β, t̄, x0)

]
− ρ1⊤

∑
i∈N

D̄i1 .

Appealing to Eq. (A.7) and Eq. (3.7), the result follows.

A.7. Proofs for Section 4.5

Proof of Proposition 4.7. According to Example 4.1, under the
holding assumptions, Ď is a local Homogeneous Interior Equilib-
rium which yields an equilibrium network of the form given by
Identity (4.5). More precisely, for all distinct i, k, ℓ ∈ N ,

∂Ui(·, Ď−i)
∂di

{i,ℓ}
(Ďi) = δβ t̄α (2χ (h) − exp(−h)) = ρ and

∂Ui(·, Ď−i)
∂di

{k,ℓ}
(Ďi) = ρ − δβ t̄α exp(−h).

In particular, it follows from the non-decreasing property of
marginal utilities (recall Lemma 4.1) that ρ − δβ t̄α exp(−h) ≥ 0.
It is then straightforward to check that∑
i∈N

Πi(Ďi, Ď−i) = −
N2ρ

2β t̄(1 − α)
+

N(N − 2)δα exp(−h)
2(1 − α)

−ρ1
⊤
∑
i∈N

Ďi
1.

n the other hand, one can assume without loss of generality that
ˆ is of the form (recall the discussion after Proposition 4.6)

ˆ :=

⎛⎜⎜⎜⎜⎝
0 d̂ . . . d̂

d̂
. . .

. . .
...

...
. . .

. . . d̂
d̂ . . . d̂ 0

⎞⎟⎟⎟⎟⎠ , for some d̂ ≥ 0.

he proof is thus concluded proceeding as in the proof of Theo-
em 4.1 to prove Eq. (A.7), and recalling Eq. (3.8).
16
roof of Remark 4.2. We first restrict our attention to the setting
here each agent is constrained to use the same action on each

ink to a neighbour of a given type (i.e. bridge or non-bridge).
e denote the corresponding strategy space as Sb for a bridge
ode and Sn for a non-bridge node. Then, following Hefti (2017),
e consider the mapping φ = (φb, φn)) : Sb × Sn → Sb × Sn,
hich associates to a pair of strategy (sb, sn) the best-response of
ridge φb(sb, sn) and non-bridge φn(sb, sn) players, assuming that
ll bridge players play sb and all non-bridge players play sn. It is
traightforward to check that one can apply Kakutani fixed-point
heorem in this setting and thus find that φ has a fixed point
s∗b, s

∗
n). For a bridge player, s∗b is a best-response to the strategy

rofile induced by (s∗b, s
∗
n) in the game where its strategy space is

b. Assume it is not a best-response in the original strategy space.
hen, using the convexity of the best-response and the symmetry
roperties of the game, one can construct, via an appropriate
onvex-combination, a best-response that actually is in Sb. This
ields a contradiction. Thus s∗b is a best-response in the original
ame. We show accordingly that the symmetric strategy profile
nduced by (s∗b, s

∗
n) is an equilibrium of the original game.

.8. Proofs for Section 5

The proof of Proposition 5.1 relies on the following lemma that
tates that for large t̄ and homogeneous initial contagion proba-
ilities, the utility can be approximated through the eigenvector
entrality of the contagion network.

emma A.3. Consider an (α)-Homogeneous Game, and let D ∈ S(A)
e such that A −

∑
i∈N Di is irreducible and aperiodic. Let then µ1

enote the Perron–Frobenius eigenvalue of (A−
∑

i∈N Di), |µ1 − µ2|

he spectral gap and v the normalised eigenvector associated to µ1,
orresponding to the eigenvector centrality of the network. One has

exp

(
β t̄(1 − α)(A −

∑
i∈N

Di)

)
=
(
1 + O(exp(−β t̄(1 − α)|µ1 − µ2|))

)
exp(β t̄(1 − α)µ1)vv⊤ .

The proof of Lemma A.3 follows from the spectral decompo-
ition of A −

∑
i∈N Di and a direct application of the Perron–

robenius theorem (see Lee et al. (2019, Appendix C) for details).
e furthermore have the following remark.

emark A.1. As A is irreducible and aperiodic, the condition
i∈N dij,k < aj,k for all j, k ∈ N such that aj,k > 0, is sufficient for

etting the irreducibility and aperiodicity of A −
∑

i∈N Di.

