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Voltage-gated Cav1 and Cav2 Ca
21 channels are comprised of

a pore-forming a1 subunit (Cav1.1-1.4, Cav2.1-2.3) and auxiliary
b (b1-4) and a2d (a2d2124) subunits. The properties of these
channels vary with distinct combinations of Cav subunits and al-
ternative splicing of the encoding transcripts. Therefore, the
impact of disease-causing mutations affecting these channels
may depend on the identities of Cav subunits and splice var-
iants. Here, we analyzed the effects of a congenital stationary
night blindness type 2 (CSNB2)-causing mutation, I745T (IT),
in Cav1.4 channels typical of those in human retina: Cav1.4
splice variants with or without exon 47 (Cav1.41ex47 and
Cav1.4Dex47, respectively), and the auxiliary subunits, b2X13

and a2d-4. We find that IT caused both Cav1.4 splice variants
to activate at significantly more negative voltages and with
slower deactivation kinetics than the corresponding WT chan-
nels. These effects of the IT mutation, along with unexpected
alterations in ion selectivity, were generally larger in channels
lacking exon 47. The weaker ion selectivity caused by IT led to
hyperpolarizing shifts in the reversal potential and large out-
ward currents that were evident in channels containing the
auxiliary subunits b2X13 and a2d-4 but not in those with b2A

and a2d-1. We conclude that the IT mutation stabilizes chan-
nel opening and alters ion selectivity of Cav1.4 in a manner that
is strengthened by exclusion of exon 47 and inclusion of b2X13

and a2d-4. Our results reveal complex actions of IT in modify-
ing the properties of Cav1.4 channels, which may influence
the pathological consequences of this mutation in retinal
photoreceptors.

Voltage-gated Ca21 (Cav) channels are comprised of a pore-
forming a1 subunit and two auxiliary subunits, b and a2d
(reviewed in Ref. 1). The a1 subunit is comprised of 4 homolo-
gous domains (I-IV), each containing 6 alpha-helical trans-
membrane-spanning segments (S1–S6); the S1–S4 segments
form a voltage-sensing domain, and S5–S6 forms the pore
(2). In contrast to the diverse complement of Cav channels
expressed in many neurons, the pore-forming a1F subunit
(referred to as Cav1.4 from here on), encoded by the Cacna1f
gene, appears to be the major Cav subtype localized in the syn-

aptic terminals of photoreceptors in the retina (3, 4) where it
co-assembles with b2 and a2d-4 subunits (5). Within photore-
ceptor synaptic terminals, Cav1.4 channels are activated at the
relatively depolarized voltage of these cells in darkness, causing
the tonic release of glutamate. At the sign-inverting synapse
formed between photoreceptors and depolarizing bipolar
cells, the termination of Cav1.4-dependent glutamate release
by light stimuli enables disinhibition of a nonselective cation
channel, initiating excitation of the ON pathway in the retina
(6, 7). Thus, the voltage-dependent properties of Cav1.4 are
critical parameters for controlling the dynamic range of vis-
ual signaling.
More than 140 mutations in Cacna1f have been identified

and are linked to vision disorders including congenital station-
ary night blindness type 2 (CSNB2) (reviewed in Ref. 8). The
sequelae of these mutations are not entirely clear because,
when analyzed in heterologous expression systems, they can
weaken, enhance, or have no impact on the function of Cav1.4
(9–13). Understanding the pathological consequences of
CSNB2 mutations is complicated by the functional diversity
of retinal Cav1.4 conferred in part by alternative splicing of
the pre-mRNAs corresponding to each subunit (5, 14–16).
The b2 variant that is most highly expressed in human retina
contains an alternatively spliced exon 7B (b2X13) and causes
stronger voltage-dependent inactivation of Cav1.4 than b2

variants with exon 7A (b2A) (5). The Cav1.4 a1 pre-mRNA
also undergoes alternative splicing, particularly in the sequence
encoding the large cytoplasmic C-terminal domain (15, 16).
We previously characterized a Cav1.4 variant lacking exon 47
(Cav1.4Dex47) that is highly expressed in human retina (16).
Exon 47 encodes a portion of a C-terminal modulatory domain
(CTM) in Cav1.4 that suppresses Ca21-dependent inactivation
(CDI) and causes depolarizing shifts in the voltage-dependence
of activation (10, 17). When expressed in a human embryonic
kidney cell line (HEK293T), Cav1.4Dex47 exhibits more nega-
tive activation thresholds and stronger CDI than Cav1.4 variants
containing exon 47 (Cav1.41ex47) (16, 18).
Studies investigating the electrophysiological consequen-

ces of Cacna1f mutations have focused on the Cav1.41ex47
variant coexpressed with auxiliary subunits other than b2X13

