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Abstract

Organoids are 3D cell culture systems that mimic some of the structural and functional 

characteristics of an organ. Organoid cultures provide the opportunity to study organ-level biology 

in models that mimic human physiology more closely than 2D cell culture systems or non-primate 

animal models. Many organoid cultures rely on decellularized extracellular matrices as scaffolds, 

which are often poorly chemically defined and allow only limited tunability and reproducibility. 

By contrast, the biochemical and biophysical properties of engineered matrices can be tuned and 

optimized to support the development and maturation of organoid cultures. In this Review, we 

highlight how key cell-matrix interactions guiding stem-cell decisions can inform the design of 

biomaterials for the reproducible generation and control of organoid cultures. We survey natural, 

synthetic and protein-engineered hydrogels for their applicability to different organoid systems 

and discuss biochemical and mechanical material properties relevant for organoid formation. 

Finally, dynamic and cell-responsive material systems are investigated for their future use in 

organoid research.

Organoids are 3D cell culture systems that are formed through cell differentiation and self-

organization of pluripotent stem cells or tissue-derived progenitor cells, which can contain 

supporting stromal elements. The foundation of tissue culture was laid in 1907, when 

Harrison et al. cultured dissected frog neural tubes1. Cell culture studies were continued 

throughout the 20th century to describe the embryonic development of organs by observing 

tissue reorganization after dissociation2,3 (FIG. 1 ), which led to the identification of cell 
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sorting and cell-fate specification during organogenesis and the powerful innate ability of 

cells to spontaneously organize into complex structures in vitro. Organoids are a class of 

microphysiological systems that provide platforms to model the features of organs and 

tissues in an in vitro setting4. The terminology in the field remains to be universally defined5 

and terms such as organoid, organotypic culture, spheroid, enteroid and assembloid are used 

by different communities for different 3D cell culture systems. For example, for 

gastrointestinal tissues, the term organoid has been suggested for cultures that contain both 

epithelial and mesenchymal or stromal components, whereas the term enteroid has been 

used for 3D cultures that contain only epithelial cells6. By contrast, spheroid has been used 

to describe either aggregates of cells or region-specific brain organoids7. In this Review, the 

term organoid is used to describe all of these complex, multicellular systems.

Microphysiological systems usually contain two or more interacting cell types, which are in 

contact with each other and embedded in a matrix (either cell-secreted or externally 

introduced) or in a device with the aim to partially mimic cellular interactions and/or 

functions of a tissue or organ in vitro. These systems represent an important intermediary 

between conventional 2D cell culture systems and animal models, allowing the precise and 

reproducible investigation of the effects of experimental conditions on cell and tissue 

behaviour. Organoid cultures have great potential to transform drug development and disease 

research, as drug tests and disease studies have traditionally mostly relied on 2D in vitro cell 

culture assays or animal models. 2D cell culture models are simple and have a high 

throughput but they fail to capture the physiological complexity of entire tissues and 

organisms8,9. In particular, the modelling of brain development remains challenging, as this 

process requires months to years in humans and other primates, which is difficult to recreate 

in 2D in vitro cultures10. Animal models are important for basic and applied research but are 

time consuming, expensive and often limited by species-specific anatomy and physiology, 

which can make them less relevant for the investigation of human biology and 

pathology11,12. Advances in cell biology, biomaterials design and imaging techniques have 

enabled the investigation of increasingly complex biological questions; however, a gap 

remains between single-cell-type culture systems and actual tissues. Therefore, more 

sophisticated and physiologically relevant in vitro tissue models are required to study human 

biology and medicine13–15.

Organoids have the advantage of being based on human cells cultured in a physiologically 

meaningful context, that is, multiple interacting cell types with spatial organization. In 

contrast to other microphysiological platforms, such as organ-on-a-chip culture systems, in 

which cellular organization is externally imposed and nutrient supply and physiological 

levels of shear forces are achieved by using microfluidic chambers16, organoids are typically 

cultured in static 3D conditions, in which cells self-assemble into multicellular entities with 

an architecture similar to real tissues. By contrast, in organ-on-a-chip systems, differentiated 

cells are usually placed at specific regions within a device, which does not allow higher-level 

cell sorting or ordering16,17. However, organ-on-a-chip platforms and organoid cultures both 

strive to accurately model physiological behaviours that require multicellular interactions, 

and they can be combined by incorporating cellular spheroids and organoids into organ-on-

a-chip systems18–21.
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Organoid cultures typically arise from stem cells that undergo proliferation, differentiation 

and self-organization22,23. Organoid generation can, in principle, be scaled up, making high-

throughput testing possible24,25; however, organoids are in an early stage of development 

and need more robust and dependable culturing practices. Therefore, to realize the full 

potential of organoids, technologies are required that improve organoid generation and 

reliability and that allow the development of key tissue-specific features26. The exploitation 

of specific stem-cell signalling pathways that are responsible for driving organoid formation 

require a precise extracellular environment. In vivo, changes in extracellular matrix (ECM) 

properties can have a profound influence on cellular phenotype, and abnormal ECMs are 

often considered a driver of disease27,28. In the absence of externally added matrices, 

organoids self-organize and secrete and develop their own ECM29, which has not yet been 

fully characterized. The development and application of well-defined 3D biomaterials that 

support and promote organoid formation, and that mimic the properties of healthy or 

diseased tissue, is an exciting research area that has the potential to greatly improve the 

reproducibility and human relevance of organoids. In particular, synthetic biomaterials can 

provide a chemically defined matrix that enables the precise tuning of matrix properties to 

influence and guide cellular decisions.

In this Review, the development of organoid cultures is discussed, with a focus on 

biomaterial properties that are crucial for 3D cell culture systems. We highlight state-of-the-

art engineered material systems for culturing organoids and discuss opportunities for the 

development of next-generation materials systems designed with the aim to establish 

organoid cultures as powerful research platforms.

Organoid culture systems

From single cells to organoids

The formation of organoids requires the proliferation and reorganization of single cells, or 

small cell clusters, into complex and organized cell structures that mimic some of the 

structural and functional features of a specific organ. The generation of these structures 

occurs by a number of mechanisms, including physical rearrangement, spatial distribution of 

gene expression, cell sorting and fate specification30. A variety of organoid types and 

combinations have been explored thus far, including the optic cup31,32, intestine33,34, 

kidney35,36, lung37, pancreas38,39, thymus40 and various types of brain tissues7,41–44. 

Although individual organoid protocols vary and are idiosyncratic, shared culturing 

considerations have been developed.

