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Abstract

Growing evidence suggests overlap between Alzheimer’s disease (AD) and Parkinson’s disease 

(PD) pathophysiology in a subset of patients. Indeed, 50–80% of autopsy cases with a primary 

clinicopathological diagnosis of Lewy body disease (LBD) – most commonly manifesting during 

life as PD – have concomitant amyloid-beta and tau pathology, the defining pathologies of AD. 

Here we evaluated common genetic variants in genome-wide association with AD as predictors of 

concomitant AD pathology in the brains of people with a primary clinicopathological diagnosis of 

PD or Dementia with Lewy Bodies (DLB), diseases both characterized by neuronal Lewy bodies. 

In the first stage of our study, 127 consecutive autopsy-confirmed cases of PD or DLB from a 

single center were assessed for AD neuropathological change (ADNC), and these same cases were 

genotyped at 20 single nucleotide polymorphisms (SNPs) found by genome-wide association 

study to associate with risk for AD. In these 127 Training set individuals, we developed a logistic 

regression model predicting the presence of ADNC, using backward stepwise regression for model 

selection and 10-fold cross-validation to estimate performance. The best-fit model generated a risk 

score for ADNC (ADNC-RS) based on age at disease onset and genotype at three SNPs (APOE, 

BIN1, and SORL1 loci), with an area under the receiver operating curve (AUC) of 0.751 in our 

Training set. In the replication stage of our study, we assessed model performance in a separate 
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Test set of the next 81 individuals genotyped in our center. In the Test set, the AUC was 0.781, and 

individuals with ADNC-RS in the top quintile had four-fold increased likelihood of having AD 

pathology at autopsy compared with those in each of the lowest two quintiles. Finally, in the 

validation stage of our study, we applied our ADNC-RS model to 70 LBD individuals from 20 

Alzheimer’s Disease Research Centers (ADRC) whose autopsy and genetic data were available in 

the National Alzheimer’s Coordinating Center (NACC) database. In this Validation set, the AUC 

was 0.754. Thus, in patients with autopsy-confirmed PD or DLB, a simple model incorporating 

three AD-risk SNPs and age at disease onset substantially enriches for concomitant AD pathology 

at autopsy, with implications for identifying LBD patients in which targeting amyloid-beta or tau 

is a therapeutic strategy.
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INTRODUCTION

Alzheimer’s (AD) and Parkinson’s diseases (PD) are the two most common 

neurodegenerative disorders, together affecting >6 million individuals worldwide [10, 27]. 

AD is defined neuropathologically by the presence of amyloid-beta (Aβ) plaques and tau 

neurofibrillary tangles (NFT), while PD is defined by the presence of Lewy bodies 

composed of alpha-synuclein (aSyn). The average age of a patient receiving an AD clinical 

diagnosis is ~80 years old [2], while the average age of a patient receiving a PD clinical 

diagnosis is ~60 years old [36].

PD is not the only disease defined by aSyn Lewy bodies. Rather, PD belongs to a group of 

“synucleinopathies” collectively called the Lewy body diseases (LBD). The LBD comprise 

PD, with or without dementia, dementia with Lewy bodies (DLB), and multiple system 

atrophy (MSA) [19], with the first two entities (PD and DLB) demonstrating neuronal aSyn 

Lewy bodies, while MSA shows aSyn inclusions in glia. Importantly, the distinction 

between DLB and PD with dementia (PDD) is clinical, based on the timing of development 

of dementia [31]. On neuropathological examination, DLB and PDD patients are nearly 

indistinguishable at the individual level. Furthermore, DLB and PDD share preclinical 

features, and shared genetic variants confer an increased risk in both disorders [4, 14, 28].

Despite traditional separation between AD and the LBD, growing evidence suggests a 

dynamic interaction between their pathophysiologies. Fifty to 80% of patients with a 

primary clinicopathological diagnosis of LBD have concomitant Aβ and tau pathology [38]. 

At autopsy, up to 40% of PD patients exhibit enough Aβ and NFT to qualify for a secondary 

diagnosis of AD [14]. Mechanistically, in vitro and in vivo studies suggest that aSyn, tau, 

and Aβ may interact synergistically in events leading to disease development [5, 44]. From a 

practical viewpoint, these findings suggest that LBD patients may be at-risk for developing 

AD.

Genetic risk factors for developing AD have been identified through family studies and 

genome-wide association studies (GWAS). In a recent AD GWAS comparing >50,000 cases 
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with >100,000 controls, 25 distinct loci were associated with risk for AD [24]. However, the 

genetic heritability (h2) reported for this study was only 0.071, and various genetic risk 

scores composed of AD GWAS-nominated variants have poor predictive value for AD in the 

general population [11].

We reasoned that the high prevalence of AD within the LBD population might enhance the 

ability of AD genetic risk variants to predict the development of AD pathology. Accordingly, 

we genotyped all common genetic variants reported in two or more AD GWAS to associate 

with AD risk in a single-center cohort of 208 consecutive cases with a primary 

clinicopathological diagnosis of either PD or DLB. We tested these AD risk variants for their 

ability to predict concomitant AD pathology in these cases, validating our best model in an 

additional 70 LBD cases from the multi-center National Alzheimer’s Coordinating Center 

(NACC) database.

