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The organic anion transporters (OATs) and organic anion–
transporting polypeptides (OATPs) belong to the solute carrier
(SLC) transporter superfamily and play important roles in han-
dling various endogenous and exogenous compounds of anionic
charge. The OATs and OATPs are often implicated in drug
therapy by impacting the pharmacokinetics of clinically impor-
tant drugs and, thereby, drug exposure in the target organs or
cells. Various mechanisms (e.g. genetic, environmental, and dis-
ease-related factors, drug-drug interactions, and food-drug
interactions) can lead to variations in the expression and activity
of the anion drug-transporting proteins of OATs and OATPs,
possibly impacting the therapeutic outcomes. Previous investi-
gations mainly focused on the regulation at the transcriptional
level and drug-drug interactions as competing substrates or
inhibitors. Recently, evidence has accumulated that cellular
trafficking, post-translational modification, and degradation
mechanisms serve as another important layer for the mecha-
nisms underlying the variations in the OATs and OATPs. This
review will provide a brief overview of the major OATs and
OATPs implicated in drug therapy and summarize recent pro-
gress in our understanding of the post-translational modifica-
tions, in particular ubiquitination and degradation pathways of
the individual OATs andOATPs implicated in drug therapy.

Membrane transporters are essential proteins that facilitate
the directional movement of endogenous solutes and xenobiot-
ics across cell and organelle membranes. Their functions are
multi-fold, covering from homeostasis, cell communication,
stress resistance, and cellular protection against toxins to drug
sensitivity and resistance (1). Transporters are broadly classi-
fied into two classes, namely the solute carrier (SLC) and ATP-
binding cassette (ABC) transporter superfamilies. The ABC
transporters are organized into seven families (ABCA through
ABCG) and include the well-known members that function as
drug efflux pumps, contributing to chemotherapy resistance (e.
g. ABCB1 (P-glycoprotein, Pgp) and ABCG2 (breast cancer–
related protein, BCRP)). The ABC transporters have been most
extensively investigated for their roles in drug therapy and also
with regard to their regulatory and cellular processing mecha-
nisms (2, 3). The SLC transporters are subdivided into 501
families that can act as either influx or efflux transporters.
Among them, the organic anion transporters (OATs) and the

organic anion–transporting polypeptides (OATPs) belong to
the SLC22A and SLCO superfamily, respectively, and display
tissue-dependent expression profiles coordinated by genetic
and epigenetic controls (4). By working jointly with the ABC
transporters, the OATs and OATPs play important roles in the
hepatobiliary transport, renal secretion, intestinal absorption,
and brain penetration of various drugmolecules (Fig. 1).
As anionic (hydrophilic) drug molecules tend to have a poor

membrane permeability via passive diffusion, the transporters
can play an important role in determining the cellular entry of
anionic drugs and thereby influencing the pharmacokinetics
(PKs; the profiles of the absorption, distribution, metabolism,
and excretion processes in the body) and altering the drug ex-
posure in the target organs and cells (possibly, the response and
toxicity to drug therapies) (5). Accordingly, genetic, environ-
mental, or disease-related factors and drug-drug interactions
(DDIs) can influence the expression/activity of the transporters
and consequently lead to the occurrence of adverse events in
drug therapy and contribute to interindividual variability drug
response (6). Severe and even life-threatening side effects of
drug therapy may occur by the inhibition or impairment of
these transporters (the tragic cases of the lipid-lowering statin
drugs and fatalities caused by severe muscle toxicity of rhabdo-
myolysis (7–9) and many other cases of drug side effects and
DDIs via transporter-mediated processes (10, 11)). Thus far,
the cases of transporter-mediated DDIs have been mainly the
combinations of the drugs that interact with transporters as
substrates and/or inhibitors or as inducers and/or repressors
(the modulators at the transcriptional level) (12). Changes in
the transporters (due to genetic, environmental, or disease-
related factors) can also occur via alternative modes that
involve the post-translational regulation and processing of
transporters (by impacting the localization, trafficking, post-
translational modifications, or protein-protein interactions).
This review will focus on the major OATs and OATPs impli-

cated in drug therapy and summarize the recent findings
regarding their cellular processing, post-translational regula-
tion, and degradation pathways. We start with a brief overview
of the major OATs and OATPs implicated in drug therapy and
the general cellular processing and trafficking of transporter
proteins (more detailed and comprehensive reviews are avail-
able, but they do not focus on the anion drug–transporting pro-
teins (13–15)). A previous review focusing on OATs and*For correspondence: Wooin Lee, wooin.lee@snu.ac.kr.
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OATPs implicated in drug therapy was published in 2017 (16),
and this reviewwill cover some updates in the field.

Overview of the major anionic drug–transporting
proteins in the families of OATs and OATPs

The SLC22 and SLCO superfamilies include transporters
with broad substrate specificity, covering anionic, zwitterionic,
and cationic molecules, and some members are more exten-
sively studied for their pharmaceutical importance. The United
States Food and Drug Administration, the EuropeanMedicines
Agency, and other regulatory agencies recommend testing new
drug candidates for possible interactions with selected mem-
bers in the SLC22 and SLCO superfamilies. The SLC22 super-
family can be divided into at least six subfamilies based on the
evolutionary analysis (17), and the SLC22A subfamily includes
the major anion drug transporters, such as OAT1 and OAT3
(18). The SLCO superfamily includes 11 human OATPs,
among which OATP1B1 and OATP1B3 are best-studied for
their role in hepatic handling of the lipid-lowering statin drugs
and anticancer drugs. More recently, OATP2B1 has attracted
attention as another OATP member of pharmaceutical impor-
tance, regarding its role in impacting the intestinal drug
absorption (19). Below is a brief overview focusing on themajor
OATs and OATPs implicated in drug therapy (OAT1, OAT2,
OAT3, OAT4; OATP1B1, OATP1B3, OATP1A2, and
OATP2B1). Table 1 lists their representative endogenous
and exogenous substrates, including clinically important drugs
and endogenous probes that are increasingly explored to assess

the transporter functions in vivo and the potential for trans-
porter-mediatedDDIs (20, 21).