Organoids can be derived from primary tissue or differentiated from pluripotent stem cells 

(FIG. 2a). For example, embryonic stem cells (ESCs) or induced pluripotent stem cells 

(iPSCs) can be used as a cell source22. iPSCs, which are often reprogrammed from 

fibroblasts, have the advantage of being easy to obtain and patient specific45,46. ESCs and 

iPSCs are pluripotent and can differentiate into nearly any tissue type46. The resulting 

heterogeneity of cell types within a pluripotent stem-cell-derived organoid culture can be an 

advantage when trying to mimic the complexity of native tissues47–49. However, 

unintentional heterogeneity of pluripotent stem-cell-derived cultures50–52 and incomplete 

knowledge about specific differentiation signals may have undesired downstream 
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consequences for the resulting organoids. For example, single-cell transcriptomics studies 

have shown that iPSC-derived and ESC-derived kidney organoids include 10–20% non-renal 

cells, such as brain and muscle cells53. Furthermore, pluripotent stem-cell-derived organoids 

can exhibit gene expression patterns that are more reminiscent of fetal tissues than of their 

adult counterparts15,54,55. Alternatively, excised organ tissue, which contain adult stem cells, 

can serve as a precursor cell source for organoids. For example, intestinal organoids can be 

generated through the expansion of biopsies of intestinal tissue, which contains intestinal 

stem cells34. These organoids provide a patient-specific cell culture of the intestinal area 

sampled by the biopsy, allowing the investigation of intestine pathophysiology and of 

potential treatments.

The precise organoid formation process varies for each tissue type but generally follows the 

pattern of proliferation, differentiation, cell sorting, lineage commitment and 

morphogenesis, resulting in a 3D organoid structure (FIG. 2b). Organoid formation is 

usually guided by culturing cells in medium that contains factors that promote or inhibit 

specific signalling pathways, directing the culture towards the cell lineages of interest23. 

Some protocols also use an undirected differentiation approach that deliberately omits 

inductive signals41. Given that ectoderm is the default stem-cell fate, such protocols generate 

many cell types found in the brain41. Variation in the proliferation and differentiation of 

stem cells leads to a heterogeneous collection of cells. In directed-differentiation 

approaches, small molecules and growth factors are used to restrict cell fates, for example, 

for the generation of brain-region-specific organoids7. These cultures can undergo further 

morphogenesis to form late-stage organoids, which contain specialized cell types that give 

rise to organotypic structures and functions. For example, intestinal organoids show a crypt 

and villi-like morphology and contain specialized epithelial cells, such as goblet, Paneth and 

enteroendocrine cells33, which often secrete mucus into the lumina of the structure34. By 

contrast, opticcup organoids display characteristic inward folding31. These later-stage 

processes can occur over hundreds of days7,56. For example, astrocytes only begin to appear 

in directed brain organoids after 100 days in culture, and they switch to a postnatal gene 

expression profile only after 280 days in culture57. Organoids can also be combined with 

other organoids or cell types to generate assembloids. For example, dorsal and ventral 

forebrain organoids can be assembled to model the migration and functional integration of 

γ-aminobutyric acid (GABA) ergic interneurons and to identify defects associated with 

epilepsy and autism spectrum disorders58.

Organoid culture protocols

Once the cell source is selected (either primary tissue or pluripotent stem cells that have 

been provided with initial differentiation cues), the subsequent culture protocols are largely 

similar. Organoid culture protocols typically use a homogenous culture medium without any 

intentionally applied gradients of nutrients or gases and require the cells to be suspended or 

encapsulated in a 3D environment that permits the cells to freely grow and remodel their 

environment, and engage in self-directed cell sorting without any top-down, investigator-

imposed guidance on spatial cell patterning. Uninhibited growth can be accomplished by 

culturing cells in low attachment conditions or in a naturally derived hydrogel, such as a 

reconstituted, decellularized ECM (for example, Matrigel). In low attachment conditions, 
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stem cells, either dissociated31,59,60, in the form of colonies7 or as preaggregated clusters56, 

are transferred to plates with surfaces that prevent cell adhesion. Forced to float in 

suspension, these clumps of cells differentiate and proliferate in 3D, forming an organoid. 

Additionally, motion and shear forces can be applied using devices such as spinning 

bioreactors61.

Matrices are often used as a 3D culture environment that mimics the scaffolding support 

provided by the native ECM of the tissue, for example, hydrogels made of reconstituted 

decellularized ECM. The Engelbreth-Holm-Swarm (EHS) matrix, which is a reconstituted 

basement membrane harvested from mouse sarcoma62 and known by the trade names 

Matrigel, Geltrex and Cultrex BME, has been pivotal in the development of the organoid 

field. The EHS matrix is a mixture of many different ECM components and other biological 

factors62, which provide a complex environment for embedded cells (Box 1). This matrix 

has sufficient natural, cell-adhesive domains to promote cell attachment and can be degraded 

and remodelled by enzymes expressed in the developing organoid. However, the EHS matrix 

suffers from batch-to-batch variability, is not suitable for clinical translation and cannot be 

easily tailored to meet the diverse requirements of unique organoid niches.

Cell-matrix interactions

Understanding how cells sense and respond to their surrounding matrix is crucial for the 

development of engineered materials for organoids. Thus far, cell-matrix interactions have 

mainly been investigated for single-cell-type cultures seeded on or within a matrix63. 

Although these homogeneously dispersed, single-cell-type cultures are simpler than 

organoid cultures, they, nonetheless, provide important lessons for designing matrices to 

direct cell behaviour in 3D.

Cell-adhesive ligand presentation, mechanical properties, matrix geometry and matrix 

remodelling are the key parameters impacting cell culture63 (FIG. 3a,b). Although often 

discussed and studied individually, these properties are intrinsically intertwined. The relative 

influence of individual matrix properties on a cell is determined, in part, by the greater 

context of the entire system64. Furthermore, how the modification of a specific property 

impacts cell behaviour cannot necessarily be predicted a priori without considering other 

matrix features.

Owing to their clinical relevance and easy accessibility, mesenchymal stem cells or 

mesenchymal stromal cells (MSCs) have been extensively investigated in single-cell-type 

cultures in or on engineered matrices. Referring to MSCs as stem cells remains controversial 

and is likely a historical misnomer65; however, studies with this cell type have greatly 

enriched the understanding of cell-matrix dynamics and provide useful information for the 

de novo design of matrices for organoids. Interestingly, although many organoids are formed 

by epithelial, as opposed to mesenchymal, stem or progenitor cells, lessons learned from 

MSC-matrix interaction studies could be directly applied for the development of designer 

matrices for intestinal epithelial organoids66,67. It will be interesting to specifically evaluate 

potential differences in epithelial and mesenchymal cell-matrix interactions.
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Presentation of cell-adhesive ligands

The biopolymers within natural ECMs contain a multitude of cell-adhesive ligands, which 

provide sites for cell attachment68,69. Cell-ligand binding results in changes of the cellular 

cytoskeleton, which can lead to cell spreading and migration70,71. Cells can also actively 

pull on their surrounding environment through cell-adhesive ligands, leading to 

rearrangement of the ECM and clustering of cell-surface receptors. These clusters of cell-

surface receptors are sites of intracellular signalling, often initiating changes in gene 

expression in the nucleus72,73. The extent of clustering of cell-surface receptors and cell-

adhesive ligands impacts cellular behaviours, such as cell motility74, cell spreading75, cell 

differentiation and angiogenesis76. Therefore, the clustering of cell-adhesive ligands is a key 

consideration in biomaterial design77,78.