MATERIALS AND METHODS

Participants:

Clinical and neuropathological data from all autopsy cases enrolled between February 1985 

and July 2019 at the University of Pennsylvania (Penn) Center for Neurodegenerative 

Disease Research brain bank were assessed [45]. A clinicopathological diagnosis was 

assigned to each case primarily determined by neuropathology and secondarily accounting 

for clinical history. We note that although some cases were banked decades ago, all cases 

have been reassessed using modern criteria and techniques. Those with (1) a primary 

clinicopathological diagnosis of PD, PDD, or DLB and (2) DNA available for genetic 

studies were included in the analysis. All cases included in this study had a 

clinicopathological diagnosis of DLB or PD with or without dementia; we excluded MSA to 

focus on primary neuronal synucleinopathies [17]. Of 1922 accessioned cases, 208 cases 

met the above criteria, with 127 cases having complete genotype data at the outset of our 

study (Training set), and 81 more cases genotyped during the course of our study (Test set).

The National Alzheimer’s Coordinating Center (NACC) database is a multi-center collection 

of clinical and neuropathological data from over 42,000 de-identified individuals across 39 

past and present Alzheimer’s Disease Research Centers (ADRCs), as of March 2020 [3]. 

Through the Alzheimer’s Disease Genetics Consortium (ADGC), genetic data are also 

available for some of these individuals. Individuals with (1) evidence of Lewy body 

neuropathology, (2) a presumptive etiological diagnosis of Lewy body disease, (3) from a 

non-Penn ADRC, and (4) SNP genotypes for AD GWAS loci available through the ADGC, 

were included in the validation stage of our analysis [22, 23]. Cases with genetic mutations 

for familial AD were excluded. Seventy cases from twenty ADRCs met criteria and were 

included in the analysis. Informed consent was obtained from all participants prior to death 

at each ADRC.

Prior to conducting these studies, approval was obtained from the Penn Institutional Review 

Board, and informed consent was obtained from all participants prior to death. All 

procedures in these studies adhere to the tenets of the Declaration of Helsinki.
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Immunohistochemistry and Neuropathological Staging

For the Penn cases, neuropathological characterization of defined brain regions (frontal 

neocortex, temporal neocortex, parietal neocortex, occipital neocortex, anterior cingulate 

gyrus, hippocampus including entorhinal cortex, amygdala, basal ganglia, thalamus, 

midbrain, pons, medulla, cerebellum) was conducted on all cases as previously described [1, 

45]. Briefly, each brain region was assessed by hematoxylin and eosin stain in addition to 

immunohistochemical stains (NAB228 for Aβ generated by Dr. Trojanowski, PHF1 for 

phosphorylated tau gifted by Peter Davies, SYN303 for aSyn generated by Dr. Trojanowski, 

and 1D3 for phosphorylated TDP-43 gifted by Manuela Neumann and Elisabeth Kremmer) 

in order to assign a semi-quantitative score (none, rare, mild, moderate, or severe) for tau, 

Aβ, aSyn, and TDP-43 pathologies. For the NACC cases, neuropathological characterization 

of brain regions was conducted at individual ADRCs in accordance with established 

guidelines [21]. For all cases, an AD Neuropathologic Change (ADNC) score was also 

assigned in accordance with the National Institute on Aging’s guidelines for the 

neuropathologic assessment of AD. Absence of AD co-pathology was defined by an ADNC 

of None or Low, while presence of AD co-pathology was defined by an ADNC score of 

Intermediate or High [32].

Genotyping of AD Risk Variants

Single nucleotide polymorphisms (SNPs) in genome-wide association with AD risk were 

nominated from the literature. Three AD genome-wide association studies (GWAS) together 

examining >70,000 AD subjects and >380,000 controls were used to identify candidate 

SNPs [16, 24, 25]. SNPs reaching genome-wide significance (p < 5 × 10−8) in at least two of 

these three major GWAS were included in our study. Twenty independent loci reached 

criteria for inclusion.

For the Penn cases, SNP genotype was determined by Illumina Global Screening Arrays 

(GSA), or TaqMan SNP Genotyping Assays, as previously described [7]. In some cases, 

proxy SNPs (D’>0.8 in the EUR reference population from 1000 Genomes Project Phase 3 

[41]) were substituted, as indicated in the text. For the NACC cases, SNP genotyping was 

completed by the Alzheimer’s Disease Genetic Consortium (ADGC) via Illumina or 

Affymetrix high-density microarrays, as previously described [33].

Association of Individuals Risk Variants with ADNC

Logistic regression models were used to test for association between genotype at each SNP 

and the presence or absence of AD co-pathology in the Penn cohort (N=208). Because the 

APOE locus has three alleles reported to have differential effects in AD [13, 39], we 

considered the number of APOE E2 and APOE E4 alleles separately. Additional analyses 

were performed with sex and age at disease onset as covariates in the logistic regression.

