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Abstract

Enhanced cognitive—behavioral therapy (CBT-E) is one of the primary evidence-based treatments
for adults with eating disorders (EDs). However, up to 50% of individuals do not respond to CBT-
E, likely because of the high heterogeneity present even within similar diagnoses. This high
heterogeneity, especially in regard to presenting pathology, makes it difficult to develop a
treatment based “on averages” and for clinicians to accurately pinpoint which symptoms should be
targeted in treatment. As such, new models based at both the group, and individual level, are
needed to more accurately refine targets for personalized evidence-based treatments that can lead
to full remission. The current study (Expected N//= 120 anorexia nervosa, atypical anorexia
nervosa, and bulimia nervosa) will build both group and individual longitudinal models of ED
behaviors, cognitions, affect, and physiology. We will collect data for 30 days utilizing a mobile
application to assess behaviors, cognition, and affect and a sensor wristband that assesses
physiology (heart rate, acceleration). We will also collect outcome data at 1- and 6-month follow-
ups to assess ED outcomes and remission status. These data will allow for identification of “on
average” and “individual” targets that maintain ED pathology and test if these targets predict
outcomes, including ED remission.
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1| INTRODUCTION

Eating disorders (EDs) are serious mental illnesses (Arcelus, Mitchell, Wales, & Nielsen,
2011; Zipfel, Léwe, Reas, Deter, & Herzog, 2000). Most individuals with EDs never achieve
full remission, with approximately 60% of those with anorexia nervosa (AN) never
remitting, even after 20 years of illness, or experiencing multiple relapses and descending
into a chronic illness course (Fichter, Quadflieg, Crosby, & Koch, 2017; Keel & Brown,
2010). We urgently need personalized, effective, empirically valid treatments for adults with
EDs that can promote full ED remission.

The primary model for understanding and conceptualizing EDs is based on cognitive—
behavioral theory for EDs (CBT-E; Fairburn, 2008; Fairburn, Cooper, Shafran, & Wilson,
2008). Cognitive-behavioral theory posits that cognitions, behaviors, affect, and
physiological symptoms interact to maintain and exacerbate psychopathology (Fairburn,
Jones, Peveler, Hope, & O’Connor, 1993). CBT-E is centered on the notion that disrupting
associations between illness pathways (e.g., cognitions and behaviors associated with eating,
shape, and weight) drives symptom remission (Fairburn et al., 1993). Crucial to this premise
is that disruption among symptoms is only possible if there is a thorough understanding of
the intricate pathways between cognitive, behavioral, affective, and physiological
symptomatology, such that precision interventions can be developed to target these unique
pathways and symptoms that fall at the center of the illness (Hamburg & Collins, 2010;
Levinson, Vanzhula, & Brosof, 2018). CBT-E one of the most utilized evidence-based
treatment for adult EDs, however in its current “one-size-fits-all” format it does not address
the high symptom heterogeneity, which is extremely common across EDs, making it difficult
for patients to reach full remission (i.e., current form it is efficacious in only 50% of
individuals; Bulik, Berkman, Brownley, Sedway, & Lohr, 2007). To personalize CBT-E (and
other related treatments) to the individual, first, we need data that can identify individual
targets (central symptoms) and if these targets predict remission.

The identification of precise illness pathways that intersect multiple units of analysis (i.e.,
cognitive, behavioral, affective, physiological) will lead to treatments aimed at specific
individual targets. However, no data currently exist illuminating specific pathways among
symptoms AND within individuals, primarily because methods to collect (i.e., sensor
technology) and analyze (i.e., network analysis; NA) such complex data have only been
recently developed. For example, to confidently estimate individual networks using NA we
need intensive, real-time data with multiple (~100) time points per person (Zhang, Klein,
Walsh, Lu, & Sazonov, 2014). Such data do not currently exist. We also need to model data
integrating cognitive—affective—behavioral symptoms with physiology, as physiological
symptoms, such as electrodermal activity (EDA: skin resistance and conductance variation)
and acceleration also maintain EDs (Alberti et al., 2013; Dong, Scisco, Wilson, Muth, &
Hoover, 2013; Farooq & Sazonov, 2016).