Peptides can be incorporated in engineered biomaterials to provide cell-adhesive ligands and 

to influence cell phenotype; for example, the fibronectin-derived peptide sequence RGD79, 

the collagen-derived peptide GFOGER80 or the laminin-derived peptides IKVAV81 and 

YIGSR82 bind to integrins and other cell-surface receptors. The concentration77,83, 

spacing84–86, presentation (including nuanced differences such as the identities of flanking 

amino acid residues)87,88, patterning89–91 and timing of ligand presentation92 impact the 

behaviour of cultured cells. For example, RGD ligands that are displayed as pendant groups 

from a polyethylene glycol (PEG) matrix lead to statistically significant improvements in 

MSC viability compared with RGD peptides that are constrained within the matrix87. The 

timing of RGD presentation is also important for MSC behaviour. For example, in a PEG 

hydrogel, MSCs require RGD for survival early during 3D culture; however, the removal of 

RGD ligands at later time points does not decrease viability but, rather, improves 

differentiation92.

The influence of receptor-ligand interactions has often been studied for individual receptor-

ligand pairs. However, in vivo, matrices contain many different ligands with varying 

downstream effects on adherent cells. Moreover, cell receptor-ligand interactions are usually 

promiscuous and ligands (for example, RGD) can interact with various cell-surface 

receptors, triggering different cellular signalling pathways93. Therefore, the precise control 

over ligand binding is important for directing cellular behaviour in vitro. For example, 

scaffolds enabling α3β1 and α4β1 integrin binding rather than αvβ3 integrin binding 

promote endothelial cells to form a mature vasculature in vitro94. Biomaterials can also be 

engineered to present multiple cell-adhesive ligands95–100. Interestingly, the combination of 

two or more different ligands can result in non-additive and unintuitive changes in cellular 

behaviour and, thus, requires experimental optimization for individual cell types and 

cultures. For example, the optimal concentration of RGD, YIGSR and IKVAV to promote 

neural progenitor cell differentiation into mature neurons can be determined using response 

surface methods and multiple experimental iterations95, and a similar experimental approach 

will likely be required for engineering environments with cell-adhesive ligands for 

organoids.
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Mechanical properties

The mechanical properties of a tissue or a biomaterial also impact cell behaviours, such as 

cell differentiation. Many engineered surfaces and hydrogels used for cell culture are elastic, 

that is, the application of force on the material results in a spontaneous proportional 

deformation and, upon removal of the force, the material returns to its original shape and 

size. However, the majority of natural tissues are viscoelastic76,101, possessing properties of 

both an elastic solid and a viscous liquid. The mechanical properties of tissues play a key 

role in guiding cellular behaviour102,103, which needs to be considered in the design of 

biomaterials for cell culture and organoids. In particular, material stiffness, stress relaxation 

rate and stress stiffening all are known to have an impact on stem-cell cultures.

Stiffness.—The stiffness of tissue microenvironments in the body ranges from compliant 

(often termed soft by the biomaterials community) to stiff. For example, brain and lung 

tissue are more compliant than bone104. Changes in tissue stiffness have been correlated 

with ageing105 and aberrant tissue stiffness can be both a driver and indicator of 

disease27,28,106,107. Cell culture has long relied on tissue culture plastic dishes with a 

stiffness in the gigapascal range, which is much stiffer than native tissues (~0.01 kPa to 100 

kPa)104 and, thus, can influence cell behaviour in vitro. For example, 2D matrix elasticity 

has been shown to be sufficient to direct MSC differentiation towards tissue-specific 

lineages108. The cell fate of neural stem cells109,110, muscle stem cells111 and 3D cultures of 

MSCs112 has also been shown to be stiffness dependent in vitro. Stiffness further impacts 

cell proliferation110,113 and motility111,114–117.

Stress relaxation.—Physiological ECM is viscoelastic76,101. Viscoelastic materials 

dissipate the energy of an applied stress through time-dependent processes that result in the 

reorganization of the material (FIG. 3c). Therefore, stress relaxation is governed by the 

kinetics of matrix reorganization. Viscoelastic materials can be characterized by their stress-

relaxation half-lives, that is, the time required to relax 50% of the applied stress. By contrast, 

elastic materials cannot dissipate the energy of an applied stress and, thus, the stress remains 

constant over time. Inspired by the viscoelasticity of native ECM, the influence of time-

dependent mechanical properties on cellular behaviour has been explored75,76,101,118–120. 

MSCs cultured in 2D118,119 or 3D75,76,120 are sensitive to stress relaxation rates. In fast-

relaxing, 3D hydrogels, MSCs show increased spreading, proliferation and osteogenic 

differentiation compared with slower relaxing matrices, independent of material stiffness76. 

These cellular effects may be attributed to changes in RGD ligand clustering caused by 

relaxation of the material; therefore, some cell types may be more responsive to stress 

relaxation than to stiffness in certain culture conditions.

Stress stiffening.—Fibrous ECM biopolymers often display a stress-stiffening 

response121,122, that is, they become stiffer once the stress applied exceeds a critical stress 

value (FIG. 3d). Below the critical stress value, stress on the material is compensated by the 

rearrangement or unravelling of bundled fibre networks. At the critical stress value, the 

material cannot undergo further structural rearrangement and the additional stress is 

distributed throughout the fibrous matrix. Most synthetic hydrogels are not stress stiffening 

in the biologically relevant stress regime (~0–10 Pa)122,123. However, tissue stress stiffening 
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can be recreated in helical oligo(ethylene)glycol polyisocyanopeptide hydrogels, which can 

be engineered with specific stiffness and bundling characteristics123–126. Interestingly, 

MSCs cultured in hydrogels with an initial stiffness that usually promotes adipogenic cell 

fate in elastic materials preferentially undergo osteogenesis, which is normally triggered by 

matrices with high stiff-ness124, demonstrating that the cells can sense the high stiffness 

because of the stress they apply on the material. The cellular response in these hydrogels is 

also mediated by RGD ligand engagement124.

Matrix geometry

Cell-adhesive ligand presentation and cell-perceived mechanical material properties are 

affected by the geometric structure of the material. Therefore, it is often challenging to 

identify individual mechanisms that are responsible for changes in cell behaviour in 

response to the material structure. Native ECM is composed of a fibrous network with pore 

sizes approximately on the scale of cells. The dimensions and structure of the void volume 

of a matrix are crucial parameters impacting cell migration, cell-cell interactions and the 

transport of growth factors and nutrients.

Materials used as matrices for 3D cell culture can be categorized by their geometric structure 

(FIG. 3b). Fibrous matrices, such as ECM and hydrogels composed of fibrous proteins, have 

pores with void volumes approximately on the size of a cell. Many highly crosslinked 

hydrogels have a mesh-like structure and the distance between crosslinks dictates the mesh 

size, which leads to void volumes that are typically much smaller than cells. By contrast, 

macroporous materials have pores that can be larger than the size of a cell and they are often 

formed through the dissolution of sacrificial porogens embedded within a highly crosslinked 

matrix with a very small mesh size.