OATs

By far, OAT1 and OAT3 are the most widely recognized
drug transporters in the SLC22A subfamily. Both OAT1
(encoded by SLC22A6) and OAT3 (encoded by SLC22A8) are
abundantly expressed in the kidney, moving anionic substrates
across the basolateral membrane to the proximal tubular
cells and enhancing the subsequent excretion into the urine.
OAT1 andOAT3 display largely overlapping substrate specific-
ity in handling drug molecules, but the recent analysis from a
machine learning–based approach indicated that OAT3 may
interact with drugs of a slightly cationic character, differing
from OAT1 (22). When a similar approach was applied to the
metabolomics data from mice lacking Oat1 or Oat3, a differ-
ence emerged in that Oat3 has a propensity for more complex
substrates possessing more rings and chiral centers, compared
with Oat1 (23).
OAT2 (encoded by SLC22A7) was the first cloned mamma-

lian OAT and initially named as NLT (novel liver-specific
transporter) (24). Later found to be expressed in the kidney as
well as in the liver and closely related to OAT1, the NLT was
renamed as OAT2 (25). A notable aspect of OAT2 is the pres-
ence of three splice variants: OAT2-546aa (NM_153320),
OAT2-548aa (NM_006672), and OAT2-539aa (AF210455).
The sequence difference between the two variants OAT2-
546aa and OAT2-548aa is the insertion of 2 amino acids

Figure 1. Tissue-dependent expression of themajor OATs and OATPs implicated in drug therapy. The OATs and OATPs facilitate the directional move-
ment of various endogenous and xenobiotic substrates, including clinically used drugs. Genetic and epigenetic controls coordinate the tissue-dependent
expression profiles of these transporters. The OATs and OATPs play important roles in the hepatobiliary transport, renal secretion, intestinal absorption, and
blood-brain barrier function by working with the ABC transporters.
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translated from 6 bp of nucleotides. The two variants display
different substrate specificity and subcellular localization, but
with some conflicting results from different laboratories (which
is why OAT2 was called an enigmatic transporter in a recent
review (26)). In recent years, OAT2 has emerged as an impor-
tant transporter that handles clinically important drugs, includ-
ing diclofenac (a nonsteroidal anti-inflammatory drug) and
entecavir (an antiviral drug) (26, 27). Many of the OAT2 sub-
strates are also substrates of OAT1 and/or OAT3, but OAT2
appears to use a transport mechanism distinct from OAT1 and
OAT3 (28).
OAT4 (encoded by SLC22A11) is mainly located on the ba-

solateral membrane of syncytiotrophoblasts in the placenta and
on the apical membrane of renal tubular cells in the kidney
(29–31). OAT4 can also operate as either uptake or efflux
transporter (32), and the recently identified drug substrates of
OAT4 include olmesartan (an antihypertensive drug blocking
angiotensin receptor) and levocetirizine (an antihistamine
drug) (33, 34).
Structurally, the members of the SLC22A/OAT subfamily

share 12 transmembrane domains (TMDs) with a large extrac-
ellular loop between TMD1 and TMD2 (harboring glycosyla-
tion sites) and a large intracellular loop between TMD6 and
TMD7 (harboring phosphorylation and ubiquitination sites).

OATPs

Among the 11 OATPs identified in humans, OATP1B1 and
OATP1B3 are extensively studied for their roles in hepatic drug
disposition and transporter-mediated DDIs. The genes encod-
ing OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) are
located in proximity to each other on the chromosome 12, and
the two proteins are also highly homologous (80% identity at
the amino acid level). OATP1B1 and OATP1B3 display nearly

overlapping substrate specificity. The substrates commonly
handled by OATP1B1 and OATP1B3 include many clinically
important drugs (e.g. lipid-lowering statin drugs, anticancer
and antidiabetic drugs), for which their entry to hepatocytes
can be rate-determining in the overall hepatic drug elimination
process (in which drug molecules are metabolized or excreted
out of hepatocytes) (6). In such cases, impaired hepatic drug
uptake due to either genetic variations or co-administered
drugs can lead to the PK changes, impacting the drug efficacy
and toxicity. For lipid-lowering statin drugs such as cerivasta-
tin, impaired hepatic uptake was responsible for the occurrence
of myotoxicity (muscle toxicity) ranging from mild cases to
fatal rhabdomyolysis (the most severe form of muscle toxicity)
(6, 35). To prevent similar tragic consequences, anionic drug
candidates are screened for their possible interactions with
OATP1B1 and OATP1B3. There is also a continuing effort to
enhance our understanding of various mechanisms regulating
the expression and function of these important hepatic uptake
transporters.
Although OATP1B1 and OATP1B3 are present on the baso-

lateral membrane of hepatocytes, they differ in terms of the
zonal expression pattern in the liver: OATP1B1 is expressed
throughout the liver parenchyma, but OATP1B3 is expressed
in the region surrounding the central vein of hepatic lobules
(36–38). Another notable difference was that unlike OATP1B1,
OATP1B3 was detected in cancerous cells derived from various
nonhepatic organs (38–40). It is now known that the OATP1B3
protein detected in the cancerous cells (called as cancer-type
OATP1B3) arises from an alternative mRNA transcript and
lacks the N-terminal 28 amino acids compared with the
OATP1B3 protein expressed in nonmalignant hepatocytes
(called liver-type OATP1B3) (40). Compared with the liver-
type OATP1B3, the cancer-type OATP1B3 protein had an

Table 1
List of the major OATs and OATPs frequently implicated in drug therapy
This list includes the representative substrates; the endogenous probes used for the assessment of the transporter function in vivo and the risk for drug-drug interactions
are underlined; comprehensive lists covering endogenous and exogenous substrates are available in previous reviews (1, 19, 21, 46, 151–154).

Protein name (gene name) Location Example substrates

OAT1 (SLC22A6) Kidney, brain, placenta, muscle; basolateral Endogenous: a-ketoglutarate, urate, prostaglandin E2, taurine
Exogenous: adefovir, cidofovir, acyclovir, methotrexate, pravastatin, ciprofloxacin,

chlorothiazide, ochratoxin A
OAT2 (SLC22A7) Liver, kidney; basolateral Endogenous: cGMP, creatinine, prostaglandin E2

Exogenous: irinotecan, 5-fluorouracil, acyclovir, ganciclovir
OAT3 (SLC22A8) Kidney, choroid plexus, testis; basolateral Endogenous: estrone sulfate, bile acids, creatinine, prostaglandin E2, glycocheno-

deoxycholate-3-O-sulfate (GCDCA-S), 6b-hydroxyl cortisol
Exogenous: benzylpenicillin, cimetidine, ranitidine, famotidine, methotrexate,

cidofovir, valacyclovir, sitagliptin, pravastatin
OAT4 (SLC22A11) Kidney (apical), placenta (basolateral) Endogenous: dehydroepiandrosterone sulfate, urate, estrone sulfate, prostaglandin