The proof of Proposition 5.1 follows.

roof of Proposition 5.1. Let us first remark that in the case
here 2δβ t̄α ≥ ρ, one can check that D̂ = A is a Social Optimum.
his amounts to saying that Q (A, 0) is optimal and thus allows to
onclude. We now consider the case where 2δβ t̄α < ρ. One can
asily check that for every t̄ > 0 one can find 2δβ t̄α < ρ ≤

δβ t̄α exp(β t̄(1 − α) × mini∈N
∑

k∈N ai,k) such that there exists
< κ̄ ≤ mini∈N

∑
k∈N ai,k satisfying

δβ t̄α exp(β t̄(1 − α)κ̄) = ρ . (A.13)

Let us then recall that for any κ ≥ 0, and k, ℓ ∈ N ,

∂Π̂

∂d{k,ℓ}
(A − Q (A, κ)) =

∑
i∈N

δβ t̄α exp
(
β t̄(1 − α)Q (A, κ)

)
i,k

+

∑
i∈N

δβ t̄α exp
(
β t̄(1 − α)Q (A, κ)

)
i,ℓ − ρ.
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Now, it is straightforward to check that, for κ > 0, the largest
eigenvalue of Q (A, κ) is µ1 := κ . According to the Perron–
robenius theorem, this largest eigenvalue is simple. Further-
ore, the associated normalised eigenvector is v = (1/

√
N)1.

hus, applying Lemma A.3, one gets

exp
(
β t̄(1 − α)Q (A, κ)

)
= exp(β t̄(1 − α)κ)V

(
1 + O

(
exp(−β(1 − α)|µ1 − µ2|t̄)

))
,

here V := vv⊤ and µ2 denotes the second largest eigenvalue in
odule.
One shall then notice that for all i, j ∈ N , (V )i,j = 1/N , so that

∂Π̂

∂d{k,ℓ}
(A − Q (A, κ))

= 2δβ t̄α exp(β t̄(1 − α)κ)
×
(
1 + O

(
exp(−β(1 − α)|µ1 − µ2|t̄)

))
− ρ.

Noting that, all the other parameters being fixed, the spectral
ap |µ1 − µ2|t̄ is increasing with respect to t̄ and κ , one can
ssume that for every ε > 0, there exists T̄ > 0 such that for

¯ ≥ T̄ ,

δβ t̄α exp(β t̄(1 − α)κ)
(
1 + O

(
exp(−β(1 − α)|µ1 − µ2|t̄)

))
≤ 2δβ t̄α exp(β t̄(1 − α)κ)(1 + ε/ρ∥A∥),

or all κ > 0. Combining the latter with Eq. (A.13), one concludes
hat Q (A, κ̄) is an approximate critical point in the sense that for
ll {k, ℓ} ∈ E ,

∂Π̂

∂d{k,ℓ}
(A − Q (A, κ̄))

⏐⏐⏐⏐⏐ ≤ ε/∥A∥ . (A.14)

Furthermore, if D̂ denotes the Social Optimum, one has by con-
struction

∥A − Q (A, κ̄) − D̂∥ ≤ ∥A∥ . (A.15)

Now, Π̂ being continuous and differentiable, one gets through the
mean value theorem

|Π̂ (A − Q (A, κ̄)) − Π̂ (D̂)|

≤

⏐⏐⏐⏐⏐ ∂Π̂

∂d{k,ℓ}
(A − Q (A, κ̄))

⏐⏐⏐⏐⏐× ∥A − Q (A, κ̄) − D̂∥ ,

leading, using Eqs. (A.14) and (A.15), to the required result

|Π̂ (A − Q (A, κ̄)) − Π̂ (D̂)| ≤ ε .

Proof of Proposition 5.2. We assume without loss of general-
ity that i = 1. By concavity of Π1 the set of local optima is
convex. Moreover, given the asymmetry of the game (involving
only player 1), the set of local optima shall be invariant by the
permutation of nodes leaving node 1 invariant. Thus, the average
of all locally optimal profiles is locally optimal. We let D̄ be such
optimum. It is, in particular, such that there exists h ∈ [0, a]
such that for all 1 < j ≤ N, d̄1,j = d̄j,1 = h. For 1 ≤ j ≤ N ,
C1,j(A, D̄, β, t̄, x0) is of the form

δ1β t̄α(exp(H̄))1,j,

where H̄ is written as

H̄ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 µ . . . . . . µ

µ
. . . 0 . . . 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
with µ := β t̄(1 − α)(a − h).
µ 0 . . . 0 0
17
Using a Taylor expansion, we obtain that

(exp(H̄))1,1 =

∑
k≥0

1
2k!

(N − 1)kµ2k
= cosh(

√
N − 1µ),

while for 1 < j ≤ N ,

(exp(H̄))1,j =

∑
k≥0

1
(2k + 1)!

(N − 1)kµ2k+1
=

sinh(
√
N − 1µ)

√
N − 1

.

Hence, in view of the assumption on ρ, D̄ is a Homogeneous
Interior Equilibrium. Moreover, global strategies dominate local
ones if and only if for some 1 < j ≤ N , C1,j(A, D̄, β, t̄, x0) >

1,1(A, D̄, β, t̄, x0) and thus if

sinh(
√
N − 1µ) >

√
N − 1 cosh(

√
N − 1µ).
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