Skip to main content
. 2021 Feb 5;11(2):411–424. doi: 10.1007/s12553-021-00520-2

Table 1.

Main papers published in peer-reviewed journals for COVID-19 detection using CXR

Ref Available code Algorithms Performance Index Sets of images Number of images per class
[10] no

-VGG19

-MobileNetv2

-Inception

-Xception

-Inception ResNet v2

Acc=96.78%

Se=98.66%

Sp=96.46%

-(Cohen3,RSNA2, Radiopediaa, SIRMb)c

-NIH14

224 COVID-19 / 700 bacterial pneumonia / 504 normal

224 COVID-19 / 400 bacterial pneumonia y 314 viral pneumonia / 504 normal

[12] no

-MobileNetv2,

-SqueezeNet

-ResNet18

-ResNet101

-DenseNet201

-CheXNet,

-Inceptionv3

-VGG19

Acc=99.7%

Pr=99.7%

Se=99.7%

Sp=99.55%

-Cohen3,RSNA2, Radiopediaa, SIRMb 423 COVID-19 / 1485 viral pneumonia / 1579 normal
[64] no FrMEM, manta-ray Foraging Optimization, Knn

Acc=96.09%

Pr=98.75%

Acc=98.09%

Pr=98.91%

Dataset 1

-Cohen3, Kaggled

Dataset 2

-same set of images used in [12]

216 COVID-19 / 1675 negatives

219 COVID-19 / 1341 negatives

[13] no CNN-LSTM combinada

Acc=99.4%

AUC=99.9

Se=99.3%

Sp=99.2%

F1score=98.9%

-(Cohen3, Agchunge,f, Radiopediaa, TCIAg, SIRMb)

-Kaggled

-NIHh

613 COVID-19 / 1525 pneumonias / 1525 normal
[65] no

Resne50

Resnet101

Acc=97.77% Cohen3, Kaggled 440 COVID-19 / 480 viral pneumonia / 457 bacterial pneumonia / 455 normal
[5] no

SVM

RF

BPN

ANFIS

CNN

VGGNet

ResNet50

Alexnet

GoogleNet

Inception V3

Xception modificada

Acc=97.4%

Fmeausre=96.96%

Se=97.09%

Sp=97.29%

Kappa=97.19%

Same set of images used in [16]
[14] no

CNN+Knn

CNN+DT

CNN+SVM

Acc=98.97%

Se=89.39%

Sp=99.75

Fscore=96.72%

Same set of images used in [12] 219 COVID-19 / 1345 viral pneumonia / 1341 normal
[15] no Ensemble Resnet18

Acc=88.9%

Pr=83.4%

Recall=85.9%

F1score=84.4%

Sp=96.4%

Acc=88.9%

Pr=83.4%

Recall=85.9%

F1score=84.4%

Sp=96.4%

Dataset 1

[Cohen3, CoronaHacki, NLC(MC)j, JSRTk]

Dataset 2

COVIDxp

180 COVID-19 / 54 bacterial pneumonia / 20 viral pneumonia / 57 tuberculosis 191 normal

180 COVID-19 / 6012 pneumonias / 8851 normal

[16] yes DarkCovidNet

Acc=87.02%

Se=85.35%

Sp=92.18%

Pr=89.96%

F1score=87.37

Cohen3, ChestX-ray8l 127 COVID-19 / 500 pneumonias / 500 normal
[66] no nCOVnet

Acc=88.09%

Se=97.62%

Sp=78.57%

Cohen3, Fig. 1 Actuale

Kaggle4

192 COVID-19 / 5863 negatives
[17] yes

Feature Extraction

LBP, EQP, LDN, LETRIST, BSIF, LPQ, oBIFs, Inception-V3

Classifiers

Knn, SVM, MLP, DT, RF

F1score=88.89%

RYDLS-20

[Cohen3, Radiopediaa, Chest X-ray14m]

180 COVID-19 / 20 MERS / 22 SARS / 20 Varicella / 24 Streptococcus / 22 Pneumocystis / 2000 normal
[33] no COVID-SDNet Acc=97.37% COVIDGR-1.0n 377 COVID-19 / 377 negatives
[59] yes

MobileNetV2

SqueezeNet

SVM

Acc=99.27% Cohen3, Radiopediaa, Kaggle6 295 COVID-19 / 98 pneumonias / 65 normal
[67] yes Inception V3

Binary

Acc=100%

Se=99.0%

Sp=100%

AUC=100%

Ternary Acc=85%

Se=94%

Sp=92.7%

AUC=96%

Quaternary Acc=76%

Se=93%

Sp=91.8%

AUC=93%

Cohen3, RSNA2,Kaggled, Kermanyo 122 COVID-19 / 150 bacterial pneumonias / 150 viral pneumonias / 150 normal
[58] no COVIDiagnosis-Net based on SqueezeNet with Bayesian optimization

Acc=98.3%

Spe=99.1%

F1score=98.3%

MCC=97.4%

COVIDxu 76 COVID-19, 4290 pneumonias / 1583 normal
[68] yes

VGG-19

ResNet-50

COVID-Net

Acc=93.3%

Se=91%

COVIDxu

(Cohen3, Fig. 1 COVID-19j, ActualMed COVID-19k, RSNA2, COVID-19 radiography database5)

190 COVID-19, 8614 Pneumonia, 8066 normal