Logistic Regression Model Predicting ADNC

Penn autopsy cases were split into Training (N=127, 61%) and Test (N=81, 39%) sets, 

which is within the range of optimal allocation proportions for large data sets with high data 

accuracy [8]. The Training set comprised the first batch of 127 cases genotyped, for which 

data was available at the outset of the study, while the Test set comprised the next 81 cases 
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genotyped, for which genetic data was obtained during the subsequent replication step of our 

study. There was no overlap between Training and Test sets. Backwards stepwise regression 

was used to develop a binary classifier to predict the presence or absence of AD co-

pathology in the Training set, with age at disease onset and sex as covariates in the model. 

Comparison of Akaike information criterion (AIC) at each step was used to determine model 

fitness, and we estimated predictive performance by ten-fold cross-validation (100 

iterations). The Hosmer and Lemeshow goodness-of-fit test [12] was used to evaluate the 

final logistic regression model developed in the Training set.

Model performance at predicting AD co-pathology was assessed in both the Penn Training 

and Test sets using receiver operating characteristic (ROC) curves, generating an area under 

the curve (AUC) for both the Training and Test sets.

The best-fit model was also applied to LBD subjects from the NACC database, with ROC 

curve analyses.

Development of the ADNC-RS

An ADNC Risk Score (ADNC-RS) was calculated for each case based on the best model 

developed in the Penn-based Training set by multiplying the age at disease onset or the risk 

allele dose by the respective regression coefficient. The risk score can be used to calculate 

the probability of AD co-pathology using the formula: p = e^(Risk Score) / (1 + e^(Risk 
Score)). Specifically, because our model is a logistic regression model, the output (Risk 
Score) is in log odds. Log odds may be converted to odds by taking the antilog (eRisk Score). 

The odds may then be converted to probability using the standard probability (p) formula (p 
= odds/(1 + odds)). Scores and probabilities were generated using the “predict” function in 

the “caret” package in R [20] from the logistic regression model.

Additional Details Regarding Statistical Analysis

Analyses were conducted in R (http://www.r-project.org) and Prism 8 (http://

www.graphpad.com/scientific-software/prism); R-scripts as well as Penn-based datasets are 

available in the Supplementary Methods as an Online Resource. The “caret” package was 

used for cross-validation and model generation [30]. The “ROCR” and “pROC” packages 

were used for creating and analyzing receiver operating characteristic (ROC) curves [37, 

40]. T-test, Wilcoxon rank-sum, or Fisher’s exact tests were used to assess differences 

between clinical variables, as indicated by the distributions of data. For all statistical tests, 

power was set at 0.8, alpha was set to 0.05, and all tests were two-sided.

RESULTS

Penn LBD Cohort Characteristics:

Two hundred and eight participants from Penn with a primary clinicopathological diagnosis 

of PD or DLB were included in this analysis. The mean age at clinical disease onset was 

64.51 years (SEM 0.70) and at death was 77.67 years (SEM 0.55). The majority of these 

subjects (n=163/208 (78.4%)) received clinicopathological diagnoses of PD; 108 of these 
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PD individuals had dementia at the time of death, and 55 did not. Additional diagnoses for 

this cohort, as well as clinical and demographic details, are shown in Tables 1 and 2.

Only 43/208 (20.67%) of this LBD cohort had no ADNC at autopsy, while more than one-

third had intermediate or high levels of ADNC (Fig. 1a, Supplementary Table 1, Online 

Resource). Among the group with no ADNC, 16.8% are identified as Primary Age Related 

Tauopathy (PART). In the Penn LBD cohort, virtually all individuals with amyloid plaques 

also demonstrated NFT; indeed, only 4 individuals had amyloid plaques without evidence of 

NFTs. Representative immunohistochemical sections of anterior cingulate and middle 

frontal cortex demonstrating Lewy body pathology with co-occurring Aβ and tau NFT are 

shown in Fig. 1b.

Clinical Differences in PD/DLB patients with vs. without ADNC

Compared to PD/DLB subjects with absent or low levels of ADNC, subjects with 

intermediate-to-high levels of ADNC were older at disease onset (67.76 vs. 62.52 years, 

p<0.001) and had shorter disease duration (11.41 vs. 15.27 years, p<0.001). They were also 

more cognitively impaired, with lower MMSE scores (18.08 vs. 21.29, p=0.02), and greater 

rates of clinical dementia (89.9% vs. 63.6%, p<0.001, Table 1), prior to death. The mean 

time between the last MMSE and death was 2.66 years (SD 2.37).

Association of Individual AD Risk SNPs with ADNC in PD/DLB patients

Twenty genetic loci have been robustly associated with risk for developing AD by multiple 

GWAS [16, 24, 25] (Table 3). As shown in Table 4, the number of APOE E4 alleles 

associated with increased risk for ADNC in PD/DLB (nominal p<0.001). One other locus 

near SORL1, represented by rs11218343, approached but did not meet the significance 

threshold for association with ADNC (nominal p=0.06). Adjusting for age at onset and sex 

minimally affected these results (Supplementary Table 2, Online Resource).