and a2d-4 (9–13). Alternative splicing can affect the severity
of disease-causing mutations in Cav channel genes (19). Thus,
analysis of Cacna1f mutations in the context of Cav1.4
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variants expressed in photoreceptors in human retina is nec-
essary for understanding the visual phenotypes associated
with such mutations.
Here, we investigated the effects of a CSNB2-causing

mutation on the properties of Cav1.41ex47 and Cav1.4Dex47
channels containing b2X13 and a2d-4. The mutation results in
the replacement of isoleucine 745 with a threonine (IT) in the
S6 helix of domain 2 (IIS6, Fig. 1A). In Cav1.41ex47 coex-
pressed with a2d-1 and b3 or b2, the IT mutation causes a
large hyperpolarizing shift (.30 mV) in the voltage-depend-
ence of activation (12). Our results indicate that, when coex-
pressed with b2X13 and a2d-4, Cav1.41ex47 channels bearing
the IT mutation (Cav1.41ex47IT) show hyperpolarized acti-
vation voltages compared with wild-type (WT) channels. The
gain-of function effect is more severe for Cav1.4Dex47 chan-
nels with the IT mutation (Cav1.4Dex47

IT), which showed
more negative activation thresholds and slower deactivation
kinetics than Cav1.41ex47IT. An unexpected finding is that IT
alters the ion selectivity of both Cav1.4 splice variants in a man-
ner that varies with the identity of the a2d subunit. Our findings
highlight the importance of splice variation and auxiliary subu-
nit composition as potential modifiers of disease-causing muta-
tions affecting Cav channels.

Results

IT mutation enhances activation and slows deactivation of
Cav1.41ex47

Exon 47 resides in the CTM of Cav1.4 (Fig. 1A); deletion of
this exon, like the IT mutation, causes a large negative shift in
the voltage dependence of channel activation (16, 18). Thus,
the effect of IT on Cav1.4 activation could be additive, or alter-
natively, could be occluded by exon 47 deletion. To distinguish
between these possibilities, we compared the activation proper-
ties of Ba21 currents (IBa) mediated by Cav1.41ex47 and
Cav1.4Dex47, and the corresponding IT mutant channels, in
transfected HEK293T cells. Ba21 rather than Ca21 was used as
the charge carrier to minimize the complicating effects of CDI
which, whereas negligible in Cav1.41ex47, is prominent in
Cav1.4Dex47 (18). Because previous analyses of Cav1.41ex47IT

were performed primarily with b3 or b2a, and a2d-1 (12), we
first characterized the effect of IT on Cav1.41ex47 coex-
pressed with auxiliary subunits representative of Cav1.4 com-
plexes in the retina (i.e. b2X13 and a2d-4 (5)). Although there
was no effect of IT on the slope factor (k), Boltzmann fits of
current-voltage (I-V) plots showed that the half-maximal
voltage of activation (Vh) of Cav1.41ex47IT was significantly
more negative than that of Cav1.41ex47 (Fig. 1, B and C, Ta-
ble 1).
Exponential fits of the rising phase of the peak currents

yielded time constants for activation (tact) that were signifi-
cantly longer (Table 2) and with weaker voltage dependence
for Cav1.41ex47IT (v = 250.3 mV) than for Cav1.41ex47 (v =
226.9 mV; F2,7 = 16.4, p = 0.002; Fig. 2, A and B). To analyze
rates of channel closure, the time constant for deactivation
(tdeact) was obtained from exponential fits of the decay phase of
the tail current evoked upon repolarization of the mem-
brane voltage. tdeact was significantly greater at the most
positive repolarization voltage tested (-60 mV, Table 2) and
the voltage-dependence of tdeact was significantly steeper
for Cav1.41ex47IT (v = 43.1 mV) than for Cav1.41ex47 (v =
169.9 mV; F2,22 = 59.2, p , 0.0001; Fig. 2, C and D). Thus, as
has been shown for Cav1.2 channels bearing the analogous
IT mutation (20), IT slows the activation and deactivation of
Cav1.4 containing exon 47 in a highly voltage-dependent
manner.

Deletion of exon 47 augments effects of the IT mutation on
voltage-dependent gating of Cav1.4

We next investigated how deletion of exon 47 affects the
impact of the IT mutation (Fig. 3A). As for Cav1.41ex47 (Fig.
1C), IT caused a negative shift in Vh for Cav1.4Dex47 (Fig. 3, B
and C, Table 1). The net hyperpolarizing effect of IT (DVh) was
not significantly different between Cav1.41ex47 (median DVh=
19.9 mV, n = 11) and Cav1.4Dex47 (median DVh= 18.9 mV, n =
8; Mann-Whitney U = 44, p . 0.999). However, the additive
effects of the IT mutation and deletion of exon 47 resulted in
an extremely negative activation threshold of Cav1.4Dex47

IT

(; 270 mV, Fig. 3C). Moreover, IT enhanced rather than
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weakened the voltage-dependence of tact in the absence of exon
47 (v = 221.4 mV for Cav1.4Dex47

IT versus v = 233.4 mV for
Cav1.4Dex47; F2,8 = 5.3, p = 0.03; Fig. 4,A and B).