Network theory offers a data-driven way to use cognitive—behavioral symptom data to
identify core symptoms and illness pathways that maintain an individual’s ED (Borsboom &
Cramer, 2013; McNally, 2016). One application of network theory or NA identifies how core
symptoms maintain and promote the spread of psychopathology within individuals
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(Epskamp, Deserno, & Bringmann, 2019; Epskamp, Waldorp, Méttus, & Borsboom, 2018).
NA is directly congruent with cognitive—behavioral theories proposition that (a) real-time
cognitions, behaviors, affect, and physiological symptoms interact with each other to
exacerbate and maintain illness and that (b) core symptoms are theorized to drive all other
symptoms of the disorder. Targeting such symptoms at the core of each individual’s
symptom network should lead to novel intervention targets for personalized treatment.

NA characterizes core symptoms (e.g., central features of the disorder such as overvaluation
of shape or “trigger” symptoms) within networks of illness (using measures of centrality
which identify core symptoms of pathology), as well as illness pathways (i.e., edges, defined
by partial correlations accounting for the variance of all symptoms of the disorder) among
symptoms of a disorder. Recent developments in NA provide a statistical approach to
identify specific core “trigger” symptoms and symptoms pathways for each individual and
how these symptoms differ from the average (Epskamp et al., 2018; Levinson, Vanzhula, &
Brosof, 2018). From a cognitive—behavioral perspective, these core “trigger” symptoms are
central to the maintenance of psychopathology. Therefore, intervening on core symptoms
that are highly related to the largest number of other symptoms in the network should
maximize the impact of the intervention on the other behaviors, thoughts, affect, and
physiology related to the core symptom (Anderson & Maloney, 2001; Fisher et al., 2019).

Recent research using NA has identified overvaluation of weight and shape as a core
symptom of ED pathology across individuals, (Christian et al., 2019; Levinson, Vanzhula, &
Brosof, 2018), that core symptoms predict important ED treatment outcomes and prognosis
(i.e., body mass index [BMI], depression; Levinson et al., 2018; Levinson et al., 2017;
Olatunji, Levinson, & Calebs, 2018; Sala, Brosof, & Levinson, 2019), and that central
symptoms are highly heritable (Olatunji, Christian, Strachan, & Levinson, 2020), supporting
the idea that interventions targeted at core symptoms should maximize treatment efficacy
and ultimately lead to remission. However, given the heterogeneous nature of EDs, it is
theorized, and has been found, that core symptoms significantly vary across individuals
(Levinson, Vanzhula, & Brosof, 2018). Once identified, core ED “trigger” symptoms can be
directly targeted to disrupt the spread or “activation” of ED behaviors (Anderson &
Maloney, 2001), which would help patients achieve remission.

The current study will answer three primary questions (a) Which individual core symptoms
and illness pathways maintain EDs and predict the onset of ED behaviors? (b) How do core-
maintaining symptoms differ across individuals? (c) How do physiological symptoms
interact with cognitive, behavioral, and affective symptoms to predict outcomes (e.g.,
remission)? We hypothesize that, consistent with CBT-E theory, overvaluation of weight and
shape will be identified as the most prevalent central symptoms. However, we also
hypothesize that there will be high variability in central symptoms, such that certain core
symptoms and illness pathways will vary across individuals (e.g., weight vs. loss of control
fears), while other pathways will be invariant (e.g., pathways between binge eating and
purging). We also hypothesize that symptoms identified as most central will predict ED
outcomes at follow-ups. The current protocol extends prior research by including a large
sample size, longer period of assessment, enhanced assessment of mobile-reported and
physiological symptoms, and a follow-up assessment to capture remission outcomes. These
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aspects of the protocol allow us to, with greater power, model individual networks of
pathology that encompass the entire spectrum of ED symptoms, and then test if central
symptoms predict longer-term outcomes.

2| METHOD

2.1 | Participants

We will recruit 120 adults (ages 18-65) with a diagnosis of AN, bulimia nervosa (BN), and
other specified feeding and eating disorder: Atypical AN. We will recruit from these
populations because (a) the primary empirically based treatment for adults with these
disorders is based on CBT theory (i.e., CBT-E) and (d) these populations have the least
evidence for effective ED treatments. Participants will be recruited from ED centers and
social media. Participation is all remote and open to participants across the United States.

