Table 1.
Main papers published in peer-reviewed journals for COVID-19 detection using CXR
Ref | Available code | Algorithms | Performance Index | Sets of images | Number of images per class |
---|---|---|---|---|---|
[10] | no |
-VGG19 -MobileNetv2 -Inception -Xception -Inception ResNet v2 |
Acc=96.78% Se=98.66% Sp=96.46% |
-(Cohen3,RSNA2, Radiopediaa, SIRMb)c -NIH14 |
224 COVID-19 / 700 bacterial pneumonia / 504 normal 224 COVID-19 / 400 bacterial pneumonia y 314 viral pneumonia / 504 normal |
[12] | no |
-MobileNetv2, -SqueezeNet -ResNet18 -ResNet101 -DenseNet201 -CheXNet, -Inceptionv3 -VGG19 |
Acc=99.7% Pr=99.7% Se=99.7% Sp=99.55% |
-Cohen3,RSNA2, Radiopediaa, SIRMb | 423 COVID-19 / 1485 viral pneumonia / 1579 normal |
[64] | no | FrMEM, manta-ray Foraging Optimization, Knn |
Acc=96.09% Pr=98.75% Acc=98.09% Pr=98.91% |
Dataset 1 -Cohen3, Kaggled Dataset 2 -same set of images used in [12] |
216 COVID-19 / 1675 negatives 219 COVID-19 / 1341 negatives |
[13] | no | CNN-LSTM combinada |
Acc=99.4% AUC=99.9 Se=99.3% Sp=99.2% F1score=98.9% |
-(Cohen3, Agchunge,f, Radiopediaa, TCIAg, SIRMb) -Kaggled -NIHh |
613 COVID-19 / 1525 pneumonias / 1525 normal |
[65] | no |
Resne50 Resnet101 |
Acc=97.77% | Cohen3, Kaggled | 440 COVID-19 / 480 viral pneumonia / 457 bacterial pneumonia / 455 normal |
[5] | no |
SVM RF BPN ANFIS CNN VGGNet ResNet50 Alexnet GoogleNet Inception V3 Xception modificada |
Acc=97.4% Fmeausre=96.96% Se=97.09% Sp=97.29% Kappa=97.19% |
Same set of images used in [16] | |
[14] | no |
CNN+Knn CNN+DT CNN+SVM |
Acc=98.97% Se=89.39% Sp=99.75 Fscore=96.72% |
Same set of images used in [12] | 219 COVID-19 / 1345 viral pneumonia / 1341 normal |
[15] | no | Ensemble Resnet18 |
Acc=88.9% Pr=83.4% Recall=85.9% F1score=84.4% Sp=96.4% Acc=88.9% Pr=83.4% Recall=85.9% F1score=84.4% Sp=96.4% |
Dataset 1 [Cohen3, CoronaHacki, NLC(MC)j, JSRTk] Dataset 2 COVIDxp |
180 COVID-19 / 54 bacterial pneumonia / 20 viral pneumonia / 57 tuberculosis 191 normal 180 COVID-19 / 6012 pneumonias / 8851 normal |
[16] | yes | DarkCovidNet |
Acc=87.02% Se=85.35% Sp=92.18% Pr=89.96% F1score=87.37 |
Cohen3, ChestX-ray8l | 127 COVID-19 / 500 pneumonias / 500 normal |
[66] | no | nCOVnet |
Acc=88.09% Se=97.62% Sp=78.57% |
Cohen3, Fig. 1 Actuale Kaggle4 |
192 COVID-19 / 5863 negatives |
[17] | yes |
Feature Extraction LBP, EQP, LDN, LETRIST, BSIF, LPQ, oBIFs, Inception-V3 Classifiers Knn, SVM, MLP, DT, RF |
F1score=88.89% |
RYDLS-20 [Cohen3, Radiopediaa, Chest X-ray14m] |
180 COVID-19 / 20 MERS / 22 SARS / 20 Varicella / 24 Streptococcus / 22 Pneumocystis / 2000 normal |
[33] | no | COVID-SDNet | Acc=97.37% | COVIDGR-1.0n | 377 COVID-19 / 377 negatives |
[59] | yes |
MobileNetV2 SqueezeNet SVM |
Acc=99.27% | Cohen3, Radiopediaa, Kaggle6 | 295 COVID-19 / 98 pneumonias / 65 normal |
[67] | yes | Inception V3 |
Binary Acc=100% Se=99.0% Sp=100% AUC=100% Ternary Acc=85% Se=94% Sp=92.7% AUC=96% Quaternary Acc=76% Se=93% Sp=91.8% AUC=93% |
Cohen3, RSNA2,Kaggled, Kermanyo | 122 COVID-19 / 150 bacterial pneumonias / 150 viral pneumonias / 150 normal |
[58] | no | COVIDiagnosis-Net based on SqueezeNet with Bayesian optimization |
Acc=98.3% Spe=99.1% F1score=98.3% MCC=97.4% |
COVIDxu | 76 COVID-19, 4290 pneumonias / 1583 normal |
[68] | yes |
VGG-19 ResNet-50 COVID-Net |
Acc=93.3% Se=91% |
COVIDxu (Cohen3, Fig. 1 COVID-19j, ActualMed COVID-19k, RSNA2, COVID-19 radiography database5) |
190 COVID-19, 8614 Pneumonia, 8066 normal |
a https://radiopaedia.org/articles/pneumonia
bhttps://www.sirm.org/en/category/articles/covid-19-database/
chttps://www.kaggle.com/andrewmvd/convid19-X-rays
dhttps://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
ehttps://github.com/agchung/Figure1-COVID-chestxray-dataset
fhttps://github.com/agchung/Actualmed-COVID-chestxray-dataset
ghttps://www.cancerimagingarchive.net/
hhttps://www.kaggle.com/nih-chest-xrays/data?select=Data_Entry_2017.csv
ihttps://www.kaggle.com/praveengovi/coronahack-chest-xraydataset
jhttp://archive.nlm.nih.gov/repos/chestImages.php
lhttps://www.cc.10.nih.gov/drd/summers.html
mhttps://nihcc.app.box.com/v/ChestXray-NIHCC
nhttps://github.com/ari-dasci/OD-covidgr/releases/tag/1.0