Similar to its effects in the presence of exon 47 (Fig. 2, C and
D), IT strengthened the voltage-dependence of tdeact (v = 104.1
mV for Cav1.4Dex47 versus v = 27.6 mV for Cav1.4Dex47

IT;

Table 1
Parameters from I–V relationships of Cav1.41ex47 and Cav1.4Dex47 with or without IT mutation
Vh, k, Erev, and peak IBa values (mean6 S.E.) were determined from Boltzmann fits of the I-V data in Figs. 1, 3, and 9 and as described under “Experimental procedures.”

Peak IBa (pA/pF) p Value Vh (mV) p Value k p Value Erev (mV) p Value

Cav1.41ex471 b2x13 1 a2d-4 25.66 1.4 – 28.66 0.4 – 26.26 1.6 – 58.36 3.7 –
Cav1.41ex47IT1 b2x13 1 a2d-4 25.36 1.2 0.904a 228.56 2.0 ,0.0001a 28.56 1.2 0.253b 37.16 3.7 ,0.0001a

Cav1.4Dex471 b2x13 1 a2d-4 210.56 1.9 – 224.86 1.3 – 26.66 0.4 – 54.36 1.5 v
Cav1.4Dex47

IT1 b2x13 1 a2d-4 22.66 0.4 0.002b 243.76 2.1 ,0.0001b 211.26 1.0 ,0.001b 16.76 5.0 ,0.0001a

Cav1.41ex471 b2A1 a2d-1 211.26 2.0 – 22.76 1.2 – 27.16 0.2 – 52.76 0.8 –
Cav1.41ex47IT1 b2A 1 a2d-1 29.26 3.0 0.581b 228.36 2.0 ,0.0001b 27.46 1.1 0.527a 50.16 2.4 0.237b

Cav1.4Dex471 b2A 1 a2d-1 217.86 0.9 – 219.26 0.5 – 24.66 0.8 – 50.46 3.2 –
Cav1.4Dex47

IT1 b2A 1 a2d-1 20.66 0.1 0.082b 236.16 2.5 0.003b 27.76 0.5 0.009b 41.06 3.2 0.121b

aMann-Whitney test.
b Student’s t test.

Table 2
Time constants for activation and deactivation of Cav1.41ex47 and Cav1.4Dex47 with or without IT mutation
tact was obtained from single exponential fits of the rising phase of currents evoked by the voltages indicated in parentheses. tdeact was obtained from single exponential
fits of the rising phase of currents evoked upon depolarization from 10-ms steps to voltages evoking peak inward IBa indicated in parentheses and repolarization to 260
mV.

Channel tact (ms) p Value tdeact (ms) p-Value

Cav1.41ex471 b2x13 1 a2d-4 1.86 0.2 (0 mV) – 4.46 0.8 (0 mV) –
Cav1.41ex47IT1 b2x13 1 a2d-4 2.86 0.2 (220 mV) 0.019a 14.26 1.8 (220 mV) ,0.001a

Cav1.4Dex471 b2x13 1 a2d-4 2.06 0.2 (210 mV) – 3.16 0.3 (210 mV) –
Cav1.4Dex47

IT1 b2x13 1 a2d-4 2.56 0.4 (230 mV) 0.343a 376 9.7 (230 mV) 0.004b

a Student’s t test.
bMann-Whitney test.
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F2,22 = 151.6, p , 0.0001; Fig. 4, C and D). However, IT
increased tdeact more than 10-fold for Cav1.4Dex47 versus ;4-
fold for Cav1.41ex47 upon repolarization to 260 mV (Table
2). These results indicate that deletion of exon 47 augments the
gain-of-function effects of IT by modifying the kinetics and
voltage-dependence of channel activation and deactivation.