The alignment and diameter of fibres within a material influence cell behaviour. For 

example, fibre alignment promotes fate determination in human tendon stem cells as 

compared with randomly aligned fibres127. Interestingly, in contrast to tendon stem cells, 

MSCs are more strongly directed towards tendon cell fate by fibre diameter than by fibre 

alignment128. However, these differences could also be caused by the differences in cell type 

or material chemistries. Aligned YIGSR-functionalized nanofibres promote rapid 

differentiation of mouse embryonic stem cells into neurons, while also guiding the direction 

of neurite outgrowth129. Similarly, neural stem-cell-fate determination is sensitive to fibre 

diameter130. Most fibrous matrices (such as the ECM) have pores that are of a similar length 

scale as a typical cell diameter (~1–10 μm), whereas highly crosslinked hydrogels (for 

example, PEG and alginate) have mesh sizes much smaller than a typical cell (commonly in 

the nanometre length scale). In the absence of degradation or other forms of material 

remodelling, this small mesh size can prohibit cell proliferation and movement131. 

Hydrogels can also be designed as macroporous environments by adding porogens. In 

response to a stimulus, porogens form pores, which are often an order of magnitude greater 

than typical cell diameters (~100 μm). Such macroporous hydrogels can promote neonatal 

bovine chondrocyte spreading and ECM deposition compared with hydrogels without 

macropores132. Human MSCs cultured in hydrogels composed of annealed hyaluronic acid 

microparticles, which enable the formation of highly controlled macropores, form 
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interconnected cellular networks, owing to high cell infiltration and migration within the 

matrix; by contrast, chemically identical, non-porous gels prohibit MSC network 

formation133. Similarly, microribbons can be crosslinked into macroporous scaffolds to 

generate large macropores (~300 μm), which allow human adipose-derived stem cell 

(ADSC) spreading similar to that observed in 2D culture; by contrast, in scaffolds with small 

macropores (<100 μm), cells engage multiple microribbons at once and more direct cell-cell 

contacts are formed, similar to that in 3D non-porous hydrogels134.

Hydrogels are often thought of as structurally homogeneous; however, many hydrogel 

systems, in particular, fibrous hydrogels, have different phases and microdomains. Hydrogel 

systems with rapid gelation kinetics can also contain regions of high and low concentrations 

of crosslinking, owing to the difficulty in achieving sufficient mixing of the hydrogel 

precursor components135. The presence of heterogeneity within hydrogels can be explored 

to direct cell behaviour136,137. For example, localized differences in stiffness within a 

material can result in heterogeneous MSC migration and fate determination138.

Matrix degradation and remodelling

Natural ECM is constantly remodelled by highly regulated, cell-mediated processes of 

degradation and production of ECM components27. Cells produce ECM-digesting enzymes 

and rearrange their microenvironment by expressing new biopolymers. Disruption of ECM 

homeostasis can lead to cellular dysregulation and disease27. Biomaterials can be designed 

to provide a matrix that allows degradation and remodelling at a rate desirable for embedded 

cells139.

The degradation profile of a material is characterized by the degradation mechanism, 

kinetics and products of degradation. Degradation of biomaterials can occur through a single 

or a combination of mechanisms, which can be broadly categorized as cell-mediated or cell-

independent degradation. Cell-mediated degradation is facilitated by enzymes, for example, 

proteases, which are produced by encapsulated cells and break down the matrix through 

cleavage at specific amino acid sequences. To enable cell-mediated degradation by 

proteases, enzyme-sensitive peptide motifs can be incorporated in the material as 

crosslinkers or within the polymer backbone. Matrix metalloproteinases (MMPs) are 

commonly exploited for enzymatic degradation because they are produced by a wide range 

of cell types140. Several non-protein natural biopolymers can also be enzymatically degraded 

by cell-produced enzymes; for example, hyaluronic acid is enzymatically degraded by 

hyaluro-nidases141. Cell-independent material degradation can occur through the hydrolysis 

of chemical bonds within the material and disruption of physical crosslinks. For example, 

the biopolymer alginate is ionically crosslinked by calcium ions142, and the removal of 

calcium can be used to disrupt and degrade the alginate matrix143.

The rate at which a biomaterial degrades can greatly influence cell behaviour. The 

degradation rate can be tuned by combining different protease-degradable motifs with 

distinct cleavage kinetics within a biomaterial scaffold144. However, the influence of 

degradation products on cell behaviour also has to be considered in the design of degradable 

materials. For example, hyaluronic acid is relatively inert in the form of a crosslinked matrix 

or as a high-molecular-weight polymer, but acts as a signalling molecule once degraded into 
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low-molecular-weight fragments145. The chemical environment can also change during 

matrix degradation, for example, in PEG-poly(lactic acid) hydrogels146. These materials 

promote the proliferation of neural cells owing to the radical scavenging activity of lactic 

acid generated during degradation. All aspects of the degradation profile of a matrix should 

be considered for their potential impact on cell behaviour because matrix degradation leads 

to substantial changes in the cellular microenvi-ronment139, for example, changes in the 

presentation of cell-adhesive ligands92,147,148, mechanical properties149,150 and 

geometry151. Loss of matrix because of degradation can also cause an increase in void space 

within the scaffold, enabling cellular proliferation152,153, matrix deposition154,155 and an 

increase in cell-cell interactions156. Cell-cell contacts are particularly important for 

multicellular cultures (BOX 2) and, therefore, scaffolds for organoids and organotypic 

systems need to be designed to support cellular contacts.

Engineered organoid matrices

Engineered matrices are an important alternative to conventional organoid culture scaffolds, 

such as the EHS matrix, because they provide better tunability, are fully chemically defined 

and can be easily produced with conventional synthetic methods and minimal batch-to-batch 

variability. Therefore, a variety of engineered materials are being explored for human-

derived and animal-derived organoid cultures (TABLE 1), including organotypic 

cultures157–160.

Intestinal organoids

The use of engineered matrices has, thus far, been mostly explored for intestinal organoid 

cultures, in particular to provide better control of important cell niche cues. The 

development of intestinal organoids has greatly benefited from an in-depth understanding of 

the key stem-cell populations and culture conditions that are necessary for intestinal 

organoid formation33. In the absence of mesenchymal cells, the generation of intestinal 

organoids requires activation of the Wingless/integrated (Wnt) signalling pathway and can 

be initiated from single Wnt/R-spondin-responsive stem cells expressing leucine-rich repeat-

containing G-protein-coupled receptor-5 (Lgr5)33. Cell-matrix interactions are important for 

controlling intestinal organoid morphology, and the removal of ECM cues causes the 

organoids to ‘flip’ into an apical-out morphology in a β1-integrin-dependent process13. In 

these reversed-polarity organoids, the luminal surface, which is usually enclosed within the 

organoid, becomes accessible, making these organoids powerful models for studying host-

pathogen interactions.