E2
Exogenous: indomethacin, tetracycline, ochratoxin A, methotrexate, olmesartan,

levocetirizine
OATP1B1 (SLCO1B1) Liver (basolateral) Endogenous: estrone sulfate, estradiol 17b-glucuronide, dehydroepiandrosterone

sulfate, coproporphyrin I and III (CPI and CPIII), GCDCA-S, unconjugated and
conjugated bilirubin (UCB and CB)

Exogenous: bosentan, daunorubicin, fexofenadine, pitavastatin, atorvastatin,
rosuvastatin, rifampicin, darunavir, mycrocystin

OATP1B3 (SLCO1B3) Liver (basolateral) Endogenous: cholecystokinin-8, CPI, CPIII, GCDCA-S, UCB, and CB
Exogenous: paclitaxel, pitavastatin, atorvastatin, rosuvastatin, rifampicin,

telmisartan, mycophenolic acid, glucuronide
OATP1A2 (SLCO1A2) Liver (cholangiocytes), brain capillary, kidney,

retinal epithelium
Endogenous: estrone sulfate, retinoids, prostaglandin E2

Exogenous: imatinib, fexofenadine, methotrexate, statins, microcystin
OATP2B1 (SLCO2B1) Liver, intestine Endogenous: estrone sulfate, dehydroepiandrosterone sulfate, prostaglandin E2

Exogenous: glibenclamide, statins, fexofenadine, atenolol, montelukast
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inferior efficiency of membrane trafficking, thus much reduced
transport activity (40).
OATP1A2 (encoded by SLCO1A2) is another OATP that has

been extensively studied for its interactions with a broad range
of drugs (e.g. imatinib (an anticancer drug), methotrexate (an
anticancer drug), and fexofenadine (an antihistamine drug)),
cellular trafficking mechanisms, and differential regulation in
disease conditions, including breast cancer (41, 42). OATP1A2
is expressed in the epithelium of various organs, such as the
liver (cholangiocytes but not hepatocytes), kidney, brain capil-
laries, and eye (43, 44). An early study reported the positive im-
munohistochemical staining of OATP1A2 in the intestine (45),
but subsequent studies did not detect the presence of
OATP1A2 at either mRNA or protein level (see Ref. 46 and
references therein). Those subsequent studies, however, veri-
fied the presence of OATP2B1 (encoded by SLCO2B1) in the
human intestine. Based on its intestinal location and ability to
transport clinically drug molecules, OATP2B1 is recognized as
an important transporter that influences the intestinal drug
absorption and serves as a target for food-drug interactions (19,
47). Interestingly, the two recent studies reported that the
transport activity of OATP2B1 can be inhibited by common
food and drug additives (small-molecule excipients added to
food and drug products), such as azo dyes (48, 49). The food
and drug additives had been presumed to be inactive and inert
in the body, but these studies indicated that the food and drug

additives can have unintended effects on the intestinal drug
absorption and PK profiles by inhibitingOATP2B1 in the intes-
tinal epithelium. Moreover, the OATP2B1-inhibitory additives
were converted to metabolites that no longer inhibit OATP2B1
by the gut microbiota (48). These findings highlight the intrigu-
ing interplay of OATP2B1 and gut microbiota in influencing
the intestinal drug absorption. In addition to the intestinal epi-
thelium, OATP2B1 is also expressed inmultiple organs, includ-
ing the liver (hepatocytes), and its transport activity is pH-de-
pendent with enhanced activity at acidic conditions (50, 51).
Structurally, the members of the SLCO/OATP family share

12 TMDs with an extracellular loop between TMD9 and
TMD10 (harboring conserved cysteine residues and glycosyla-
tion sites). The highly conserved family signature sequence is
located in the region that spans from extracellular loop 3 and
TMD6 (52). For OATP1A2 and OATP2B1, their C-terminal
regions harbor the PDZ-binding domain (53).

Overview of the general cellular processing of
transporters in normal physiology and pathology

In normal physiology, it is generally believed that the trans-
lation of a transporter protein is tightly linked to its transloca-
tion (i.e. being co-translationally translocated) from ribosomes
to the endoplasmic reticulum (ER), as illustrated in Fig. 2.
Post-translational modifications play an important role in

Figure 2. Overview of general cellular processing pathways for the membrane transporters. The central and peripheral quality control (QC) pathways
are interconnected andwork together, shuffling the transporter proteins inside cells and to the plasmamembrane, from the ER andGolgi to various intracellu-
lar degradationmachinery (e.g. endosomes, lysosomes, proteasomes, aggresomes).
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coordinating the folding and targeting of newly synthesized
transporter proteins to the appropriate cellular organelles and
the final destination of the plasma membrane (54–57). The
processes that occur in the ER and Golgi apparatus are often
referred to as “central quality control,” but the regulatory
actions also take place near the plasma membrane. The mecha-
nism is called “peripheral quality control,” and it regulates endo-
somal recycling and lysosomal degradation near the plasma
membrane (54). The central and peripheral quality control path-
ways are interconnected and work together, shuffling the trans-
porter proteins inside cells and to the plasma membrane, from
the ER and Golgi to various intracellular degradation machinery
(e.g. endosomes, lysosomes, proteasomes, aggresomes) (58, 59).
Post-translational modifications and other protein-protein or
protein-lipid interactions are involved in the internalization and
recycling of the transporters located at the plasma membrane
(15).
In cellular processing of transporter proteins, it is increas-

ingly recognized that the composition of membrane lipids can
affect transporter conformation at the plasmamembrane, lead-
ing to partial misfolding or modifications of cytoplasmic
domains and altered susceptibility of the transporter to endo-
cytic turnover processes (13). In particular, lipid rafts (microdo-
mains enriched in cholesterol and glycosphingolipids at the
external leaflet of the plasma membrane) have been shown to
enhance oligomerization and other protein-protein interac-
tions that impact the activity and trafficking for several trans-
porters (60–63). This aspect is becoming of great interest and is
another important layer of the post-translational regulatory
mechanisms for theOATs andOATPs.
Defective processing and trafficking of transporters can

cause various diseases. Cystic fibrosis is one of the well-known
cases, and it is attributed to genetic variations causing misfold-
ing and degradation of the cystic fibrosis transmembrane con-
ductance regulator (CFTR, encoded by ABCC7) (64). With
mechanistic understanding of the CFTR trafficking, there now
exist therapeutic options for cystic fibrosis patients (e.g. luma-
caftor-ivacaftor, tezacaftor-ivacaftor) (65, 66). Correction strat-
egies using trafficking modifiers or chemical chaperones are
being explored in preclinical and clinical settings for other
transporters (e.g. ABCB11 encoding bile salt export pump
(BSEP) and progressive familial intrahepatic cholestasis type 2
(67–69); ABCG2 encoding BCRP and gout (70, 71)). To date, a
number of studies have reported alterations in the level and cel-
lular localization of certain OATs and OATPs under disease
conditions, such as cancer and liver diseases (72, 73). The
OATs and OATPs have been rarely identified as single disease-
causing factors, but the altered level/function of the OATs and
OATPs may serve as disease-modifying factors and possibly
impact the PK profiles of drugmolecules in patients (74).