Unique effects of IT on Cav1.4Dex47

An effect of IT that was not reported previously was a reduc-
tion in current density, which was only seen in the absence of
exon 47 (Figs. 1C and 3C, Table 1). We first tested the possibil-
ity that IT impaired the stability of the channel in ways that
diminished overall levels of the Cav1.4Dex47 protein. However,
Western blots indicated similar levels of total channel protein
in cells transfected with either Cav1.4Dex47 or Cav1.4Dex47

IT

(Fig. 5A). Moreover, biotinylation and streptavidin pulldown of
cell-surface proteins revealed no significant difference in the
levels of Cav1.4Dex47 or Cav1.4Dex47

IT in the plasma mem-

brane (Fig. 5B). Thus, impaired trafficking of the mutant chan-
nels to the cell surface was unlikely to be the major cause of the
decrease in current density. A second unexpected effect of IT
was an apparent decrease in ion selectivity based on the devel-
opment of large outward currents at positive voltages and
hyperpolarizing shift in the reversal potential (Erev) (Figs. 1C
and 3C, Table 1). The outward currents and median change in
Erev (DErev) were significantly larger for Cav1.4Dex47

IT (237.2
mV, n = 8) than for Cav1.41ex47IT (216.6 mV, n = 11; Mann-
Whitney U = 14, p = 0.01) relative to the corresponding WT
channels. Therefore, we probed the underlying mechanism
with an emphasis on Cav1.4Dex47.
The nature of the outward currents wasmysterious consider-

ing that the major intracellular cation in our recording solu-
tions was NMDG1 (N-methyl-D-glucamine), a large organic
cation that does not permeate most voltage-gated ion channels.
However, Cav1.2 and Cav1.3 are permeable to NMDG1 under
some conditions (21, 22). If IT enabled NMDG1 efflux through
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Cav1.4 channels, then the outward currents in cells transfected
with Cav1.4Dex47

IT should be reduced by known blockers of
Cav channels such as Cd21 (23) and by decreasing the chemical
gradient of NMDG1 across the membrane. Consistent with
these predictions, Cd21 abolished outward currents in cells
transfected with Cav1.4Dex47

IT as well as the inward currents
in cells expressing either WT or mutant channels (Fig. 6). To
test the effects of altering the NMDG1 concentration, we com-
pared Erev using extracellular solutions containing 5 or 130 mM

NMDG1 ([NMDG1]5 and [NMDG1]130, respectively, Fig. 7A).
Although having no effect on Erev of Cav1.4Dex47 (66.5 6 2.3

mV with [NMDG1]5, n = 4 versus 68.3 6 1.4 mV with
[NMDG1]130, n = 4, p = 0.532 by t test; Fig. 7, B and C), increas-
ing extracellular NMDG1 caused a positive shift in Erev (31.26
2.7 mV with [NMDG1]5, n = 4 versus 53.1 6 3.6 mV with
[NMDG1]130, n = 3, p = 0.004 by t test) and diminished out-
ward currents in cells expressing Cav1.4Dex47

IT (Fig. 7, B and
C). In addition, increasing the extracellular [NMDG1] had no
effect on the permeability of Ba21 versusNMDG1 (PBa/PNMDG)
for Cav1.4Dex47 (351.4 6 53.4, n = 4, for [NMDG1]5 versus
391.7 6 36.9, n = 4, for [NMDG1]130, p = 0.558 by t test) but
significantly increased that for Cav1.4Dex47

IT (27.4 6 5.3, n =
4, for [NMDG1]5 versus 133.46 37.0, n = 3, for [NMDG1]130,
p = 0.020 by t test). We further assessed the effect of IT on se-
lectivity of Cav1.4Dex47 by measuring Erev and PBa/Px under
other bi-ionic conditions. With intracellular solutions contain-
ing Na1 or K1, IT caused a negative shift in Erev and lowered
PBa/Px (Fig. 8, Table 3). Taken together, these results signified a
reduction in the ionic selectivity of Cav1.4Dex47

IT compared
withWT channels.
Although smaller for Cav1.41ex47 than for Cav1.4Dex47

(Fig. 1C, Table 1) the effects of IT on Erev were, nevertheless,
not reported for Cav1.41ex47 in a previous study (12). A key
difference was in the choice of auxiliary subunits (b2X13 and
a2d-4, this study) versus b3 or b2A and a2d-1 (12)). Therefore,
we tested the impact of IT on the Cav1.4 variants containing
b2A and a2d-1. Consistent with the previous study, IT caused a
large negative shift in Vh in these experiments. Although the
mutation strongly reduced current densities of Cav1.4Dex471
b2A 1 a2d-1, IT did not affect Erev (Fig. 9, A–C, Table 1). Thus,
the identity of the auxiliary b and a2d subunits critically deter-
mines the effects of IT on selectivity of Cav1.4.

Discussion

Our study provides new insights about how IT affects the
biophysical properties of Cav1.4. First, we show that IT pro-
duces a large negative shift in voltage-dependent activation of
Cav1.4 channels containing the major auxiliary Cav subunits in
the retina, b2X13 and a2d-4 (Figs. 1 and 3, Table 1), as well as
Cav1.4 channels comprised of other auxiliary subunits (Fig. 9,
Table 1, and see Ref. 12). Second, deletion of exon 47
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exacerbates the gain of function effects of IT: Cav1.4Dex47
IT

activates at more negative voltages and exhibits stronger volt-
age-dependent alterations in the kinetics of activation and
deactivation than Cav1.41ex47IT (Figs. 1–4, Tables 1 and 2).
Third, IT weakens the selectivity of Cav1.4 for Ba

21 in amanner
that varies with the identity of the auxiliary b and a2d subunits
(Figs. 1, 3, and 9, Tables 1 and 3). Our findings highlight the im-
portance of splice variation and auxiliary subunit composition

as potential modifiers of disease-causing mutations affecting
Cav channels.