A variety of materials have been explored for intestinal organoid cultures, including 

decellularized tissue matrices, single-component natural biopolymer matrices, synthetic 

polymer hydrogels, protein-engineered hydrogels and combinations thereof (TABLE 1). 

Interestingly, organoid cultures often require a period of growth and preformation in an EHS 

matrix prior to reseeding in an engineered material, possibly owing to specific cues present 

in the EHS matrix, highlighting the lack of understanding of the niche cues required for 

early organoid development.
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Natural biopolymer materials.—Matrices composed of naturally derived, single-

component biopolymers used for intestinal organoid culture include protein-based (for 

example, collagen34,161–163) and polysaccharide-based (for example, hyaluronic acid164 and 

alginate165) materials. These materials are chemically defined compared to an EHS matrix 

and provide opportunities to control the material properties through chemical and physical 

modifications142,166,167. Moreover, natural biopolymer materials do not suffer as much from 

batch-to-batch variability as EHS matrices168, permitting more robust experimentation.

Collagen I hydrogels exposed to an air-liquid interface can support long-term (>365 days) 

cultures of murine intestinal organoids34 with intrinsic stromal fibroblasts and immune 

components en bloc with epithelium without the need for reconstitution169,170, highlighting 

the importance of gas transport for organoid cultures, which is often an underappreciated 

parameter171. Gas transport is especially important in thick 3D cultures, which have 

substantial barriers to gas diffusion. Using an air-liquid interface culture rather than a 

conventional submerged culture improves oxygen transport and leads to improved organoid 

maturation, as measured by spontaneous contractility162. Organoid contractility depends on 

material density and geometry within collagen gel, with a narrow optimal range of 

approximately 20% porosity and a stiffness of 30 Pa. Importantly, such airliquid interface 

cultures allow en bloc culture of large tissue aggregates, which maintain native in vivo 

spatial relationships between epithelial cells and non-epithelial stromal cells, including 

fibroblasts and immune cells169,170. Alginate gels without modification with cell-adhesive 

ligands can support the growth of human iPSC-derived intestinal organoids in vitro for at 

least 90 days172, suggesting that mechanical support in the absence of other ECM cues is 

sufficient for some organoid cultures, possibly owing to the fact that organoids make their 

own niche within the culture.

Organoids can also be used as building blocks within single-component, biopolymer-based 

hydrogels (and other materials) to create complex structures173. For example, a combination 

of silk fibroin and collagen can be used to investigate the innate immune response of an 

intestinal organoid system in response to bacterial infection. The cylindrical silk scaffolds 

are first moulded with an internal channel, which is then seeded with primary human 

intestinal, organoid-derived epithelial cells. Intestinal myofibroblasts encapsulated within a 

collagen gel are then added to the porous bulk. The resultant culture forms an intestinal 

epithelium in the internal channel and bacteria, such as Escherichia coli, can be added to 

model pathogen attack on the intestine. The bacterial challenge leads to an upregulation of 

the expression of genes associated with the innate immune response to infection, including 

many genes implicated in inflammatory bowel disease. This approach is an excellent 

demonstration of how organoids can be used for the study of disease mechanisms, such as 

pathogen-host biology.

Synthetic polymer materials.—Matrices based entirely on synthetic polymers permit 

almost limitless possibilities in terms of material properties. PEG-based hydrogels are 

particularly useful because they resist biofouling caused by non-specific protein adsorption, 

which can complicate data interpretation174; they are inexpensive; they are commercially 

available in a range of structures (for example, linear or multi-arm star versions) and 

molecular weights, enabling different matrix designs; and they can be easily chemically 
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functionalized to incorporate biological ligands, signalling molecules and points for 

crosslinking, allowing the precise tuning of physical and biochemical niche properties175. 

For example, a PEG hydrogel system with dynamic mechanical properties can support 

primary mouse intestinal organoid formation at early and late stages66. At early stages of 

culture, gels with high stiffness (~1.3 kPa) promote mouse intestinal stem-cell expansion. As 

the culture matures, the hydrogels become softer owing to matrix degradation, promoting 

intestinal stem-cell differentiation and organoid formation, which is only observed in gels 

with a narrow, low stiffness range (~190 Pa). This mechano-sensitivity of intestinal stem-cell 

organoid cultures is mediated by yes-associated protein 1 (YAP) signalling. Interestingly, 

matrix softening is not sufficient to enable murine organoid formation in the presence of 

only the RGD ligand; budding requires both RGD and laminin-111. Therefore, hydrogel 

systems with dynamic biochemical and mechanical properties may be needed to provide the 

dynamic niche requirements for the different stages of organoid development.

A modular hydrogel made of PEG with four thiol-reactive maleimides (PEG-4MAL) can 

also be used as a scaffold for organotypic and organoid formation67,176. Using PEG-4MAL 

functionalized with RGD enables the formation of human pluripotent stem-cell-derived 

organoids with similar organoid survival rates as in an EHS matrix67; however, the organoids 

first need to be formed in an EHS matrix. Replacing RGD with other cell-binding ligands, 

such as GFOGER and IKVAV, leads to statistically significant decreases in the survival rate 

of the organoids. Additionally, hydrogels with a polymer density ranging from 3.5% to 4% 

PEG-4MAL support early-stage to late-stage organoid transformation, whereas higher 

polymer density hydrogels greatly decrease culture viability. The mechanical properties of 

the hydrogel are the key determinants of YAP signalling-based mechanotransduction. The 

PEG-4MAL hydrogel has been explored as a delivery vehicle for in vivo organoid 

engraftment and colonic wound closure. Delivery of organoids within the hydrogel show 

statistically significant effectiveness in colonic wound closure compared with control 

therapies, in which only organoids or only hydrogels are delivered.

Protein-engineered hydrogels.—Recombinant protein-based hydrogels are composed 

of engineered proteins, often with specially designed sequences inspired by native proteins. 

Such hydrogels are easy to produce by recombinant protein expression177. Recombinantly 

expressed proteins are chemically well defined and have many desirable properties of 

natural-protein biomaterials, including cell-adhesive domains. For example, a matrix 

composed of a recombinant elastin-like protein can promote adult murine intestinal organoid 

formation178. These elastin-like proteins possess RGD in addition to a structural elastin-

derived domain. Moreover, the stiffness and RGD ligand concentration can be independently 

tuned. More compliant matrices (~180 Pa stiffness) with higher RGD ligand concentrations 

(3.2 mM) more efficiently support organoid formation than stiff matrices with low RGD 

concentrations. Strikingly, the softest (~180 Pa) elastin-like protein hydrogel shows 

comparable organoid formation efficiency as collagen I hydrogels, although it is an order of 

magnitude stiffer than collagen. Matrix degradation by MMPs is an important requirement 

for organoid cultures in elastin-like protein gels. The presence of an MMP inhibitor prevents 

organoid growth independent of elastin-like protein matrix mechanics, an effect that is most 
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pronounced in stiffer matrices (~1,220 Pa), highlighting the importance of determining the 

degradative and mechanical requirements of matrix-organoid systems.