Development of a Model Predicting Concomitant AD Pathology in PD/DLB Individuals

In a Training set consisting of the first 127 PD/DLB individuals genotyped at Penn, we 

developed a logistic regression model to predict concomitant AD pathology (defined as 

intermediate-to-high levels of ADNC). We began by including genotypes at all 20 AD risk 

SNPs [16, 24, 25] (Table 3), age at disease onset, and sex in the model. We then used 

backward stepwise regression, with model selection based on the Akaike Information 

Criterion (AIC). For each model, we also estimated predictive performance by ten-fold 

cross-validation (100 iterations) within the Training set (Fig. 2a).

Our best model (by AIC) incorporated only four predictors: age at disease onset, number of 

APOE E4 alleles, and genotype at the BIN1 and SORL1 loci (Fig. 2b). The Hosmer-

Lemeshow goodness-of-fit test for this model produced a χ2(8, N = 127) = 7.578, p = 

0.4758, indicating fit. The area under the receiver operator curve (AUC) for this model in 

our Training set data (ten-fold cross-validation) was 0.751 (Fig. 3a), whereas the AUC for a 

shuffled version of our dataset in which ADNC positive vs. negative status was permuted 

(null model) was 0.479 (Supplementary Fig. 1, Online resource).
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Model Performance in Test Set

We applied the best model developed in our Penn-based Training set to a Penn-based Test 

set of 81 PD/DLB individuals whose data were never used to develop the predictor. Despite 

differences in the proportion of cases with concomitant AD pathology in the Training set 

(46%) vs. the Test set (26%), our model performed equally well in the Test set, with an AUC 

of 0.781 (Fig. 3b).

We additionally performed a subgroup analysis, applying our predictor only in the subset of 

our 208 Penn cases with a clinicopathological diagnosis of PD or PDD (N=163), which 

minimally affected the results (AUC = 0.728, Supplementary Fig. 2, Online Resource).

Development of an ADNC Risk Score

In order to develop a clinically-useful tool, we used our logistic regression model to generate 

a continuous risk score (vs. binary outcome predictor) for concomitant AD pathology 

(ADNC risk score, or ADNC-RS). An ADNC-RS was calculated for each case using the 

following formula:

ADNC − RS = −7.97717 + 0.0636(Age at onset) + 1.04327(APOE E4 alleles) + 

0.45498(BIN1 risk alleles) + 1.48933(SORL1 risk alleles).

The distribution of ADNC-RS across both the Penn-based Training and Test sets is shown in 

Fig. 3c. The ADNC-RS was significantly higher for PD/DLB individuals with concomitant 

AD pathology in both the Training (M 0.241 (SEM 0.129) vs. M −0.622 (SEM 0.111), 

p<0.001) and Test sets (M 0.378 (SEM 0.139) vs. M −0.470 (SEM 0.113), p<0.001), 

compared to those without concomitant AD pathology. For each case the ADNC-RS was 

used to determine the probability of AD co-pathology; the distribution of predicted 

probability of AD co-pathology is shown in Fig. 3d. We found, importantly, that individuals 

with ADNC-RS in the highest quintile were four times more likely to have AD pathology 

than individuals with ADNC-RS in the lowest two quintiles. This enrichment was observed 

in both the Training set (Fig. 3e) and the Test set (Fig. 3f) individuals.

Validation of the ADNC Risk Score in LBD cases from the National Alzheimer’s 
Coordinating Center (NACC) Database

Having demonstrated that our logistic regression predictor and its associated ADNC-RS 

performed well in Penn-based individuals from both our Training and Test sets, we sought to 

validate this predictor in a national multi-site setting.

The National Alzheimer’s Coordinating Center (NACC) is a national database of clinical 

and neuropathological data from over 42,000 de-identified individuals across 39 past and 

present Alzheimer’s Disease Research Centers (ADRCs), as of March 2020. Genetic 

information for some patients is also available through the Alzheimer’s Disease Genetics 

Consortium (ADGC). Seventy individuals from 20 non-Penn ADRCs with autopsy-

confirmed LBD neuropathology and presumed clinical etiology of LBD were included in 

this analysis. The mean age at disease onset was 70.49 years (SEM 1.03), and mean age at 

death was 80.41 years (SEM 0.98). Since many NACC patients are recruited from memory 

disorder clinics, this group was highly enriched for patients with dementia during life 
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(n=58/70 (82.9%)) and intermediate/high ADNC at autopsy (n=62/70 (88.6%)), compared to 

the Penn-based PD and DLB cohort. Additional clinical and demographic details are shown 

in Table 5.

Despite these differences in prevalence of ADNC, applying our best Penn-derived model to 

the NACC Validation set resulted in a ROC AUC of 0.754 (Fig. 4a), indicating comparable 

performance to that seen in our Penn-based Training (0.751) and Test sets (0.781). LBD 

individuals from the NACC database with AD co-pathology exhibited higher average 

ADNC-RS than those without AD co-pathology (M 0.552 (SEM 0.109) vs. M −0.179 (SEM 

0.244), p=0.018)) (Fig. 4b). Despite the NACC database’s enrichment for patients with 

ADNC, higher ADNC-RS continued to correlate with a higher prevalence of AD co-

pathology (Fig. 4d).