Conserved role of Ile-745 in activation gating

The S5 and S6 pore-lining helices give rise to the selectivity
filter (2), with the four S6 helices (IS6–IVS6) converging at the
intracellular side of the membrane in the closed state of the
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channel (2). Ile-745 of Cav1.4 corresponds to Ile-781 in IIS6 of
Cav1.2, which lies in a cluster of hydrophobic residues (Leu-
779–Ala-782, LAIA) in the S6 bundle-crossing region that are
conserved among Cav1 and Cav2 channels (24). Disruptive
mutations of these residues also cause hyperpolarizing shifts in
activation and slowing of deactivation of Cav1.2 and Cav2.3 (20,
25). Our study is the first to show that the IT mutation causes
similar effects on Cav1.4. Based on the correlation of their
hydrophobicity and the negative shift in Vh (20, 25), the distal
S6 residues are likely buried within a hydrophobic environment
in the closed channel and become exposed to the aqueous mi-
lieu upon pore opening. By analogy to the model of Cav1.2 (26),
contacts between Ile-745 with a corresponding hydrophobic
residue in IIIS6 may stabilize helix-helix interactions, which
support the closed conformation in Cav1.4, and are disrupted
by the ITmutation.

Functions of exon 47 in regulating the impact of IT on Cav1.4
activation

Exon 47 encodes the initial 47 amino acids of the CTM, a
modular domain present in both Cav1.4 and Cav1.3 that inter-
acts with a region in the proximal C-terminal domain (10, 17,
27). The CTM nearly abolishes CDI of Cav1.4 by competing
with calmodulin (CaM) for binding to the channel (10, 17). De-
letion of the CTM enables CDI by allowing CaM binding to the
channel, but also causes a negative shift in Vh (10). In Cav1.4,
exon 47 is critical for the modulatory function of the CTM in
that Cav1.4Dex47 exhibits similar alterations in Vh and CDI as
those caused by deletion of the entire CTM (16, 18). Our find-
ings that IT and deletion of exon 47 are additive with respect to
hyperpolarizing Vh (Table 1) suggest distinct mechanisms by
which Ile-745 and the CTM facilitate activation. In Cav1.3, de-
letion of the CTM leads to stronger pairing of voltage sensor
charge movement and channel opening (28). In Cav2.3, the
IIS4-S5 loop and the cytoplasmic end of IIS6 are thought to
functionally interact in the activation pathway (see Ref. 29). In
Cav1.4, partial deletion of exon 47 might disinhibit such intra-
molecular interactions, allowing IT to more freely destabilize
closed channels and promote channel opening atmore negative
voltages than in channels with a complete CTM. Interactions of
S4–S5 with S6 have been studied by homology modeling and
molecular dynamics simulations of Kv channels (30). Similar
approaches would be useful in dissecting the relationships of

the corresponding regions, and of the CTM, with respect to
activation gating of Cav1.4.
The effect of IT on hyperpolarizing Vh, whereas decreasing

the peak current density of Cav1.4Dex47 (Table 1), parallels the
effect of the S218L migraine-causing mutation in Cav2.1
expressed in HEK293 cells. In the latter case, the reduction in
current density was determined to be an artifact of overexpres-
sion and related to a reduction in the number of functional
channels in the membrane rather than changes in unitary cur-
rent amplitudes (31). Because IT did not affect the total or cell-
surface levels of Cav1.4Dex47 protein (Fig. 5), the reduced cur-
rent density of Cav1.4Dex47

IT could result from a decrease in
single channel conductance, and/or the functionality of the
mutant channels within the membrane. Alternatively, the
extremely negative activation properties of Cav1.4Dex47

IT

could have compromised cell health such that outward leak
currents compromised IBa amplitudes and caused the negative
shift in Erev. This scenario seems unlikely given that IT reduced
current density but did not produce outward currents or altera-
tions in Erev in Cav1.4Dex47 channels containing b2A and a2d-1
(Fig. 9, Table 1). Single channel recordings will be necessary to
fully uncover the impact of IT on the elementary properties of
Cav1.4Dex47.