Other organoid cultures

Although engineered materials have mostly been used for intestinal organoids thus far, they 

can also be applied to other organoid systems owing to the possibility to tune and optimize 

their biochemical modification, biomechanical properties and geometric structural features, 

which is not possible using an EHS matrix. For example, to optimize materials for brain 

organoid cultures, high-throughput screening of multiple 3D cell microenvironments has 

been performed to identify the factors that promote neural-tube-like morphogenesis from 

mouse ESCs26. PEG-based hydrogels with intermediate matrix stiffnesses (~2–4 kPa) most 

strongly promote apicobasal polarity and dorsal-ventral patterning as compared with 

hydrogels with higher (~8 kPa) or lower stiffness (~0.5 kPa). Notably, this stiffness is greater 

than the stiffness achievable in an EHS matrix. Interestingly, non-degradable matrices 

promote apicobasal polarity and dorsal-ventral patterning, whereas degradable matrices do 

not support dorsal-ventral patterning. The addition of laminin, which is a major component 

of EHS matrices, has the most beneficial impact on the generation of neural tubes compared 

with the addition of other ECM components. Importantly, mouse ESCs cultured in the PEG 

matrices optimized for mechanical properties, degradability and presence of ECM 

components generate more homogenous cultures of polarized neuroepithelial colonies than 

ESCs cultures in an EHS matrix, demonstrating that organoid cultures can be improved by 

carefully designing the properties of matrices.

Human iPSC-derived brain organoids spontaneously form after approximately 10 days of 

culture in electrostatically crosslinked hyaluronate and protonated chitosan hydrogels164. 

The organoids have rosettes and neural-tube-like structures, and display physiological 

changes in intracellular calcium concentration in response to the neurotransmitters glutamate 

and potassium. Using this approach, viable organoids could be formed using iPSCs from 

healthy or adrenoleukodystrophy patients, suggesting that this platform may be used for the 

modelling of neurological diseases.

In contrast to neural tissue, lung tissue has more voids, which presents a unique challenge 

for designing lung organoid matrices. To mimic such an environment, collagen-coated 

alginate beads can be mixed with human lung fibroblasts and iPSC-derived mesenchymal 

cells165. The surface of the alginate beads can be functionalized with collagen I to aid in 

cellular adhesion. Cells and beads can then be cultured in a bioreactor and rotated to coat the 

beads with cells. Aggregation of the alginate beads leads to the formation of a close-packed 

structure. This architecture restricts cellular attachment and proliferation to the interstitial 

space between the beads, which causes the formation of acellular regions within the culture, 

mimicking the alveolar architecture of lungs. This organoid system can be used to model 

idiopathic pulmonary fibrosis by treating the organoid with transforming growth factor β, 

which leads to the formation of myofibroblasts, which are thought to be responsible for an 

increase in fibrosis in diseased lungs.

The PEG-4MAL matrices that have been successfully applied for intestinal organoids can 

also be used to support human pluripotent stem-cell-derived lung organoids67. For example, 

Kratochvil et al. Page 13

Nat Rev Mater. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human lung organoids, first formed in an EHS matrix, can be encapsulated within the 

PEG-4MAL system and cultured for 7 days. These organoids display the morphological 

organization of a lumen with lung epithelium and airway basal cells, suggesting that the 

PEG-4MAL system may provide a platform for a variety of human organoid types.

Synthetic biomaterials are also applicable for pancreatic islet organoids179 based on human 

pluripotent stem cells. Efficient production of insulin-producing pancreatic islets, which are 

lost in patients with type 1 diabetes, is a pressing need for the treatment of this disease. 

Human ESC-derived pancreatic progenitor cells can be seeded together with human 

endothelial cells on top of Amikagel, which is a hydrogel composed of amikacin hydrate 

crosslinked with PEG-diglycidyl ether (PEGDE). Cells seeded on top of stiff (Young’s 

modulus of ~300 kPa) hydrogels, formed with a high ratio of PEGDE to amikacin hydrate, 

form multicellular organoids. Compared with cultures seeded on top of an EHS matrix, 

Amikagel cultures show a substantial increase in the expression of the pancreatic 

transcription and maturation factors PDX-1 and NKX6.1, as well as glucose-dependent 

production of insulin.

In summary, engineered matrices can support several different types of organoid cultures. 

Although mainly applied for intestinal organoids thus far, various other tissue types have 

already been explored. Interestingly, engineered materials have almost exclusively been 

applied to organoids derived from pluripotent stem-cell sources or primary rodent tissue 

rather than from primary human tissue. However, pluripotent stem-cell-derived organoids 

often have limited maturity compared with tissue-derived organoids15,54 and they can 

include a substantial amount of contaminating cell types50–53. For the application of 

organoids in precision medicine and personalized drug screening, the use of primary patient-

derived organoids will be essential. There are inherent differences in the niche cues required 

for pluripotent cells, primary rodent cells and primary human cells, which may necessitate 

different matrix designs, presenting an immense opportunity for the engineering of 

biomaterials for primary patient-derived organoids.

Opportunities for material design

Instead of naturally derived, chemically undefined matrices, well-defined, reproducible 

synthetic materials can be used for organoid culture. However, reproducible morphogenesis 

and sufficient functional maturation remain key challenges, impeding the clinical application 

of organoids22. To control the emergent self-organization of organoids, approaches from 

stem-cell biology have been explored, for example, change of media supplements over 

time23. Alternatively, dynamic biomaterials may provide niche cues capable of directing and 

responding to organoid development, for example, to achieve spatially restricted lineage 

commitment and cellular self-organization, which are key parameters for morphogenesis and 

physiologically relevant function180. Although not yet applied for organoids, various 

dynamic biomaterials have been developed that may be adapted for organoid culture.

Spatially restricted lineage commitment

Improving the reproducibility of stem-cell differentiation and lineage commitment is crucial 

for the generation of organoids with reproducible emergent properties23. Biomaterials can be 
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engineered for the spatiotemporal delivery of biochemical cues, for example, growth factors, 

to direct progenitor cell-fate decisions (Fig. 4a). Numerous matrix-based delivery 

approaches have been explored for drug delivery181, including passive drug release, cell-

responsive (for example, proteolytic) drug release and user-controlled drug release. The 

affinity between the cargo and the biomaterial scaffold182–184 can be exploited for the 

simultaneous passive release of multiple growth factors, which improves the differentiation 

efficiency of encapsulated stem cells185. However, this approach lacks the possibility to 

precisely control the timing of delivery, which requires cell-triggered or user-triggered 

release strategies. Cell-mediated release can be achieved by using protease-cleavable 

peptides to tether signalling molecules to a material186. Peptide substrates have already been 

identified for a variety of proteases and have been used in 3D materials187–190; however, 

cell-mediated release in organoid systems requires thorough knowledge of the timing and 

specificity of pro-tease expression, which have yet to be characterized in detail. Supporting 

the spatiotemporally restricted lineage commitment of emergent organoid subpopulations 

may require direct spatial patterning of signalling molecules in addition to temporal release. 