DISCUSSION

In this study, we performed an in-depth analysis of 208 PD/DLB cases from Penn in order to 

determine whether common genetic variants associated with risk for AD by GWAS might 

predict which individuals would develop concomitant AD pathology. We first demonstrated 

that concomitant AD pathology is highly prevalent in PD/DLB patients, with over one-third 

of the Penn cohort exhibiting intermediate-to-high levels of ADNC. We next evaluated a set 

of 20 common genetic variants found by multiple AD GWAS to associate with risk for AD, 

examining their association with ADNC in PD/DLB and developing a best-fit logistic 

regression model predicting the presence of intermediate-to-high ADNC in these primary 

neuronal synucleinopathies. A best-fit predictor incorporating only age at disease onset and 

genotype at 3 SNPs achieved moderately high performance (AUC 0.75 – 0.78) in both the 

Training set in which it was developed and a held-out Test set. From our logistic regression 

model, we developed a continuous metric, the ADNC-RS, and demonstrated that this simple 

tool could identify a population of LBD individuals at very high risk for development of 

concomitant AD pathology. Finally, we applied our logistic regression model and associated 

ADNC-RS calculator to LBD cases from the national, multi-site NACC database, validating 

its performance (AUC = 0.754) in a set of 70 cases recruited outside of Penn.

Our findings have clinical implications. Both “proteinopathies” defining ADNC – plaques 

composed of Aβ and NFT composed of tau – are targetable with drugs in clinical trials now, 

and, in clinical AD, immunological approaches targeting Aβ have shown enough promise to 

proceed to Phase III trials [6, 35]. However, within the clinical AD spectrum, the need to 

identify individuals ever-earlier in the course of pathophysiology [43] in order to see benefit 

with these therapies has created considerable problems with feasibility, not to mention 

potential burden to the healthcare system should any of these therapeutics attain FDA 

approval. These practical issues have been compounded by the fact that genetic risk scores 

based on AD GWAS-nominated variants achieve only very modest predictive value in the 

general population, where the absolute prevalence of AD is relatively low [11]. The 

performance of such genetics-based risk scores may be vastly improved in a population 

enriched for the presence of AD pathology, however [9].
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Patients with primary clinical diagnoses of PD during life (and LBD at autopsy) represent 

exactly such an AD pathology-enriched population. Indeed, the prevalence of concomitant 

AD pathology in this group has been reported to range from 38% to 70%, depending on the 

definition of AD pathology used, and on whether clinical diagnosis of PD or primary 

pathological diagnoses of LBD is used [38, 42]. Our study corroborates these findings, with 

~38% of PD/DLB individuals from Penn demonstrating an intermediate to high degree of 

ADNC, and only ~20% showing no ADNC. As a consequence, in this enriched population, 

the logistic regression model developed here achieves an AUC of ~0.781.

More important from a practical perspective, we use the predictors (and associated weights) 

identified in our model to develop a risk score for ADNC (the ADNC-RS) that can identify 

those PD/DLB individuals most likely to exhibit ADNC at autopsy. Indeed, in both our 

Penn-based Training and Test sets, those individuals with ADNC-RS in the top 20% are four 

times more likely to develop ADNC than LBD individuals with ADNC-RS in the bottom 

40%, while in the NACC Validation set, higher ADNC-RS still correlated with higher 

likelihoods of individuals having ADNC, despite the NACC database’s bias towards 

individuals with ADNC. Because the ADNC-RS requires knowledge of only the age at 

disease onset and genotype at 3 AD risk SNPS, it can be easily calculated in most settings 

using results from a simple blood sample. Thus, the ADNC-RS developed here might serve 

as a screening step enriching for those PD/DLB individuals who warrant assessment for 

development of ADNC using more expensive modalities such as Aβ or tau imaging. 

Moreover, as plasma biomarkers for AD are emerging now [15, 18, 29, 34] future studies 

incorporating plasma biomarkers with the clinico-genetic predictor described here may 

further improve accuracy.

How certain can we be of our model and associated risk score? While the definitive answer 

to this question will lie in future studies investigating other cohorts, several aspects of our 

current study increase confidence. First, we nominate candidate genetic variants for 

inclusion in model development in an unbiased manner, starting with all loci reported to 

associate with risk for AD across two or more major GWAS studies. Second, we use strict 

criteria that are widely accepted in the field for defining ADNC. Third, in the first two stages 

of our study, we employ a Training set/Test set design in our analyses, with each group 

defined by consecutive genotyping of autopsy cases diagnosed with PD or DLB. Such a 

design guards against over-fitting, and our results confirm that we are not over-fitting the 

Training set data, since performance in the Test set is as high as in the Training set. Indeed, 

because completion of our Test set cases followed completion of our Training set cases, 

these two subgroups had different levels of concomitant AD pathology (46% of cases with 

concomitant AD pathology in the Training set vs. 26% in the Test set), but the ADNC-RS 

performed equally well in enriching for individuals with AD co-pathology in both 

subgroups. Finally, we validated our findings in a multi-site group of LBD individuals 

recruited outside of Penn, finding that the ADNC-RS performed equally well in a dataset 

highly enriched with concomitant AD pathology (88.6% of cases).