Effects of IT on the ion selectivity of Cav1.4Dex47

The exquisite selectivity of Cav channels is largely deter-
mined by Ca21 binding with high affinity to the selectivity filter
(32, 33). Thus, the increased permeability of Na1, K1, and par-
ticularly NMDG1 caused by a mutation outside of the selectiv-
ity filter was unexpected. However, in the absence of Ca21,
Na1 and large organic cations such as tetramethylammonium
are capable of permeating Cav1 channels (34). These results
suggest that the pore of Cav channels is at least 6 Å in diameter,
an interpretation that has been verified in structural analyses
(2, 35). Indeed, despite being a relatively large cation (;6.4 Å
wide 3 12 Å long; ;7.3 Å mean diameter (36)), NMDG1 can
permeate Cav1.2 channels containing pore mutations (37) and
Cav1.3 channels exposed to the dihydropyridine agonist FPL
64176 (FPL) (21). Functional interactions between the selectiv-
ity filter and the inner S6 helix bundle are involved in Kv chan-
nel gating transitions (38) and may be conserved among Cav
channels. For example, CaM binding to the cytoplasmic do-
main promotes conformational changes in the selectivity filter
of Cav1 channels that lead to CDI (39). Thus, IT could alter
positioning of IIS6 and its contributions to the Ca21 (or Ba21)
binding affinity within the selectivity filter, allowing monova-
lent ions including NMDG1 and Na1 to permeate even in the
presence of significant extracellular concentrations of Ba21.
Our findings that impaired selectivity was specific to IT mu-

tant channels containing b2X13 and a2d-4 explain why previous
analyses did not uncover any alteration in selectivity in these
channels containing b2A and a2d-1 (12). Unlike b2A, b2X13 lacks
exon 7B, which causes increased voltage-dependent inactiva-
tion of Cav1.4 (5). Although it is unclear how this difference
could affect ion selectivity of the IT mutant channels, there is
evidence that structural alterations in a2d could affect the per-
meation properties of Cav channels. For example, CACHD1 is

Table 3
Parameters for monovalent and Ba21 permeability for Cav1.4Dex47
and Cav1.4Dex47

IT

Erev and PBa/Px were determined from data shown in Figs. 7 and 8 and from equa-
tions described under “Experimental procedures,” p values were determined by
unpaired t tests. Intracellular solutions contained 140 mM NMDG1, Na1, or K1.
Significance was determined by Student’s t test.

Erev (mV) Cav1.4Dex47 Cav1.4Dex47
IT p Value

NMDG1 66.56 2.3 31.26 2.7 ,0.001
Na1 65.56 1.6 51.06 2.7 0.004
K1 60.96 3.4 50.86 3.1 0.064
PBa/Px
NMDG1 351.46 53.4 31.26 2.7 0.0009
Na1 316.66 34.6 113.86 19.1 0.0009
K1 243.76 58.8 116.26 28.4 0.074
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an a2d-like protein that has a disrupted metal-ion adhesion site
that is critical for structural and functional interactions of a2d
with the channel (2, 40, 41). When co-expressed with Cav2.2,
CACHD1 impairs the ion selectivity of Cav2.2 (42). In the cryo-
EM structure, a2d-1 forms multiple extracellular contacts with
Cav1.1 including the extended loops between S5 and P1 helices
in domains II and III (2). The L5 loops of each of the 4 domains
form a domed window above the selectivity filter that direct
Ca21 ions into the pore (2). Differences in how a2d variants
may interact with these extracellular sites, in concert with those
produced by b subunits at intracellular sites, could determine
the impact of IT on selectivity in the context of Cav1.4.

Significance for visual phenotypes of Cav1.4 channelopathies

CSNB2 is a nonprogressive retinal disorder with variable
clinical features including reduced visual acuity, myopia, and
nystagmus (43). A hallmark feature of this disorder is a reduced
b-wave in electroretinograms, which is consistent with a defect
in transmission from photoreceptors to second-order bipolar
neurons (43, 44). Of the numerous CSNB2 mutations affecting
Cacna1f, the IT mutation causes the most severe form of visual
impairment (45). Despite the reduced current density of
Cav1.4Dex47

IT in our experiments, the mutation enabled sig-
nificant inward IBa at voltages negative to the activation thresh-
olds of WT channels (Fig. 3C). Due to charge screening effects
(46), our use of 20 mM Ba21 in the external recording solutions
would cause activation voltages ;20 mV more positive than

those expected in the retina; however, the relative differences
in the voltage-dependent properties of the WT and IT mutant
channels should be preserved under our recording conditions.
Even in the presence of reduced current density, the negative
shift in Vh and slow deactivation of Cav1.4Dex47

IT would lead
to aberrant Ca21 influx during light-dependent hyperpolariza-
tion of photoreceptors, thus degrading the fidelity of visual
transmission to second-order neurons. However, our study
also raises the possibility that the aberrant conductance of
monovalent cations by Cav1.4Dex47

IT could lead to altera-
tions in the excitability of photoreceptors that could lead to
degenerative changes. Photoreceptor degeneration, as well as
altered retinal ganglion cell activity and morphological and
functional defects in photoreceptor synapses, are characteris-
tic of an IT knock-in mouse line (47–50). However, Cav1.4
splice variants lacking exon 47, although abundant in human
andmonkey retina, are conspicuously absent frommouse ret-
ina (16). An understanding of the pathological consequences
of Cav1.4Dex47

IT could therefore benefit from analyses of the
mutant channels in human stem-cell derived photoreceptors
in the context of retinal organoids (51).