Three common types of post-translational modifications
involved in cellular processing of the major anionic
drug–transporting proteins in the families of OATs and
OATPs

In response to various cellular stresses or stimuli, the trans-
porter protein at the plasma membrane can receive multiple

types of post-translational changes and protein-protein inter-
actions that can alter the functional activity, protein internal-
ization, and recycling. Below is a brief description of the three
types of post-translational modifications (N-glycosylation,
phosphorylation, and ubiquitination) that are commonly
involved in the cellular processing and trafficking of the major
anion drug transporters, OATs andOATPs.

N-glycosylation

In eukaryotic cells, N-glycosylation occurs at Asn residues
within the consensus sequences of Asn-Xaa-Thr/Ser, where
Xaa cannot be Pro or Asp. The types and linkages ofN-glycosy-
lation processed in the ER are diverse and complex, and the
extent to which they exert discrete functions is not yet fully
understood. Disruption of N-glycosylation can increase the
accumulation of misfolded proteins in the ER, enhancing the
ER-associated degradation.

Phosphorylation

Protein phosphorylation is a process of attaching a phos-
phate monoester group to a free hydroxyl group of Ser, Thr, or
Tyr residues (or far less commonly to other amino acids, such
as His, Lys, and Arg). For a single residue modifiable by phos-
phorylation, the modification can occur by different kinases
and phosphatases, leading to different biological outcomes. For
many proteins and signaling events, phosphorylation/dephos-
phorylation often serves as a functional on/off switch, intercon-
necting and cross-talking with other types of post-translational
modifications. Prominent examples include the connection
between phosphorylation and ubiquitination (75). Phosphoryl-
ation can either promote or inhibit ubiquitination, thereby
affecting protein degradation or other molecular events. The
activation of protein kinase C (PKC) has been associated with
the internalization of the functional transporter from the cell
surface, and the underlying mechanisms involve the protein
phosphorylation promoting the ubiquitination of the trans-
porter protein residing in a cholesterol-rich microdomain of
the plasmamembrane (lipid rafts) (76).

Ubiquitination

Ubiquitination is a process of attaching ubiquitin by forming
an isopeptide bond between a Gly residue of ubiquitin and a
specific Lys residue of a target protein. Ubiquitination is carried
out in a multistep process involving a cascade of three enzymes:
an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating
enzyme, and an E3 ubiquitin ligase enzyme (77). The E3 ubiqui-
tin ligases confer substrate specificity and are classified into the
two major families: HECT (homology to E6AP C terminus;
;30 ligases) and RING (really interesting new gene; ;600
ligases) (78). Different types (e.g. monoubiquitination (attach-
ment of a single ubiquitin to a single Lys residue of the substrate),
multiubiquitination (attachment of several ubiquitin molecules
to multiple Lys residues), and polyubiquitination (attachment of
polyubiquitin chain)) and linkages of ubiquitination can alter the
biological outcomes. For example, Lys-48–linked polyubiquitina-
tion (Lys-48 residing in the ubiquitin molecules serves as a base
for growing a polyubiquitin chain) commonly serves as the
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earmark for proteasome-mediated degradation (56). On the
other hand, Lys-63–linked polyubiquitination (Lys-63 residing in
the ubiquitin molecules also serves as a base for growing a polyu-
biquitin chain) is used for multiple purposes, including the regu-
lation of the endosomal recycling and degradation events near
the plasma membrane (79). Ubiquitination can be reversed by
deubiquitinating enzymes (DUBs;.100 enzymes).

Cellular processing and post-translational modifications
of the major anionic drug–transporting proteins in the
families of OATs and OATPs

Below is a summary of current understanding of this topic,
andmajor findings are also depicted in Fig. 3.

OAT1

N-Glycosylation was initially identified to impact substrate
binding or membrane trafficking of OAT1 (80). However, the
mutation of multiple Asn residues was necessary for disrup-
tion of the OAT1 trafficking to the plasma membrane, and
the responsible mechanisms or signaling pathways remain
unknown.
The PKC activation triggered the internalization of OAT1

from the cell surface, as depicted in Fig. 4A (81). OAT1 was
found to undergo the constitutive internalization and recycling
at a rate of ;10% of the initial OAT1 protein pool on the cell
surface per 5 min, and the PKC activation accelerated the rate
of OAT1 internalization without affecting OAT1 recycling
(81). Subsequent studies reported that three Lys residues at
positions of 297, 303, and 315 play a synergistic role in PKC-

Figure 3. Schemes showing the published findings on the sites or regions involved in the post-translational regulation of OAT1 (A), OATP1B1 (B),
OATP1B3 (C), OATP1A2 (D), and OATP2B1 (E).
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regulated OAT1 ubiquitination, trafficking, and transport ac-
tivity (82) and that Lys-48–linked polyubiquitination is an im-
portant signal for internalization and degradation (83). These
findings were further followed up by another observation
on the connection between the PKC activation and polyubi-
quitination (84). The two E3 ubiquitin ligases belonging to
the HECT family played an important role in the ubiquitina-
tion of OAT1, namely NEDD4-1 (neural precursor cell–
expressed, developmentally down-regulated 4-1) and Nedd4-
2 (84). In particular, NEDD4-2 was responsible for intercon-
necting the PKC activation and the internalization of OAT1:
PKC activation leads to the phosphorylation and conforma-
tional change of NEDD4-2, which then leads to the ubiquiti-
nation and internalization of OAT1 (85). In contrast to the
PKC activation linked to the OAT1 internalization (and
thereby a decrease in the transport activity), the activation

of SGK2 (serum- and glucocorticoid-inducible kinase 2)
enhanced the surface level of OAT1 and increased the maxi-
mal transport activity (Vmax) without affecting the substrate-
binding affinity (Km) (86). In either signaling event, OAT1
was not a substrate of direct phosphorylation (by PKC or
SGK2 activation).
In a recent study, the two clinically used proteasome inhibi-

tor drugs (bortezomib and carfilzomib) increased the cellular
levels of the ubiquitinated OAT1 protein and also enhanced
the level of the functional OAT1 at the plasma membrane (87).
Interestingly, the ubiquitinated OAT1 protein displayed a mo-
lecular size much higher than expected for a monomer (to an
extent much higher than poly- or multiubiquitination). These
results appear in accordance with the earlier finding that OAT1
can form homooligomers (88). The treatment with a chemical
cross-linking agent led to the formation of immunoreactive