Limitations of the current study should be considered alongside the previously-mentioned 

strengths. In particular, although our sample sizes of 208 neuropathologically-characterized 

PD/DLB cases from Penn and 70 LBD cases from NACC are not small, a larger sample, 
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across multiple centers, would be a valuable addition to the work presented here. In addition, 

further investigations of the cognitive consequences of ADNC in PD or DLB patients would 

add clinical depth to our findings. Third, because the focus of this study was 

neuropathological, we defined our cohort neuropathologically, rather than using a 

clinicopathological diagnosis of PD. That said, a subset analysis of the 163 individuals in 

our Penn-based LBD cohort with a clinical diagnosis of PD yielded near-identical results. In 

the future, however, a clinically-defined study in a PD population, verifying the presence or 

absence of ADNC by imaging, could extend the current work. Finally, we recognize that the 

LBD cases in our NACC Validation set may differ clinically from the PD/DLB cases 

characterized at Penn, because most NACC participants are recruited at memory disorders 

clinics. That said, we selected for only the NACC LBD cases whose clinical diagnosis was 

presumed to be LBD (n=70 out of 559 NACC cases with autopsy and genetic data). 

Moreover, in thinking about the potential clinical uses of our predictor, we are encouraged 

by its high performance in this Validation set, since heterogeneity is the norm rather than the 

exception in most clinical contexts.

In addition to the clinical implications discussed above, the biological implications of our 

study are also worth considering. Specifically, the genetic loci identified in our final model 

predicting ADNC in LBD individuals were APOE, BIN1, and SORL1. Many functions for 

APOE have been reported, but a consistent finding over many years is that the APOE E4 

allele (included in our predictive model) encodes a form of this protein that binds Aβ less 

efficiently [46]. BIN1 encodes a protein that functions in beta-secretase 1 trafficking, which 

in turn can impact the production of Aβ. SORL1 encodes the sortilin-related receptor 1, 

which also functions in intracellular trafficking, including the sorting of APP to the retromer 

pathway for degradation or to the endosome-lysosome system, where APP is cleaved to 

generate Aβ. Collectively, the fact that our best predictive model incorporates these three 

genetic loci underscores the importance of Aβ production and processing in the development 

of ADNC among LBD individuals. In addition, direct interaction between BIN1 and tau 

regulates tau phosphorylation, which may affect the development of AD pathology via a 

different route [26]. Interestingly, among these three genetic loci, the SORL1 locus exerted 

the strongest effect in our model, with a coefficient of ~1.5 compared to ~1 for the APOE 
locus. As the SNP at the SORL1 locus is relatively rare (minor allele frequency of 0.04), the 

contribution to AUC may be seen in only a small fraction of individuals, however. In 

contrast, in the general population, among AD common genetic risk, APOE has by far the 

largest effect size.

In summary, we present our findings from a study of 208 PD/DLB cases at Penn, validated 

in 70 additional LBD cases from the multi-site NACC database, demonstrating that age at 

disease onset and genotype at 3 SNPs is sufficient to identify a subset of LBD individuals at 

very high risk for development of concomitant AD pathology. The development of 

molecular tools such as the ADNC-RS reported here may in turn be permissive for strategies 

to target Aβ and tau accumulation in PD and other LBD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Alzheimer’s Disease Neuropathological Change (ADNC) scores in N = 208 cases from Penn 

with a primary clinicopathological diagnosis of PD or DLB. a Number of subjects and % of 

whole cohort at each level of ADNC. b Representative immunohistochemical sections 

(160X) demonstrating Lewy body aSyn pathology alone in anterior cingulate (left panel, in 

red), concomitant Aβ (brown) and aSyn (red) pathology in anterior cingulate (middle panel), 

and Aβ (red) and tau NFT (brown) pathology in middle frontal cortex (right panel). aSyn 

pathology was detected with the MJFR13 antibody against phosphorylated aSyn. Aβ 
pathology was detected with the NAB228 antibody, and tau NFT’s were detected with the 

17028 rabbit polyclonal anti-tau antibody.
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Fig 2. 
Backward stepwise logistic regression model selection for predicting concomitant 

Alzheimer’s Disease (AD) pathology in N = 127 cases (Training set) with a 

clinicopathologic diagnosis of PD or DLB from Penn. Concomitant AD pathology is defined 

as an AD Neuropathological Change (ADNC) score of Intermediate or High. a Akaike 

information criterion (AIC, left axis) at each step during model selection and the 

corresponding area under the receiver operating characteristics curve (AUC, right axis), 

estimated by ten-fold cross-validation, within the Training set are shown. Initial model 

included all AD risk SNPs, sex, and age at disease onset as predictors; sequential 

elimination of predictors and effect on AIC and AUC are shown from left to right. As the 

Training set cases showed no genetic variability at the TREM2 locus, this locus was not 

included in the model. b Coefficients (β), standard error (SE), and p-values for the four 

predictors included in the best model (lowest AIC) for predicting concomitant AD in LBD 

cases.
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Fig 3. 
Performance characteristics of the best model for predicting concomitant Alzheimer’s 

disease (AD) pathology among Penn cases with a clinicopathological diagnosis of PD or 