Experimental procedures

cDNAs and molecular biology

The following cDNAs were used: Cav1.4 (GenBank AF201304),
b2A (GenBank AF465485), b2X13 (GenBank NM_053851), a2d-1
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(GenBank M86621), and a2d-4 (GenBank NM_172364) in
pcDNA3.1. The construct encoding Cav1.4Dex47 was described
previously (16). To incorporate the IT mutation into Cav1.4
(Cav1.41ex47IT and Cav1.4Dex47

IT), the upstream and down-
stream cDNA regions flanking the codon corresponding to I756
were amplified with Q5 High-Fidelity DNA polymerase (New
England Biolabs) using Cav1.41ex47 as the template and
primers incorporating the mutation. PCR products were
digested with DpnI, column purified, and cloned into
Cav1.41ex47 and Cav1.4Dex47 between AgeI and ClaI with
the NEBuilder HiFi DNA Assembly kit (New England Biol-
abs) following the manufacturer’s protocol. All constructs
were verified by DNA sequencing before use.

Cell culture and transfection

Human embryonic kidney (HEK) 293 cells transformed with
SV40 T antigen (HEK293T, CRL-3216, RRID:CVCL_0063;
ATCC) were cultured in Dulbecco’s modified Eagle’s medium
(Life Technologies, Grand Island, NY) with 10% fetal bovine se-
rum (Atlantic Biologicals) at 37 °C in 5% CO2. Cells were not
used after they were passaged 15 times. At 70–80% confluence,
the cells were co-transfected with cDNAs encoding human
Cav1.4 a1 (1.8 mg; Cav1.41ex47, Cav1.41ex47IT, Cav1.4Dex47,
or Cav1.4Dex47

IT), b2A or b2X13 (0.6 mg), a2d-4 or a2d-1 (0.6
mg), and enhanced GFP in pEGFP-C1 (0.1 mg) using FuGENE 6
transfection reagent (Promega) according to the manufac-
turer’s protocol. In some experiments, cells were co-transfected
with a plasmid encoding SK-1 Ca21-activated K1 channel (0.1
mg) in an effort to reduce toxicity (there were no differences in
results obtained in cells transfected with or without SK-1 and
thus data were combined). Cells treated with the transfection
mixture were incubated at 37 °C for 24 h. After 24 h, cells were
incubated at 30 °C for at least 24 h prior to whole-cell patch
clamp recordings.
For Western blotting and cell-surface biotinylation assays,

HEK293T cells were transfected using Lipofectamine 3000
reagent (Life Technologies). Plasmid DNA (Cav1.4Dex47 or
Cav1.4Dex47

IT (1.8 mg), b2X13, and a2d-4 (0.6 mg each)) was
diluted in Opti-MEM (50 ml, Life Technologies) and 4 ml of
P3000 reagent. This was added to a mixture of Opti-MEM (50
ml) and Lipofectamine 3000 reagent (3 ml) and incubated for
10 min at room temperature. The DNA mixture was added
incubated with the cells for 24 h at 37 °C in 5% CO2 after
which the cell culture medium was replaced with fresh
medium.

Electrophysiology

Whole-cell patch clamp recordings were performed at
room temperature between 48 and 72 h after transfection.
Data were obtained under voltage-clamp with an EPC-9
patch clamp amplifier operated by Patchmaster software
(HEKA Elektronik). The composition of recording solutions
contained as follows (in mM): for Figs. 1–4 and 9, external so-
lution contained NMDG (140), BaCl2 (20), and MgCl2 (1); in-
ternal solution contained NMDG (140), HEPES (10), MgCl2
(2), Mg-ATP (2), and EGTA (5). For Fig. 6, Cd21 (100 mM)
was added to the external solution; pH was adjusted to 7.3

with methanesulfonic acid. For Fig. 7, the external solution
contained Tris (130), NMDG (5 or 130), and BaCl2 (20); inter-
nal solution contained NMDG (140), EGTA (10), HEPES (5),
Tris (5); pH was adjusted to 7.3 with methanesulfonic acid.
For Fig. 8, the external solution contained TEA-Cl (130),
BaCl2 (20), HEPES (5), pH 7.3, with TEA-OH); internal solu-
tion contained KCl or NaCl (140 mM), EGTA (5), HEPES (5),
Tris (5), pH 7.3, with KOH or NaOH. Pipette resistances were
typically 2-6 megaohms in the bath solution, and series resist-
ance compensated up to 70%. Leak subtraction was con-
ducted using a P/-4 protocol.
To measure current density, IBa was evoked by 50-ms pulses