Figure 4. Proposed model based on the published findings of signaling pathways regulating the processing and post-translational regulation of
OAT1 (A) and OAT3 (B).
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OAT1 bands consistent with the formation of homooligomers.
Immunoprecipitation experiments also revealed that the
OAT1 proteins fused with different tags directly interact with
each other. It remains to be investigated whether the homooli-
gomerization is impacted by ubiquitination or treatment with
proteasome inhibitors. The proteasome inhibitor therapy is of-
ten administered for an extended time in combination with
other anticancer drugs to suppress the disease’s progression. It
is currently unknown whether OAT1 and other transporters’
expression and activity may be impacted in cancer patients
receiving the long-term proteasome inhibitor therapy.
Other findings on the post-translational regulation of OAT1

are also related to its oligomerization. The oligomerization of
OAT1 was inhibited by co-expressing a short fusion peptide
containing the TMD6 of OAT1 (89). Moreover, the mem-
brane-trafficking and transport activity of OAT1 was abolished
by the mutation of Gly residues in the TMD2 (within the motif
of Gly-Xaa-Xaa-Xaa-Gly) (90). The mutated OAT1 proteins
(G144A and G148A) were accumulated in the ER and subse-
quently degraded by the proteasome. The treatment with the
proteasome inhibitor MG132 increased the protein level in
total cell lysates but did not improve the trafficking of the
mutated OAT1 protein to the cell surface (90). Together, these
results suggest that the oligomerization and degradation of
OAT1 are interconnected, but additional post-translational
mechanismsmay be involved.

OAT2

For OAT2, the alternatively spliced transcripts have been
identified and investigated for their and function (91, 92). The
variant OAT2-548aa contains two additional amino acids in
the large extracellular loop (the addition of Ser and Gln
between Glu-131 and Trp-132) and displays defective mem-
brane trafficking (91). The previous study reported the pres-
ence of the putative sites (the consensus motifs) that could be
phosphorylated by protein kinase A (PKA) or PKC (93), but fur-
ther verification is unavailable yet.

OAT3

In a similar manner to OAT1, the PKC activation decreased
the level of the functional OAT3 at the plasma membrane (83,
94) (Fig. 4B). The treatment with angiotensin II enhanced the
internalization of OAT3 (resulting in a decrease in the Vmax

value but no change in the Km value), connected to the PKC
activation, accelerating the endocytosis of OAT3 (94). Short-
term and long-term exposure to a PKC activator led to differ-
ential outcomes: the short-term exposure (,30 min) was
associated with enhanced OAT3 internationalization without
affecting the total expression level, but the long-term expo-
sure (.2 h) led to OAT3 degradation by both lysosomes and
proteasomes (83). A subsequent study showed a physical
interaction between OAT3 and NEDD4-2, indicating that the
PKC activation and internalization of OAT3 are intercon-
nected via the ubiquitination by NEDD4-2, like OAT1 (95).
In contrast to the inhibitory effect of PKC on the OAT3 ac-

tivity, PKA stimulated the OAT3 activity by enhancing its level
at the plasma membrane (96, 97) (Fig. 4B). The PKA-mediated

stimulation of OAT3 was mediated by SUMOylation (covalent
attachment of SUMO (small ubiquitin-related modifier) by
SUMO-2 and -3 but not by SUMO-1) (96). Further investiga-
tions revealed that SUMOylation could be reversed by the
SUMO-specific protease Senp2, whose knockdown by siRNAs
increased OAT3 SUMOylation and its transport activity and
level. Insulin-like growth factor-1 (IGF-1) activated the PKA,
subsequently increasing the SUMOylation of OAT3 (98), but a
subsequent study reported that the effect of IGF-1–induced
PKA activation was also linked to the phosphorylation of
OAT3 (96). A more recent study verified direct phosphoryla-
tion of OAT3 by the treatment with Bt2-cAMP (a PKA activa-
tor) or IGF-1 (97). Together, the regulatory mechanisms for
OAT3 showcase how the post-translational regulation and sig-
naling pathways are interconnected.
In terms of the regulation via protein-protein interactions,

OAT3 was shown to interact with lipid raft-associated proteins
(b-actin, myosin, and caveolin-1) (99). When the authors
exposed the rat renal cortical slices to methyl-b-cyclodextrin,
which depletes cholesterol from the plasma membrane
(thereby disrupting the lipid rafts), there was a dose-dependent
reduction in the transport activity of the rat Oat3. In a more
recent study, the membrane distribution of the rat Oat1 and
Oat3 was assessed in animals that received bile duct ligation
(leading to obstructive jaundice) or sham operation (100). The
membrane distribution of Oat3 was not shifted in renal cortical
cells isolated from the rats that received bile duct ligation. On
the other hand, Oat1 displayed a significant shift in its mem-
brane distribution (moving away from lipid raft domains). It
remains to be investigated whether the level and function of
human OAT1 and OAT3 may be impacted by the cholesterol
content in the plasma membrane, which may well vary among
individuals and depend on disease types and states.

OAT4

The PKC activation decreased the OAT4 activity by lowering
its cell surface display (101). In the same study, progesterone,
but not 17b-estradiol, decreased the OAT4 activity. The block-
ade of the PKC pathway did not reverse the progesterone’s in-
hibitory effect on the OAT4 activity, suggesting that progester-
one regulates the OAT4 activity via mechanisms independent
of the PKC pathway (101). The PKC activation was later found
to enhance the OAT4 internalization via clathrin-dependent
pathways (102). Unlike the PKC activation, parathyroid hor-
mone–related protein and a PKA activator stimulated the
OAT4 activity by promoting the trafficking of OAT4 to the
plasma membrane (103). The stimulatory effect of parathyroid
hormone–related protein on the OAT4 activity was independ-
ent of the PKA pathway (103).
Similar to OAT1, the activity of OAT4 was reported to be