Participants will be diagnosed using formal structured clinical interviews (see below).
Inclusion criteria include a current DSM-5 diagnosis of AN, BN, or Atypical AN. The
weight threshold for an AN diagnosis will be less than 90% of expected body weight at the
time of assessment, according to population norms and adjusted for age, sex, and height.
Participants with a diagnosis of Atypical AN must meet all diagnostic criteria for AN with
the exception of the weight criteria. Exclusion criteria include active suicidal intent, active
psychosis, active mania, inability to read or write English, and/or medical instability.
Participants are not required to be receiving treatment currently or in the past and we expect
that most participants will not be receiving treatment (this will be assessed using the
Treatment Interview, see below). This type of procedure ensures we can capture the natural
progression of ED symptoms and how that progression leads to both short- and longer-term
outcomes (remission), rather than how treatment impacts changes in symptoms.

2.2 | Procedure

All participants will give informed consent and complete structured clinical interviews
(Figure 1). The interviewer will provide instructions on using the mobile app and sensor
wristband to included participants. Participants will complete self-report measures, including
current and highest BMI, and use of psychotropic medications, stimulant/steroid use, and
other medications. After baseline assessment, participants complete 30 days of mobile app
surveys and sensor-technology monitoring (real-time data) to assess ED cognitions,
behaviors, affect, and physiological responses. ED outcomes, including current ED
symptoms, remission, treatment, and BMI will be assessed at 1- and 6-month follow-ups.

2.2.1| Mobile application procedure—Mobile app surveys will assess cognitions,
behaviors, and affect (see Table 1) delivered directly to the participant’s personal phone or
tablet. Participants will complete four daily assessments over 30 days (120 assessment
points) of approximately 3-5 min each. Participants are reimbursed based on the number of
assessments they complete. Directions ask participants to focus on “what they are
experiencing or feeling now.” Participants will be given directions on how to use the 0-100
scale, which is needed to ensure high variability for NA.
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2.2.2| Empatica procedure—The Empatica E4 or Embrace sensor-technology band
will assess EDA, acceleration (movement), and blood volume pulse [heart rate and heart rate
variability (HRV)]. Participants wear the band for 30 days corresponding to the days they
complete the mobile app questions. When participants first receive the Empatica band, they
will be asked to complete a 10-min period wearing the band where they sit quietly and move
as little as possible while reading a passage of neutral text to obtain baseline measurements
(Graham et al., 2019). During this time period they will be asked to sit in a familiar
environment to eliminate potential activation from any novel stimuli in the environment.

2.2.3| Follow-up procedure

1- and 6-month follow-ups: At each follow-up, participants will complete the Structured
Clinical Interview for DSM-5 (SCID-5), Eating Disorder Diagnostic Inventory (EDDI), and
Treatment Interview semi-structured clinical interviews, as well as the Eating Disorder
Examination Questionnaire (EDE-Q), Eating Pathology Symptoms Inventory (EPSI), and
weight and height measures. We have chosen these time points based on research suggesting
that most individuals with an ED are likely to relapse within the first 6 months following
discharge from an intensive treatment center, with the highest likelihood in the first 3 months
(Khalsa, Portnoff, McCurdy-McKinnon, & Feusner, 2017), and many of our participants will
be recruited after discharge.

2.3| Measures

2.3.1| Diagnostic and treatment measures

SCID-5: The SCID-5 is a semi-structured interview used to arrive at DSM-5 diagnoses
(First, Williams, Karg, & Spitzer, 2015). Participants will complete the ED modules. The
SCID-5 has strong psychometric properties (First et al., 2015).

EDDI: The EDDI is a semi-structured interview based on the diagnostic criteria in the
DSM-5 and derived from the SCID-5. The EDDI is used to examine the frequency and
intensity of ED symptoms. It includes items that assess ED behaviors, cognitions, and
physiological factors. The EDDI has excellent test—retest reliability (Heiss, Boswell, &
Hormes, 2018).

MINI: The MINI is a semi-structured interview used to assess DSM-5 diagnoses. The
anxiety and depression modules will be used to assess for comorbid anxiety and mood
disorders. The suicidality, mania/hypomania, and psychosis modules will be used to assess
for exclusion criteria. The MINI has strong psychometric properties (Sheehan et al., 1998).

