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Abstract
This paper examines the nexus between the Covid-19 confirmed cases, deaths, meteorological factors, including an air pollutant
among the world’s top 10 infected countries, from 1 February 2020 through 30 June 2020, using advanced econometric
techniques to address heterogeneity across the nations. The findings of the study suggest that there exists a strong cross-
sectional dependence between Covid-19 cases, deaths, and all the meteorological factors for the countries under study. The
findings also reveal that a long-term relationship exists between all the meteorological factors. There exists a bi-directional
causality running between the Covid-19 cases and all the meteorological factors. With Covid-19 death cases as the dependent
variable, there exists bi-directional causality running between the Covid-19 death cases and Covid-19 confirmed cases, air
pressure, humidity, and temperature. Temperature and air pressure exhibit a statistically significant and negative impact on the
Covid-19 confirmed cases. Air pollutant PM2.5 also exhibits a significant but positive impact on the Covid-19 confirmed cases.
Temperature indicates a statistically significant and negative impact on the Covid-19 death cases. At the same time, Covid-19
confirmed cases and air pollutant PM2.5 exhibit a statistically significant and positive impact on the Covid-19 death cases across
the ten countries under study. Hence, it is possible to postulate that cool and dry weather conditions with lower temperatures may
promote indoor activities and human gatherings (assembling), leading to virus transmission. This study contributes both prac-
tically and theoretically to the concerned field of pandemic management. Our results assist in taking appropriate measures in
implementing intersectoral policies and actions as necessary in a timely and efficient manner.
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Introduction

Covid-19 not only is a serious concern for public health but
also caused has a devastating socio-economic situation in the
countries it invaded (Raza et al. 2020; Chakraborty and Maity
2020; Habib et al. 2020). The developing countries catego-
rized by the slow growth rate, poor healthcare infrastructure,
and large population (a majority of them living in extreme
poverty) have been severely affected by the Covid-19 pan-
demic (Sharma et al. 2020b, c). The Covid-19 pandemic re-
sulted in a substantial loss of human capital of the economy
(Shahzad et al. 2020). It thus increased the total (public and
private) expenditure on healthcare (Lee and McKibbin 2004).
While causing immense damage to human life, it has signifi-
cantly impacted economic and social life (Nakada and Urban
2020; Shehzad et al. 2020). To prevent the spread of the virus,
countries have announced lock-down campaigns, blocking
various economic activities, including airlines, transportation
activities, and educational institutes (Meo et al. 2020).
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Most of the research work studying the impact of the
Covid-19 has focused on China (Ma et al. 2020; Shi et al.
2020) and the USA (Bashir et al. 2020; Gupta et al. 2020),
in particular. There is an immense need to investigate the
impact of the virus on other countries. This study focuses on
the top 10 adversely affected countries (as of 30 June 2020)
(CNA 2020), including Brazil, Chile, India, Iran, Italy, Peru,
Russia, Spain, the UK, and the USA. Since these countries
include developed as well as developing countries, the results
of the study are generalizable.

Epidemiological studies suggest that the spread of histori-
cal outbreaks, such as severe acute respiratory syndrome
(SARS) and Middle East respiratory syndrome disease
(MERS), has been altered by the environmental conditions
(Méndez-Arriaga 2020). Casanova et al. (2010) explain that
the dry and cold weather conditions facilitate the virus’s trans-
mission and survival. Since the coronavirus belongs to the
same family and possesses symptoms like cold, cough, flu,
and fever, it must be affected by weather conditions also.
Therefore, it is imperative to study different factors, including
humidity, temperature, wind speed, and air pressure, and their
influence on Covid-19 cases. While most of the studies have
investigated the impact of the Covid-19 period on air quality
(Dutheil et al. 2020), this study investigates the impact of air
quality on Covid-19 cases. Due to the non-availability of Air
Quality Index (AQI) data on daily basis for the countries under
study, we have used PM2.5 (one of the air pollutants) as a
proxy for AQI. Thus, the variables used for this study include
the daily number of Covid-19 cases and deaths, air pressure,
relative humidity, average air temperature, wind speed, and
particulate matter 2.5. The time-series graphs (annexure) for
each of the variables per country depict that the number of
confirmed cases during the period under study have been the
highest for the USA, followed by Brazil and Russia; the num-
ber of deaths has been the highest in the USA in April and
May, followed by Brazil in June; the temperature has been the
highest in India in May, while Peru has also reported higher
range of temperature for the period under study; the air pol-
lutant PM2.5 is seen to be the highest in India followed by
Iran, while the lowest range is observed to be in Brazil; the
highest wind speed is observed in Iran in February followed
with the USA inMarch; the air pressure has been quite similar
in every month for each of the top 10 countries under study;
the humidity has been highest in almost all the countries while
Iran relatively reports the lowest humidity in June.
Furthermore, Table 1 presents the latest data on the total num-
ber of cases and deaths in the ten countries under study, as of
16 November 2020.

This paper contributes to the existing body of literature in
the following three ways. First, it is a comprehensive study
considering variables that can potentially affect the transmis-
sion of coronavirus. The previous studies have suffered from
omitted variable bias. However, Sarkodie and Owusu (2020)

examine enough variables, namely dew/frost point, tempera-
ture, disaggregate temperature, wind speed, relative humidity,
precipitation, and surface pressure against confirmed cases,
deaths and recovery cases, spread over a period from
January to April 2020 for the top 20 most infected countries.
As an extension to this article mentioned above by Sarkodie
and Owusu (2020), this study considers all the variables that
affect Covid-19 spread across the top ten most infected
countries for a period much beyond April 2020. Second,
this study focuses on the top ten most affected countries,
with an intent to draw much more focused results with few
countries under review. The third contribution is using ad-
vanced, reliable, and accurate econometric methodologies
(Dogan and Aslan 2017; Dogan et al. 2017), making it more
rigorous and extensive compared to the previously pub-
lished studies by employing the novel DCCE approach
(Chudik and Pesaran 2015). Despite their popularity, the
literature has not used these methodologies to investigate
the effect of the variables on the transmission of Covid-19.
The advanced econometric methodologies include Panel
data analysis through the cross-sectional dependence test,
first-generation unit root test and second-generation unit
root test, Westerlund cointegration test, Dumitrescu and
Hurlin’s (2012) Granger non-causality test, dynamic ordi-
nary least squares (DOLS), fully modified ordinary least
squares (FMOLS), canonical cointegrating regression
(CCR), augment mean group (AMG) estimations, and the
novel dynamic common correlated effect (DCCE)
technique.