regulated by the ubiquitin ligase NEDD4-2 (104). The enhanc-
ing effect of insulin on OAT4 level and activity was accompa-
nied by the increased phosphorylation of Ser-327 onNEDD4-2,
which in turn weakened the association of NEDD4-2 with
OAT4 and reduced OAT4 internalization and degradation.
The siRNA-based knockdown of NEDD4-2 abolished the
enhancing effect of insulin on OAT4. The effect of insulin did
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not appear to be mediated by SGK2, another signaling event
that enhanced the NEDD4-2 phosphorylation (86, 104). To-
gether, these findings suggest that OAT4 processing and activ-
ity are dynamically regulated by the balance among multiple
signaling pathways and cellular stimuli.
Another important aspect of OAT4 processing is its interac-

tion with the scaffold proteins PDZK1 (PDZ domain–contain-
ing 1) and NHERF1 (Na1–H1 exchanger regulatory factor 1).
Unlike OAT1, OAT2, and OAT3, OAT4 has a protein-protein
interaction peptide sequence named the PDZ (PSD-95/Discs
Large/ZO-1) motif at the C terminus. The co-immunoprecipi-
tation results verified that OAT4 interacted with the two scaf-
fold proteins PDZK1 andNHERF1 (105, 106). Interestingly, the
interactions of OAT4 with PDZK1 andNHERF1were observed
in the LLC-PK cells (of kidney origin) but not in BeWo cells (of
placenta origin) (106). These findings suggest that the interac-
tion of OAT4 and the PDZ proteins may be cell- or tissue-spe-
cific. The oligomerization ability of scaffold proteins is known
to be regulated by phosphorylation and other signaling path-
ways, via modifications of either scaffold proteins or their part-
nering proteins, including transporters (107, 108). Thus, it
would also be important to consider whether the association of
OAT4 with the scaffold proteins is impacted by any of the
reported signaling pathways regulating OAT4 on the cell
surface.

OATP1B1

The SLCO1B1 gene is highly polymorphic, and commonly
occurring genetic variations (in particular, c.521T.C (dbSNP-
ID of rs4149056; p.174Val.Ala)) have been firmly associated
with PK changes and a high incidence of statin-inducedmyopa-
thy (6). Most statins rely on the transporters to gain access to
the hepatocytes, which becomes the rate-determining step in
the overall hepatic elimination processes (6, 109, 110). The
decreased hepatic uptake of statins can lower the hepatic elimi-
nation, increasing the drug exposure in plasma and drug distri-
bution to the other organs, including the muscle, and the risk
for side effects (6). The early investigations reported that the
p.174Val.Ala variation was associated with a decreased mem-
brane localization and a decreased Vmax value with no change
inKm value (111, 112). A recent study, however, reported differ-
ent findings that the V174A variation does not necessarily
reduce the OATP1B1 level at the plasma membrane (113).
Instead, the authors noted that V174A variation is associated
with a modest increase in protein phosphorylation. Further
investigations will be necessary to test whether the OATP1B1
phosphorylation is indeed causally linked to a decrease in the
transport activity of OATP1B1 with V174A variation.
Other types of post-translational modifications have been

investigated as the regulatory mechanisms for OATP1B1. The
mutations at the threeN-glycosylation sites disrupted the intra-
cellular trafficking and accelerated the proteasomal degrada-
tion of OATP1B1 (114), yet themutation of an individual glyco-
sylation site did not disrupt the processing and transport
activity of OATP1B1. By analyzing the human liver tissues
from patients with nonalcoholic steatohepatitis, another study
reported a possible disease-related impairment of N-glycosyla-

tion for OATP1B1 and OATP1B3 (115). It is currently
unknown whether the variations in N-glycosylation can
account for genetic and disease-related differences in
OATP1B1 andOATP1B3 among individuals.
The activation of PKC triggered the internalization of

OATP1B1 (116). In human primary hepatocytes and HepaRG
cells, the treatment with a PKC activator reduced the levels of
OATP1B1 protein (117). A large-scale phosphoproteomic anal-
ysis identified the phosphopeptides of OATP1B1 in human
liver tissue samples (118). Another recent study reported fur-
ther evidence regarding the phosphorylation of the OATP1B1
protein based on the phospholabeling experiments (119), but it
remains unknown which signaling pathways and kinases are
involved in the phosphorylation of OATP1B1.
The degradation mechanism of OATP1B1 was probed using

the chemical inhibitors targeting the lysosomal or proteasomal
pathways. The treatment with chloroquine (a lysosomal inhibi-
tor; a drug used for the treatment of malaria and certain auto-
immune diseases) increased the total OATP1B1 protein levels
(based on the band intensities of OATP1B1 immunoblots) in
HEK293 cells stably expressing OATP1B1 or human sandwich-
cultured hepatocytes (120). Immunofluorescence imaging anal-
ysis, however, indicated that the OATP1B1 protein was located
in the cytoplasm and associated with late endosome/lysosome
in cells treated with chloroquine. In line with such findings, the
chloroquine treatment was associated with a decrease in the
Vmax value but no change in the Km value for OATP1B1-medi-
ated transport of estradiol 17b-glucuronide (120). In the same
study, the authors included the data from pharmacoepidemio-
logical studies, in which female patients on co-medication of
chloroquine and lipid-lowering statin drugs were associated
with higher incidence of statin-associated myopathy. Further
validation is however necessary, especially to probe the mecha-
nisms for the observed gender differences in the pharmacoepi-
demiological studies. Treatment with bortezomib (a protea-
some inhibitor) led to no changes in the total OATP1B1
protein levels (121), suggesting that the proteasome is likely
to play a lesser role in the OATP1B1 degradation than the
lysosome.
Regarding the protein-protein interactions, an earlier study

reported that OATP1B1 displays immunoreactive bands
around 190 kDa in nonreducing conditions and around 75 kDa
in reducing conditions (122). The possibility of OATP1B1
homooligomers was further examined using a chemical cross-
linking agent or by expressing theOATP1B1 protein fused with
different tags in HEK293 cells, and the results verified the
oligomer formation of OATP1B1, likely via disulfide bond for-
mation (123). OATP1B1 harbors three Gly-Xaa-Xaa-Xaa-Gly
motifs, among which the motif located in TMD5 was found to
be important for oligomerization, based on the results obtained
using the mutant G393A (a decreased oligomerization and a
reduced uptake of estrone 3-sulfate) (123). Further investiga-
tions are however warranted, in particular, using other cellular
systems with a more native membrane environment, such as
human primary hepatocytes, and the question remains whether
the oligomerization of OATP1B1 occurs primarily as a homoo-
ligomer or a heterooligomer with other OATP transporters
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and whether the oligomerization of OATP1B1 varies among
individuals in healthy or diseased states.