DLB. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) of 

the final model (with age at onset, number of APOE4 alleles, BIN1 genotype, and SORL1 
genotype as predictors) in the Training (a) and Test (b) cohorts are shown. c The 

Alzheimer’s Disease Neuropathological Change Risk Score (ADNC-RS) calculated from the 

best logistic regression model is shown for both the Training set and Test set cohorts. 
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Individuals positive for ADNC showed higher average ADNC-RS. d The probability of 

concomitant AD pathology was calculated from the ADNC Risk Score for each case. Values 

above 0.5 have a high probability of concomitant AD pathology, while values below 0.5 

have a low probability of concomitant AD pathology. The prevalence of concomitant AD 

pathology at each quintile of ADNC Risk Score in the Training (e) and Test (f) cohorts 

demonstrates fourfold enrichment for the presence of ADNC for individuals in the top 

quintile vs. individuals in the first two quintiles of risk. *p<0.05.
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Fig 4. 
Performance characteristics of the best model for predicting concomitant Alzheimer’s 

disease (AD) pathology among non-Penn, NACC cases with neuropathological evidence of 

Lewy bodies and presumed clinical diagnosis of LBD. a Receiver operating characteristic 

(ROC) curve and area under the curve (AUC) of the final model (developed in the Penn-

based Training set, with age at disease onset, number of APOE4 alleles, BIN1 genotype, and 

SORL1 genotype as predictors) are shown. b The Alzheimer’s Disease Neuropathological 

Change Risk Score (ADNC-RS) calculated from the final model is shown for LBD cases 

from the NACC. Individuals positive for ADNC showed higher average ADNC-RS. c 
Despite the NACC database’s enrichment for ADNC-positive individuals compared to the 

Penn-based cases (Training and Test sets combined), the ADNC-RS correlated with 

prevalence of ADNC in both groups.
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Table 1.

Demographic and Clinical Characteristics of Cohort. Data represent mean (SEM) unless otherwise noted.

Characteristic Whole Cohort None/Low ADNC Intermediate/High ADNC p-value 
b

N 208 129 79

Age at Onset, y 64.51 (0.70) 62.52 (0.93) 67.76 (0.93) 0.000

Age at Death, y 77.67 (0.55) 76.95 (0.75) 78.84 (0.79) 0.149

Disease Duration, y 13.80 (0.61) 15.27 (0.85) 11.41 (0.75) 0.000

Sex, (F/M), N (%) 45(22)/163(78) 30(23)/99(77) 15(19)/64(81) 0.494

Race, N (%) White 199 (97.6) 122 (97.6) 77 (97.5)
0.999

      Non-White 5 (2.4) 3 (2.4) 2 (2.5)

Last MMSE
a 20.07 (0.74) 21.29 (0.92) 18.08 (1.18) 0.021

Last UPDRS-III
a 45.47 (1.91) 43.96 (2.17) 49.10 (3.82) 0.222

Dementia Diagnosis During 55(26.4)/ 47(36.4)/ 8(10)/
0.000

Life, (No/Yes) N (%) 153(73.6) 82(63.6) 71(89.9)

Lewy Body Distribution, N (%)

 Diffuse or Neocortical 120 (58.0) 56 (43.4) 64 (82.1)

 Transitional or Limbic 58 (28.0) 47 (36.4) 11 (14.1) 0.000

 Brainstem Predominant 29 (14.0) 26 (20.2) 3 (3.8)

a
Available Data (N=100 MMSE, N=68 UPDRS-III).

b
Comparison between None/Low ADNC and Intermediate/High ADNC groups.

*
p<0.05.
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Table 2.

Clinicopathological Diagnosis of Cohort.

Clinicopathological Diagnosis Whole Cohort
a

None/Low ADNC
b

Intermediate/High ADNC
b

Parkinson’s disease 55 (26.44) 47 (85.45) 8 (14.55)

Parkinson’s disease dementia 108 (51.92) 62 (57.41) 46 (42.59)

Dementia with Lewy bodies 45 (21.63) 20 (44.44) 25 (55.55)

a
Data represent N (%) of whole cohort.

b
Data represent N (%) of ADNC category.
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Table 3.

Genetic loci nominated from Alzheimer’s disease GWAS literature.

Variant Chr. Position
a

Nearest Gene
b Maj/ Min MAF

c
Reported OR (95%CI) for AD

d

rs3818361
e 1 207611623 CR1 G/A 0.278 1.20 (1.13–1.27)

rs6733839 2 127135234 BIN1 C/T 0.399 1.20 (1.17–1.23)

rs7570320
f 2 233167045 INPP5D C/A 0.369 0.92 (0.87–0.97)

rs9271100
g 6 32608701 HLA-DRB5/DRB1 C/T 0.273 1.11 (1.06–1.17)

rs75932628 6 41161514 TREM2 C/T 0.010 2.08 (1.73–2.49)

rs10948363
h 6 47520026 CD2AP A/G 0.278 1.09 (1.06–1.12)

rs1476679
i 7 100406823 NYAP1j C/T 0.323 0.92 (0.90–0.95)

rs11762262
k 7 143410783 EPHA1 C/T 0.207 0.91 (0.86–0.96)