Photochemistry can be used to spatially pattern peptides within 3D materials191–197 and to 

trigger the attachment or release of factors from a scaffold, which can be examined for user-

controlled release. Thus far, fluorescent molecules or cell-adhesive peptide ligands have 

mostly been explored as model cargos for user-controlled release, although the controlled 

release of growth factors and the simultaneous, orthogonal patterning of multiple growth 

factors192 within scaffolds have also been investigated.

A relatively unexplored area is the delivery of morphogens to establish developmentally 

relevant concentration gradients198. In 2D human intestinal organoid monolayer cultures, it 

has been shown that morphogenetic signalling circuits play a key role in regulating intestinal 

epithelium development199, and efforts have been made to incorporate inducible 

morphogenetic ‘organizers’ into organoid cultures200. Creating soluble concentration 

gradients within hydrogels could be used to mimic such morphogenetic gradients during 

organoid development201 and could enable efficient, reproducible lineage commitment in 

addition to morphogenesis.

Controlling cell migration and sorting

As cells commit to specialized lineages in an organoid, their spatial arrangement drastically 

changes owing to cell migration and self-sorting. The self-sorting of cells is crucial to 

developmental and in vitro morphogenesis180; however, the details and mechanisms of this 

cellular ‘sorting’ process are still being investigated202–205. Using engineered materials to 

direct self-sorting by guiding cellular migration could improve the functional maturation and 

reproducibility of organoids (FIG. 4b). For example, cell-adhesive islands with defined size 

and shape can improve organoid self-organization into physiologically relevant structures, 

such as neural rosettes206,207. Similarly, placing cell-adhesive ligands at specific areas in a 

material can flip the polarity of epithelial organoids13, demonstrating that cell-ECM contacts 

play an important role in cell and tissue reorganization208. Spatial patterning of a cell-

adhesive ligand, for example, the RGD peptide209,210, has been applied for a variety of 3D 

materials to guide the migration of diverse cell types211,212. Such approaches could be 

modified to create ligand profiles that foster organoid self-sorting and morphogenesis (Fig. 

Kratochvil et al. Page 15

Nat Rev Mater. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4c). Furthermore, systems with both spatial and temporal control of cell-adhesive ligands 

could dynamically react in response to the progressive stages of a developing organoid.

Spatially varying the mechanical properties of a material has been widely used in 2D cell 

culture to reliably control cell spreading and the exertion of traction forces, which often 

precede migration213–216. Such strategies could also be adapted to 3D systems (FIG. 4d). In 

addition, user-responsive materials can be designed to alter 3D matrix mechanics over 

time217. Physical and mechanical cues are important parameters for biomimetic organoid 

morphogenesis and function. For example, the spatial patterning of mechanical cues enables 

asymmetric cyst formation in a model of amnio-genesis218,219. Similarly, physical 

confinement of developing organoids can induce a wrinkled morphology in brain organoids, 

which are otherwise relatively smooth in non-confining matrices. Notably, myosin 

disruption reduces the degree of wrinkling, demonstrating that the emergent morphology is a 

result of cellular physical forces20. Brain organoids can also be cultured on polymer 

microfilaments in a droplet of EHS matrix to generate an elongated organoid220. Thus, using 

materials science tools that enable spatial and temporal control of the mechanical properties 

of a material could be a promising avenue to promote organoid self-organization and user-

defined morphologies.

Tuning the material-degradation profile may also be a strategy to promote organoid 

maturation (FIG. 4e). For example, proteolytic degradation could be harnessed to coordinate 

cellular migration131 and physiologically relevant rearrangement221,222. In particular, this 

may be a promising approach for organoids with a diverse expression of multiple cell-type-

specific proteases. Alternatively, light-mediated material degradation could enable user-

defined organoid morphologies. Photoablation has been used to guide multicellular 

migration of encapsulated cell aggregates in 3D223, for example, the migration of motor 

neurons from encapsulated embryoid bodies224. Furthermore, material designs with a 

combinatorial, programmable approach to matrix degradation225 could support the dynamic 

requirements of maturing organoids.

Building organoids by biofabrication

Organoids can also serve as the starting material for the biofabrication of larger, more 

complex biomimetic systems and tissues226–228. Bioassembly attempts to create complex 

functional structures from preformed, cell-containing building blocks, such as 

organoids10,229 (FIG. 4f). For example, bioassembly can be used to assemble two preformed 

organoids with subdomain-specific forebrain identity into a single, fused structure, termed 

an assembloid58. This in vitro model allows the investigation of the migration of wild-type 

and diseased interneurons in a process that mimics fetal development. Assembloids could 

also be combined with engineered materials that enable the predictive, programmed 

assembly of preformed microgels. 3D bioprinting can be applied to pattern ‘inks’ composed 

of cells and/or materials230–233 (FIG. 4g); for example, scaffold-free printing of cell 

aggregates similar to organoids234,235, printing of biomaterials inks with organoids as 

functional units or printing of an acellular ink followed by seeding with organoids. The latter 

strategy has been used to seed ovarian follicles on 3D-printed, microporous scaffolds. These 

printed ovarian follicles could restore ovarian function in a sterilized mouse model, leading 
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to live birth of offspring236. Organoids also have the potential to be used in organ-on-a-chip 

devices, which often attempt to model inter-organ interactions4,18,237–239 (FIG. 4h). For 

example, high fluid flow rates through an organ-on-a-chip device promote the 

vascularization of kidney organoids adherent to a biomaterial coating19. Organoids in 

combination with these devices could be applied for high-throughput drug screening and 

personalized medicine18,240–242.

Conclusions

Organoids provide a great opportunity to study human physiology in vitro. The maturation 

of organoid cultures relies on the propensity of stem cells to form highly organized 

structures during differentiation. Although each organoid type has unique characteristics, 

organoid maturation shares common developmental stages and niche needs, including an 

ECM, which greatly influences organoid development. Engineered matrices with 

reproducible properties have the potential to improve the efficiency and consistency of 

organoid cultures compared with natural materials, such as an EHS matrix. Many material 

properties, including the presentation of cell-binding ligands, matrix mechanics, structural 

geometry and degradability, impact stem-cell activity and are crucial design parameters for 

organoid matrices. Engineered organoid matrices have already been explored for various 

organoid systems used for disease modelling and regenerative medicine. The possibility to 

design materials that can spatially and dynamically control the organoid microenvironment 

and the surrounding stromal matrix will allow the control of organoid maturation and 

function, as well as the inclusion of heterologous stromal cell types. Moreover, the 

combination of organoids with advanced materials will advance the development of 

biofabricated tissues for personalized medicine and drug screening.
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Box 1 |

The trouble with Matrigel

The Engelbreth-Holm-Swarm (EHS) matrix is widely used in the organoid field. 