from a holding voltage of2100mV to various voltages and nor-
malized to the cell capacitance. I-V data were fitted with the
Boltzmann equation: I = Gmax 3 (Vm – Erev)/(1 1 exp(Vh –
Vm)/k, where I is the measured current at each test voltage
(Vm), Vh is the voltage of half-maximal activation, k is the slope
factor, and Gmax is the maximal conductance. Peak current
density was determined by dividing the maximal IBa by the cell
capacitance. Kinetic parameters for IBa activation (tact) and
deactivation (tdeact) were obtained by fitting the test current
and tail current, respectively, with a single exponential function
(y01 A (exp(2t/t)), where y0 is the offset (asymptote), t is time,
t is the time constant, and A is the amplitude. The voltage-de-
pendence of tact and tdeact was described by: y0 1 A (exp(2v/
v)), where y0 is the asymptote, v is voltage, v is the voltage con-
stant, andA is the amplitude. Relative permeability of Ba21 ver-
sus different monovalent cations (x) was calculated as: PBa/Px =
[x]i/4[Ba

21]o 3 exp (ErevF/RT){1 1 exp (ErevF/RT)}. Data were
analyzed offline with Igor Pro (Wavemetrics) or Origin Pro
(OriginLab Corporation) software. Statistical analysis and
preparation of graphs were performed using GraphPad Prism
software. The data were initially analyzed for normality using
the Shapiro–Wilk or D’Agostino-Pearson omnibus test. For
parametric data, significant differences were determined by
Student’s t test. For nonparametric data, Mann-Whitney test
was used. Significant differences in the curve fits of tact and
tdeact versus voltage relationships were determined by F tests.
Data were incorporated into figures using GraphPad and
Adobe Illustrator software. Unless otherwise indicated, aver-
aged data represent mean 6 S.E. from at least 3 independent
transfections.

Biochemical analysis of cell-surface CaV1.4 protein

Transfected HEK293T cells were subject to cell-surface
biotinylation and Western blotting as described previously
(52). Cell-surface proteins were biotinylated according to
the manufacturer’s protocol. Briefly, cells were washed with
ice-cold PBS (PBS, in mM: 2.5 KCl, 136 NaCl, 1.5 KH2PO4-
Na2HPO4 6.5, pH 7.4), prior to incubation with sulfo-NHS-
SS-biotin (Thermo Scientific) for 30 min at 4 °C. The cells
were then incubated with biotin quenching solution (in mM:
50 glycine, 2.5 CaCl2, 1 MgCl2, pH 7.4), scraped off the plate
in PBS, pelleted by centrifugation, and resuspended in lysis
buffer containing in mM: 150 NaCl, 25 Tris–HCl, pH 7.6,
with 1% Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS,
and 0.5 phenylmethylsulfonyl fluoride and other protease
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inhibitors. After 10 min on ice, cell lysates were subject to
centrifugation (16,000 3 g for 10 min at 4 °C) and biotinyl-
ated proteins recovered with NeutrAvidin gel. The bound
proteins were eluted in SDS-PAGE sample buffer (in mM: 58
Tris-Cl, 50 DTT, with 1.7% SDS, 5% glycerol, 0.002% brom-
phenol blue, pH 6.8) and subject to electrophoresis using
NovexTM WedgeWellTM 4–20% Tris glycine gel (Invitrogen)
and transfer to nitrocellulose blotting membranes.
For Western blotting, the membranes were incubated in

blocking buffer containing milk (5%) in TBS-T (100 mM Tris–
HCl, 0.15 M NaCl, 0.05% Tween 20) followed by incubation
with the following antibodies diluted in blocking buffer: CaV1.4
(1:4,000 (48)); Na1/K1 ATPase (1:700, Developmental Studies
Hybridoma Bank, University of Iowa, RRID:AB_2314847),
GAPDH (1:10,000; Cell Signaling catalog number 14C10).
Horseradish peroxidase (HRP)-conjugated secondary antibod-
ies used were anti-rabbit HRP (1:3000; GE Healthcare catalog
number NA934-1ML) and anti-mouse HRP (1:3000; GE
Healthcare catalog number NA931V) followed by chemilumi-
nescent detection (Thermo Scientific; SuperSignal West Pico
catalog number 34080). The Western blotting signals were
visualized with the Odyssey Fc Imaging System (LI-COR). The
results shown were obtained from at least 3 independent
experiments. Densitometric analysis was performed with Image
Studio Lite software (LI-COR).
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