Treatment interview: We will assess all current and past treatment experiences (partial
hospitalization, residential, etc.), as well as dates of treatment.

2.3.2| Self-report measures

EDE-Q 6.0: The EDE-Q is a self-report questionnaire that assesses ED behaviors and
thoughts (Fairburn & Beglin, 1994). The EDE-Q has strong psychometric properties (Berg,
Peterson, Frazier, & Crow, 2012).
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EPSI: The EPSI is a 45-item self-report measure used to assess ED symptoms. The EPSI
has strong psychometric properties (Forbush et al., 2013).

Weight, height, weight suppression, and medical status: We will assess weight and
height, and highest adult weight to assess weight suppression (i.e., difference between
highest weight since reaching adult height and current body weight), to partially account for
medical, nutritional status, as well as the impact of weight loss and/or gain.

2.3.3| Mobile application measures—All questions will be asked in the present
tense to assess current cognitions, behaviors, and affect (Table 1).

2.3.4| Sensor data—We will assess EDA, acceleration (movement), and HRV in real-
time to be included in group between and within-person models. We will analyze sensor data
recorded in the 10-min period preceding the completion of each mobile assessment. Sensor
data will be time-aligned, normalized, and resampled to match data across channels. Band-
pass filters will isolate phasic (event-related) signals from basal (tonic) EDA. De-trending
and discrete Fourier transformations will isolate signal-from-noise in accelerometer data.
Feature extraction (mean; SD; root-mean-squared; min, max, interquartile range; peak
frequency/amplitude; linear regression slope) will characterize the data within each 10-min
window. Each 10-min window will be compared to data recorded during the 10-min baseline
period (reading a neutral text) to determine the change from baseline in sensor data.

2.3.5| Outcome measures

Remission definition: Remissionis defined as (a) no longer meeting diagnostic criteria for
an ED, (b) no binge eating, purging, or fasting in the past 3 months, (c) BMI >18.5 kg/m?,
and (d) scores on the EDE-Q global score within 1 SD of age-matched community norms.
Partial Remission is defined as meeting the physical (BMI) and behavioral criteria but not
cognitive criteria (EDE-Q) (Bardone-Cone et al., 2010). Since many participants will be
recruited after discharge from intensive treatments, we expect that many will be classified as
partial remission when they enter the study.

Treatment status: We will also consider progression from partial remission to active ED for
any participant who enters into a more intensive treatment level during the course of the
study (e.g., moving from outpatient to partial hospitalization).

2.3.6| Data analytic plan—All codes will be made open-source. The statistical analysis
plan is modified from Levinson, Brosof, et al. (2018). We will conduct both within-person
group level and individual person networks. These analyses allow us to examine symptoms
both within one individual (7= 1), as well as averages within multiple individuals (/7> 1).
Missing data are estimated using the Kalman filter (Chen, Liu, Zhao, & Principe, 2017; de
Haan-Rietdijk, Voelkle, Keijsers, & Hamaker, 2017). For any missing data not automatically
estimated we will impute the data using the multiple imputation methods in the M/CE
package in R (van Buuren et al., 2015) as is recommended for NA (i.e., Levinson, Brosof, et
al., 2018). MICE conducts multiple imputation using fully conditional specification (FCS)
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and Gibbs sampling. FCS creates separate models for the imputation of each individual
variable by creating “plausible” values based on the other variables in the data set.

Model building and testing: We will include cognitive, behavioral, affective, and
physiological data (HRV, EDA, and acceleration) in the group-level models. We will model
both group and individual longitudinal models. We will also test for diagnostic differences
(AN, Atypical AN, BN) in our group networks.

Individual models: Because we are collecting a large amount of mobile app data, we are
unable to include all symptoms in each model. For our individual models, we will include
the nine symptoms with a combination of the highest means and variances, meaning, they
are the most active symptoms for those particular participants. For individual networks we
will conduct intra-individual networks for each individual and then use count data to detect
the most common central symptoms (based on prior research; Levinson, Vanzhula, &
Brosof, 2018). We will model any participant who completed at least 30% of the data, which
is 36 data points.