OATP1B3

OATP1B3 is highly homologous to OATP1B1 and displays
nearly overlapping substrate specificity with OATP1B1. Chole-
cystokinin-8 (a peptide gastrointestinal hormone) is an excep-
tion that is handled uniquely by OATP1B3 and not by
OATP1B1. The SLCO1B3 gene is not as polymorphic as the
SLCO1B1 gene, but a few nonsynonymous variations have been
reported for OATP1B3 (124, 125). For the variants M233I,
H520P, and V560A, the OATP1B3 protein levels at the mem-
brane surface were decreased, accompanied by the reduction in
the Vmax values for the transport of cholecystokinin-8 (125). In
a study that assessed the systemic PK profiles of mycophenolic
acid (an immunosuppressant drug), the subjects harboring the
haplotype combination of p.233Met.Ile and p.112Ser.Ala
(c.699G.A and c.334T.G present in linkage disequilibrium;
dbSNP-IDs of rs7311358 and rs4149117) tended to have the
elevated systemic levels of mycophenolic acid (126). More
importantly, a recent retrospective study reported that the sub-
jects homozygous for the variant haplotype have an improved
clinical outcome (in terms of the risk for acute rejection and
survival) following lung transplantation (127). Currently, a
mechanistic understanding is lacking as to how the genetic var-
iations lead to the reduction in the OATP1B3 level on the
plasmamembrane and the impaired transport activity.
Unlike OATP1B1 displaying nearly exclusive expression in

hepatocytes, OATP1B3 was detected in cancerous cells derived
from various nonhepatic organs also expressing OATP1B3,
with the predominantly cytoplasmic pattern when probed
using the OATP1B3 antibody detecting the C-terminal
sequence) (38–40). It is now known that the positive cytoplas-
mic immunostaining was from the cancer-type OATP1B3 (674
aa, lacking the N-terminal 28 amino acids compared with the
liver-typeOATP1B3 protein of 702 aa) (40). Using theN-termi-
nal truncation mutants, a follow-up study revealed that the N-
terminal sequence of OATP1B3 (in particular, the amino acid
positions between 12 and 18 within the region lacking in the
cancer-type OATP1B3) is important for membrane trafficking
of OATP1B3 (128). The structural motifs or individual amino
acids responsible for the trafficking of OATP1B3 were not,
however, identified in that region. But the importance of the N-
terminal sequences of OATP1B3 as well as OATP1B1 was sup-
ported by the finding that the N-terminal peptides (50 amino
acids) fused with a Myc tag were efficiently localized to the
plasma membrane (128). On the other hand, the C-terminal
sequences of both OATP1B3 and OATP1B1 were predicted to
lack a PDZ-binding motif interacting with the scaffold proteins
(53).
For the degradation of the liver-type OATP1B3 protein, the

lysosomemay play a more prominent role than the proteasome
(121). When cells stably expressing the liver-type OATP1B3
were treated with chloroquine (a lysosomal inhibitor) or borte-
zomib (a proteasome inhibitor), the total OATP1B3 protein
(assessed by OATP1B3 immunoblots) was increased only by
chloroquine (121). Similar to the case of OATP1B1, the

increased level of the total OATP1B3 protein by chloroquine
treatment was associated with a decreased transport activity
(121, 129). Despite having no impact on the OATP1B3 protein
levels in total cell lysates or surfacemembrane fraction, the bor-
tezomib treatment also led to a modest decrease in the Vmax

value but no change in the Km value for OATP1B3-mediated
transport of cholecystokinin-8 (121). The bortezomib treat-
ment, however, had no impact on the OATP1B3-mediated
transport of pitavastatin (a lipid-lowering statin drug) (121).
The authors speculated that the bortezomib treatment may
change the turnover rate of OATP1B3, but further experiments
will be necessary to verify that possibility.
Like OATP1B1, OATP1B3 was found to homo- or heterooli-

gomerize (130). In addition to homooligomers, OATP1B3 oli-
gomerized with OATP1B1 and Na1-taurocholate–cotrans-
porting polypeptide (NTCP) in HEK293 cells expressing those
transporters. As the rat Ntcp was reported to be located in the
lipid rafts of the plasma membrane (131), the question remains
whether the heterooligomers of OATP1B3 and NTCP would
be also located in the lipid rafts and whether the level and func-
tion of OATP1B3 could be affected by the cholesterol content
in themembrane.

OATP1A2

The decreased OATP1A2 level at the plasma membrane was
reported with naturally occurring genetic variations: variations
disrupting N-glycosylation (43) and those replacing the nega-
tively charged residues (Asp, Glu) in the intracellular loops or
Thr residue in the putative TMD6 (132). A follow-up study
focused on the putative TMD6 and narrowed down the amino
acids that are important for the OATP1A2 trafficking and deg-
radation via proteasomes or lysosomes (133).
Another important aspect of OATP1A2 processing is its

interaction with the scaffold proteins PDZK1 and NHERF1,
based on the results from the yeast two-hybrid library screening
(53) and the co-immunoprecipitation experiments (134). In the
case of PDZK1, no direct interaction was detected by co-immu-
noprecipitation experiments, but both PDZK1 and NHERF1
enhanced the OATP1A2 level at the membrane surface by
reducing OATP1A2 internalization via the clathrin-dependent
pathway (134).
A separate study indicated that the clathrin-dependent inter-

nalization of OATP1A2 from the cell surface can be accelerated
by the PKC activation (135). In addition to PKC, casein kinase 2
(CK2) was involved in regulating the trafficking of OATP1A2
(136). Chemical or genetic inhibition of CK2 led to decreases in
the OATP1A2 internationalization and recycling, causing a
reduction in the Vmax value but no change in the Km value for
the OATP1A2-mediated transport of estrone-3-sulfate (136).
Interestingly, CK2 is reported to be dysregulated in many dis-
ease states, including breast cancer, in which the OATP1A2
level is elevated (42, 137). Another study showed that
OATP1A2 trafficking is regulated by 59-AMP–activated pro-
tein kinase signaling associated with an increased incidence of
type II diabetes and nonalcoholic fatty liver disease (138). Fur-
ther investigations will be necessary to assess how and to what
extent these multiple kinases are connected and contribute to
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the processing of the functional OATP1A2 in healthy and dis-
ease states.