However, relying on an EHS matrix likely hinders more precise studies of organoid-

microenvironment interactions and creates issues with culture reproducibility and clinical 

translation. An EHS matrix is made of several extracellular matrix components, primarily 

laminin, collagen type IV and nidogen, secreted by EHS cells in mice62. Analysis of 

different batches of EHS matrices has identified over 1,500 unique peptides and 

proteins168, making careful chemical characterization of the material impractical for most 

users. Additionally, batch-to-batch variation of EHS matrices limits reproducibility243. 

Within the complex mixture of proteins in an EHS matrix, only ~53% are found 

consistently in each lot168. Thus, EHS matrices offer no direct control over the 

concentration and identity of cell-binding ligands. In addition, this complex component 

mixture can influence cell cultures in unexpected ways. For example, an EHS matrix 

contains growth-factor-binding proteins, which could lead to growth-factor sequestration 

and a heterogeneous cellular response168. EHS matrices are soft materials with stiffnesses 

of ~20–450 Pa (REFs244,245) compared with tissues, which typically have stiffnesses of 

~100–100,000 Pa. Moreover, the physical properties of EHS matrices cannot be tuned. 

The mouse tumour origin of the material also excludes the use of EHS matrices for 

organoids intended to be transplanted into the body, limiting the translational potential of 

EHS-matrix-based cultures246. The EHS matrix is an important material for organotypic 

cultures that do not grow in other well-defined materials; however, the minimal matrix 

requirements for organoid growth and development need to be characterized to inform 

the design of a more reliable, tunable and clinically translatable alternative.
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Box 2 |

Cadherin engagement in materials

Cell-cell adhesions are key regulators of the morphology and function of multicellular 

tissues in vivo and in vitro247. Numerous cell-surface proteins mediate the junctions 

formed between cells, of which cadherins are the best characterized248,249. Cadherins are 

a family of homophilic (and, in some cases, heterophilic) cell-surface proteins250,251. 

Although there are many types of cadherins, the influence of E-cadherin, P-cadherin, N-

cadherin and VE-cadherin has been investigated in the most detail. Cells displaying a 

specific cadherin tend to adhere to other cells expressing the same cadherin owing to 

homophilic binding202, although heterophilic binding is possible in some cases250,251. 

This preferential cadherin binding is important in the development to drive cell junction 

formation and cell sorting during tissue maturation247. The identity and distribution of 

cadherin subtypes changes over time as the cell matures. Furthermore, cadherins play a 

signalling role in cells. The intracellular domain is linked to the actin cytoskeleton and 

has been implicated in mechanosensing252–254 and stemness maintenance156. Thus, 

cadherin engagement is a crucial consideration for organoid engineering. Cadherin 

signalling can be modified by increasing the degradability of an organoid matrix to 

permit cadherin-mediated cell-cell contacts, for example, to maintain stemness in neural 

progenitor cells156. Alternatively, synthetic cadherin interactions can be achieved through 

the use of engineered materials that display cadherin-mimetic peptides. For example, a 

hydrogel functionalized with N-cadherin-mimetic peptides promotes chondrogenesis of 

human mesenchymal stromal (or stem) cells and cartilage matrix deposition255. Methods 

to spatially and dynamically regulate cadherin interactions and to optimize the cell-cell 

binding within engineered biomaterials may improve the control over organoid 

morphogenesis.
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Fig. 1 |. Timeline of milestones for biomaterials, organoids and stem cells.
PEG, polyethylene glycol.
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Fig. 2 |. Organoid cell sources and types.
a | The initial cells used for organoid culture can be human adult stem cells, pluripotent stem 

cells or primary tissues collected via biopsy. Each cell type has associated advantages and 

disadvantages as a source for organoids. b | Although each type of organoid develops with 

unique morphological and physiological features, a general pattern of development is 

followed. Different studies may desire organoids in different stages of development or 

fabrication platforms. The proliferation and early differentiation of single cells and cell 

clusters leads to the generation of early-stage organoids, sometimes referred to as spheroids. 
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Late-stage organoids are structures that resemble native tissue morphology, contain correctly 

oriented and specialized cells, and display organ-like processes. Organoid cultures are often 

placed within a 3D matrix at the single-cell or spheroid phase. The physiological relevance 

and complexity of organoids can be improved by various biofabrication techniques.
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Fig. 3 |. Cell-matrix interactions.
a | The matrix microenvironment influences cellular behaviour by cell-matrix interactions 

established by cell-adhesive ligands bound to cell-surface receptors, by the mechanical 

properties of the matrix (for example, stiffness) and by the degradability of the matrix. b | 

The 3D geometry of the matrix can be described by the relative pore or mesh size compared 

with the cell size. Matrix geometry defines the nature of cell-matrix contacts and how a cell 

senses other matrix properties, such as cell-adhesive ligands or mechanical properties. 

Fibrous matrices, for example, natural extracellular matrix and biomaterials such as 
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collagen, have a pore size on approximately the scale of cells. Highly crosslinked hydrogels, 

such as polyethylene glycol hydrogels, have mesh sizes much smaller than the scale of a 

cell, which can inhibit cell growth and migration in the absence of degradability. 

Macroporous materials have large pores that can be on the scale of a cell or larger. c | 

Viscoelastic materials, for example, native extracellular matrix, display stress-relaxation 

behaviour. Upon application of stress to the matrix, the molecules rearrange to dissipate the 

stress over time. By contrast, elastic materials cannot dissipate stress. Plotting normalized 

stress versus time of a stress-relaxing material and an elastic material under constant strain 

shows that the stress in a stress-relaxing material decreases over time, whereas it remains 

constant in an elastic material. d | In materials with stress-stiffening behaviour, an applied 

stress (σ) that is greater than the characteristic critical stress point (σc) leads to stiffening of 

the material, owing to local molecular stretching. The modulus of a non-stiffening material 

remains the same regardless of the applied stress, whereas the modulus of a stress-stiffening 

material increases once σ > σc.
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Fig. 4 |. Dynamic organoid niches.
Engineered materials may enable the control of lineage commitment of stem and progenitor 

cells in time and space. a | The release profile of matrix-immobilized growth factors can be 

designed to sequentially deliver signals through growth factor-material affinity or proteolytic 

release, providing the appropriate biochemical cues for maturing organoids. b | Materials 

can be patterned with growth factors to spatially control lineage commitment and, thus, the 

development and maturation of organoids. c | Materials can be patterned with cell-type-

specific adhesive ligands to guide cell self-sorting of early cell clusters and organoids. d | 
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The mechanical properties of a material impact cellular migration. e | Material degradation 

can be designed to control cellular migration and morphogenesis of the developing organoid. 

f | Biofabrication techniques provide opportunities to produce spatially controlled, 

engineered matrices for organoid culture. Bioassembly could be used to spontaneously form 

microtissues with zonal organization of region-specific organoids. g | Bioprinting enables the 

rapid fabrication of complex tissue architectures, for example, vascularized constructs. h | 

Organoids can also be incorporated into organ-on-a-chip platforms. These platforms can 

provide powerful models of clinically relevant multi-organ interactions256–270.
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