Group-level models: Each symptom was chosen based on theoretical and empirical
reasoning and to reflect a comprehensive model of ED psychopathology. If stability is not
adequate, we will use the Goldbricker function to reduce our symptom set (Jones, 2018;
Levinson, Vanzhula, & Brosof, 2018) to minimize overlapping items, which is likely given
the large number of items we plan to assess. Goldbricker identifies potential issues with item
redundancy and the best_goldbricker function suggests which items should be removed. We
will also include HRV, EDA, and acceleration in our group-level model. From our final
models we will identify the top three central symptoms determined via out-strength (e.g., the
impact the symptom has on the remaining symptoms relative to all other symptoms in the
model). See Epskamp and Fried (2018) for additional details on computing stability,
centrality indices, and partial correlations in our models.

Nomothetic and idiographic network estimation: We will use the multilevel vector
autoregressive (VAR) model (mIVVAR package, version 0.4 in R) to estimate the network
structure of ED symptoms (cognitions, affect, behaviors, and physiology). VAR models
capture intra-individual dynamics, and offer insights on the group-level (the average process
of all participants), on the personal level (every participant obtains a personalized network),
and differences across participants (see Epskamp, van Borkulo, et al., 2018 for a detailed
description). These analyses are unique in that they statistically identify the most important
symptoms and symptom variations both between and within individuals and across time. For
the group level, mIVAR estimation yields three different network structures: a temporal
network (prospective prediction or how do these symptoms predict later symptoms), a
contemporaneous network (how processes are associated within the same measurement
point while accounting for temporal effects), and between-subject networks (capturing, in
general, whether participants high on a given node [central, “trigger” symptom] are also
high on other nodes during the course of the study). Contemporaneous and temporal
networks are also obtained per individual utilizing graphical VAR (Wild et al., 2010),
allowing for unique idiographic insights into individuals. At the individual level, the
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contemporaneous network is an undirected partial correlation network that demonstrates the
relations between symptoms at the same time point, while the temporal network suggests
which symptoms predict one another over time. Both contemporaneous and temporal
idiographic networks provide important information on potential dynamics between
symptoms for each individual, allowing for personalized, hypothesis-driven intervention
(Epskamp, van Borkulo, et al., 2018; Wild et al., 2010).

Our hypotheses will be tested in the following steps:

1 Computation of both group longitudinal (between-person, contemporaneous,
temporal) networks and individual longitudinal networks (contemporaneous and
temporal; see below and see Epskamp et al. and Levinson et al. for examples;
Epskamp, van Borkulo, et al., 2018; Levinson, Vanzhula, & Brosof, 2018).

2. Identification of symptoms with the highest centrality and unique partial
correlations among symptoms in each network for each type of network.

3. Symptoms with the highest centrality (i.e., most central symptoms) will be
entered as independent variables (1Vs) into a regression model with the ED
outcome (ED behaviors and remission) as the dependent variable (DV).

4, Most variable partial correlations (i.e., associations between symptoms that vary
the most across participants) will be entered as Vs into a regression model with
the ED outcome (ED behaviors and remission) as the DV.

Power analysis: Our ability to detect even weak effect sizes (0.20) is strong in our
regression analyses (power >0.92). Power for mIVVAR models is determined by the sample
size, number of time points, and number of symptoms included in the model (Schultzberg &
Muthén, 2018). With a sample size of 100 participants with 100 time points (including 120
participants with 120 time points and 27 symptoms), we would achieve more than adequate
power. See also supplementary materials from Epskamp, Waldorp, et al. (2018) which
reports simulation results for mIVAR, showing that mIVAR models are excellent in
recovering the fixed effect structure with quite few data. We propose to collect 120
participants with 120 time points to account for expected compliance of ~74% (based on
preliminary data) and missing data.

3| CONCLUSIONS

The current study aims to model both longitudinal group and individual ED pathology
consisting of cognitive, behavioral, affective, and physiological symptoms using network
analysis. We then plan to test if central symptoms and illness pathways relate to ED
outcomes and remission. Identification of specific group and individual targets will set the
stage for the development of precision treatments aimed at evidence-based intervention
points. Specifically, if we are able to identify central symptoms that are predictive of
remission, we can develop personalized treatments designed specifically to target these
symptoms and we can use network algorithms to extend personalized treatments to
additional populations.
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