OATP2B1

The SLCO2B1 gene encoding OATP2B1 harbors polymor-
phic variations whose frequencies vary among different ethnic
groups (139). Nonsynonymous genetic variations of OATP2B1
(c.935G.A and c.1457C.T; dbSNP-IDs of rs12422149 and
rs230618) have been associated with the altered transport activ-
ity and PK changes in vivo, with some conflicting results (140–
143). However, our understanding is limited as to whether and
how these genetic variations differ at the post-translational
level.
The OATP2B1 protein contains three consensus sequen-

ces for N-glycosylation, two of which are predicted to be in-
tracellular (144). To date, no study has examined specifically
whether those N-glycosylation sites play a role in the traffick-
ing mechanism of OATP2B1. The study that examined the
human liver tissues from patients with nonalcoholic steato-
hepatitis reported a possible impairment of N-glycosylation
for OATP2B1, but to a lesser extent than OATP1B1 and
OATP1B3 (115).
Similar to OATP1B1, the PKC activation accelerated the

OATP2B1 internalization via the clathrin-dependent pathway
and subsequent lysosomal degradation (145). No information is
yet available regarding the residue(s) phosphorylated in
OATP2B1 and other mediating signaling pathways that inter-
connect the PKC activation andOATP2B1 processing.
Another study identified that the TMD1 of OATP2B1 is im-

portant for its transporter function and stability (146). The
replacement of a Phe residue at position 51 enhanced the
OATP2B1 degradation, but the functional activity of OATP2B1
was recovered by neither lysosomal nor proteasomal inhibition.
Like OATP1A2, OATP2B1 harbors a PDZ-binding motif at its
C terminus (53). The localization and function of OATP2B1
was reported to be regulated by the interactions with PDZK1
(147). In HeLa cells stably expressing OATP2B1, the transient
transfection of PDZK1 led to an increase in the functional
OAT2B1. The N-terminal deletion mutant of OATP2B1 lack-
ing the PDZ-binding motif, however, showed no enhancement
by PDZK1 (147). Another intriguing finding was that the mem-
brane localization of OATP2B1 appeared to switch from the
apical to basolateral sides in the proximal and distal renal
tubules, based on the immunohistochemical staining of the
human kidney tissue sections (147). As the PDZK1 was found
only on the apical side, the authors cautiously suggested that
PDZK1 may be involved in the control of subcellular localiza-
tion of OATP2B1. Further investigations will be necessary to
determine whether similar interactions between OATP2B1
and PDZK1 occur in the intestine and whether variations in the
PDZK1 expression may be a source of interindividual variabili-
ty in the level of the functional OATP2B1.

Conclusions and future directions

This review summarized the recent progress in describing
the cellular processing and trafficking of the major anion drug-
transporting OATs and OATPs. Although some of the SLC

transporters have been explored as therapeutic targets, the
major anion drug–transporting proteins were not included
(148). However, the anion drug–transporting proteins will con-
tinue to play a critical part in predicting the PK profiles of clini-
cally important drugs and managing the risk of DDIs during
drug development.
A better understanding of post-translational regulation and

trafficking of the anion drug–transporting proteins can allow
us to obtain an accurate prediction of the transporter-mediated
handling of clinical used drugs and new drug candidates.
Advances have been made in the quantitative proteomic analy-
sis of transporters, providing increasingly precise measure-
ments of the transporter level across various human tissues and
experimental systems and relevant transporter-related parame-
ters that can be scaled up for the prediction of PK profiles via in
silico modeling–based approaches (149, 150). The more we
understand and appreciate the contribution of post-transla-
tional mechanisms regulating the transporters, the more we
recognize that the protein amounts detected either in cells or at
the surface membrane may not necessarily correlate with the
functional transporters. Another area that has made significant
progress in recent years is the discovery and validation of en-
dogenous probes that can serve as biomarkers for transporter
function in vivo (20, 21). A number of endogenous probes for
the major anion drug–transporting proteins have been identi-
fied among the endogenous metabolites or food-derived com-
pounds (as listed in Table 1). The evaluation of the endogenous
probes will continue in terms of their transporter selectivity
and specificity and sensitivity to detect the intra- and interindi-
vidual variations in the transporter function in vivo. When dis-
crepancies are found between the transporter level (e.g. the
quantitative proteomics data) and the in vivo functional out-
comes in healthy or diseased subjects (e.g. the assessment using
drug probes or endogenous probes), a better understanding of
post-translational regulation and trafficking may provide clues
to resolving the disconnect. In coming years, more careful
investigations will be necessary to examine and understand the
changes in the processing and trafficking of transporters over
time and in response to various cellular stresses and stimuli.
Protein-protein interactions (including oligomerization) and

lipid-protein interactions (e.g. near the lipid rafts of the plasma
membrane) are emerging as important players in regulating
transporter functioning. In examining the interactions of trans-
porters with drug molecules and the regulatory mechanisms
for various transporters, in vitro cell line models expressing
individual transporters in either a transient or stable manner
have been widely employed. In suchmodel systems, the cellular
environment may not fully capture protein-protein and pro-
tein-lipid interactions that occur in the native environment in
vivo, including possible variations in the cellular environment
among individuals (e.g. gender, age, genetic, environmental,
and disease-related). When the transport activity is assessed
using commonly available cell line models or primary cells
from human donors, there often exist substantial data variabil-
ities within and among laboratories. The observed data vari-
ability may be attributable to variations in culturing conditions
and possibly factors impacting the processing, trafficking, and
degradation of the transporters at the post-translational level.
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Thus, careful comparative analysis and cross-validation of the
results in different model systems, including primary cells, will
be necessary to enhance our understanding of the regulatory
mechanisms that have clinical significance.
As covered in this review, the processing and trafficking of

the transporters are coordinated by different types of post-
translational modification, including ubiquitination and phos-
phorylation. Ubiquitination and phosphorylation are highly
dynamic processes controlled by the balance of the enzymes
involved (kinases and phosphatases; E3 ubiquitin ligases and
DUBs). Those enzymes are specifically targeted or affected
by some approved drugs (e.g. various kinase inhibitors) or drug
candidates in clinical and preclinical development. The
approved drugs targeting the proteasomes (bortezomib, carfil-
zomib, and ixazomib) have brought a breakthrough in treating
patients with multiple myeloma and other hematological
malignancies and are used as long-term therapies. Currently,
efforts are ongoing to develop next-generation drugs targeting
the proteasomes and E3 ligases as well as drugs targeting DUBs.
The lysosomal inhibitors chloroquine and hydroxychloroquine
are currently used against some infectious and inflammatory
diseases.When these drugs are used to treat patients on a long-
term basis, they may have an impact on the cellular proteomic
profiles, including transporters. The consequences of such
changes may need to be carefully examined in relation to the
PK and pharmacodynamic aspects in drug therapy.
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