rs17057043
l 8 27362793 PTK2B G/A 0.343 1.11 (1.06–1.16)

rs11136000
m 8 27607002 CLU C/T 0.369 0.88 (0.85–0.90)

rs11257240
n 10 11677075 ECHDC3 T/G 0.350 1.07 (1.02–1.12)

rs920573
o 11 60157486 MS4A6A G/A 0.475 0.90 (0.86–0.95)

rs3851179 11 86157598 PICALM C/T 0.429 0.88 (0.86–0.90)

rs11218343 11 121564878 SORL1 T/C 0.040 0.80 (0.75–0.85)

rs17125944
p 14 52933911 FERMT2 T/C 0.081 1.14 (1.09–1.18)

rs10498633
q 14 92460608 SLC24A4 G/T 0.182 0.92 (0.89–0.94)

rs11854073
r 15 58680796 ADAM10 G/A 0.308 0.93 (0.91–0.95)

rs3752246 19 1056493 ABCA7 C/G 0.187 1.15 (1.11–1.18)

rs7274581
s 20 56443204 CASS4 T/C 0.091 0.88 (0.85–0.92)

a
GRCh38.

b
Based on position of top SNP in reference to RefSeq assembly.

c
1000 Genomes, CEU population.

d
Reported by Kunkle et al (2019).

e
proxy rs4844610 (D’=1.0),

f
proxy rs10933431 (D’=0.84),

g
proxy rs9271058 (D’=1.0),

h
proxy rs9473117 (D’=1.0),

i
proxy rs12539172 (D’=0.98),

j
Previously the ZCWPW1 locus,

k
proxy rs10808026 (D’=1.0),
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l
proxy for rs73223431 (D’=1.0),

m
proxy rs9331896 (D’=1.0),

n
proxy rs7920721 (D’=0.95),

o
proxy rs7933202 (D’=0.94),

p
proxy rs17125924,

q
proxy rs12881735 (D’=1.0),

r
proxy rs593742 (D’=0.88),

s
proxy rs6024870 (D’=0.94).
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Table 4.

Associations between individual genetic loci and presence of concomitant AD pathology. Logistic regression 

coefficients (β), standard error (SE), and nominal p-values are shown. No covariates are included. TREM2 is 

omitted from analysis due to lack of genetic variation at this SNP in the Training set.

Locus β SE Nominal p-value

APOE E4 1.049 0.269 0.000

APOE E2 −0.667 0.538 0.215

CR1 0.308 0.242 0.203

BIN1 0.191 0.206 0.354

INPP5D −0.180 0.187 0.335

HLA-DRB5/DRB1 0.068 0.229 0.768

CD2AP 0.007 0.230 0.976

NYAP1a −0.149 0.281 0.596

EPHA1 −0.255 0.264 0.333

PTK2B −0.109 0.215 0.610

CLU −0.057 0.225 0.799

ECHDC3 −0.147 0.217 0.499

MS4A6A 0.313 0.211 0.138

PICALM 0.009 0.212 0.967

SORL1 1.204 0.650 0.064

FERMT2 0.195 0.394 0.620

SLC24A4 −0.022 0.302 0.942

ADAM10 0.321 0.253 0.204

ABCA7 0.040 0.252 0.875

CASS4 −0.028 0.281 0.921

a
Previously the ZCWPW1 locus.

*
p<0.05.
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Table 5.

Demographic and Clinical Characteristics of NACC Validation Set. Data represent mean (SEM) unless 

otherwise noted.

Characteristic Whole Dataset None/Low ADNC Intermediate/High ADNC p-value 
b

N 70 8 62

Age at Onset, y 70.49 (1.03) 69.50 (3.55) 70.61 (1.08) 0.634

Age at Death, y 80.41 (0.98) 80.25 (4.03) 80.44 (0.99) 0.939

Disease Duration, y 9.93 (0.54) 10.75 (1.89) 9.82 (0.56) 0.474

Sex, (F/M), N (%) 23 (32.9)/ 47 (67.1) 1 (12.5)/ 7 (87.5) 22 (37.5)/ 40 (62.5) 0.2572

Race, N (%) White 70 (100.0) 8 (100.0) 62 (100.0)
>0.999

      Non-White 0 (0.0) 0 (0.0) 0 (0.0)

Last MMSE
a 19.34 (1.377) 27.2 (0.58) 18.03 (1.47) 0.013

Dementia Diagnosis During 12 (17.1)/ 5 (62.5)/ 7 (11.3)/
0.003

Life, (No/Yes) N (%) 58 (82.9) 3 (37.5) 55 (88.7)

Lewy Body Distribution, N (%)

 Diffuse or Neocortical 44 (62.9) 5 (62.5) 39 (62.9)

 Transitional or Limbic 10 (14.3) 2 (25.0) 8 (12.9)
0.558

 Brainstem Predominant 4 (5.7) 1 (12.5) 3 (4.8)

 Amygdala 11 (15.7) 0 (0.0) 11 (17.7)

 Olfactory bulb 1 (1.4) 0 (0.0) 1 (1.6)

a
Available data (N = 35).

b
Comparison between None/Low ADNC and Intermediate/High ADNC groups.

*
p<0.05.
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