The rest of the paper is structured as follows. The
“Literature review” section presents the review of literature;
the “Methodology” section presents the methodology adopted
for the study; the “Findings and discussion” section presents
the findings and discussions, and the “Conclusions” section
concludes the paper.

Table 1 Number of total cases and total deaths in the ten countries
under study, as on 16 November 2020

S No. Affected country Total cases Total deaths

1 USA 11,475,609 252,337

2 India 8,873,994 130,552

3 Brazil 5,864,943 165,858

4 Russia 1,948,603 33,489

5 Spain 1,521,899 41,253

6 UK 1,390,681 52,147

7 Italy 1,205,881 45,733

8 Peru 937,011 35,231

9 Iran 775,121 41,979

10 Chile 532,604 14,863

Source: Worldometer, (2020)
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Literature review

The most frequently studied relationship of Covid-19 is relat-
ed to meteorological factors and air pollutants as it influences
coronavirus transmission, contributing to the spread of Covid-
19 (Hazbavi et al. 2020; Islam et al. 2020). The majority of the
studies relate temperature with Covid-19 cases and deaths
(Covid-19 indicators) and have mixed conclusions with
positive/negative or no association between them. Besides
temperature, a large number of meteorological factors and
weather parameters are included in the study, such as
absolute/relative humidity, precipitation, dew point, pressure,
air quality index, wind speed and direction, solar radiation, air
pollutants, and population density (Table 2).

As the spread of Covid-19 originated from Wuhan, China,
in November 2019 (Iqbal et al. 2020), since then, several
empirical research investigated China (/Chinese provinces),
followed by the USA (Adhikari and Yin 2020; Berman and
Ebisu 2020; Zangari et al. 2020), Brazil (Rosario et al. 2020;
Prata et al. 2020; Auler et al. 2020), and India (Jain and
Sharma 2020; Kumar 2020; Sharma et al. 2020d). USA,
Brazil, and India have been in the top 3 most affected coun-
tries by Covid-19. Al-Rousan and Al-Najjar (2020) and Lin
et al. (2020) study the relationship of meteorological factors
and Covid-19 in China and have similar observations of the
positive association of temperature and pressure with Covid-
19 cases. On the contrary, Liu et al. (2020), Ma et al. (2020),
and Mandal et al. (2020) found negative correlations between
temperature, humidity, and Covid-19 in China. Adhikari and
Yin (2020) and Chien and Chen (2020) conduct their study in
the USA and found a significant positive link between tem-
perature, humidity, precipitation, and Covid-19 cases. Few
studies reported the decline in the level of air pollutants
(PM2.5 in all cases) during the Covid-19 period (Berman
and Ebisu 2020; Jain and Sharma 2020; Sharma et al.
2020d). Ma et al. (2020) and Wu et al. (2020a, b) confirm
the significant linkage of temperature and humidity with
Covid-19 deaths. Rosario et al. (2020) exhibit that the increase
in wind speed leads to proliferated Covid-19 cases, and Zhu
et al. (2020a, b) found that it is not closely related to incuba-
tive cases, whereas Zoran et al. (2020) establish an inverse
relationship between wind speed and Covid-19 cases.

The rapid increase in the number of Covid-19 affected
patients started in January 2020 and was declared a pandemic
in March 2020 (WHO 2020). Since then, there is significant
research happening worldwide concerning causes, conse-
quences, transmission, etc., of Covid-19. With reference to
the time frame, the period covered in most of the studies per-
tains either to January–February/March 2020 or February–
March/April 2020 or March–April 2020. Very few studies
cover the period from January–April 2020 (Zoran et al.
2020; Gupta et al. 2020) or some days of May 2020 (Pani
et al. 2020; Zhu et al. 2020a). Studies carried out in this field

rely upon various methodologies and techniques to examine
the relation between Covid-19 and meteorological factors, de-
pending on country/region and the period covered.

Several statistical and scientific models are employed to
examine the relations among Covid-19, meteorological fac-
tors, and air pollutants, for instance, the generalized additive
model (GAM) (Xie and Zhu 2020; Zhu et al. 2020b; Liu et al.
2020), M-SEIR model (Shi et al. 2020), and AERMOD
(Sharma et al. 2020d). Spearman’s correlation test (Méndez-
Arriaga 2020; Pani et al. 2020; Tosepu et al. 2020) is frequent-
ly used to correlate the Covid-19 spread and meteorological
indicators. Other analysis techniques included the Wilcoxon
test (Sethwala et al. 2020), t-tests (Berman and Ebisu 2020;
Jain and Sharma 2020), spatial analysis (Zoran et al. 2020;
Briz-Redón and Serrano-Aroca 2020), quantile-on-quantile
approach (Shahzad et al. 2020), and wavelet approach
(Fareed et al. 2020; Iqbal et al. 2020; Habib et al. 2020). Shi
et al. (2020) use the M-SEIR model to explain no significant
association between humidity and Covid-19. Iqbal et al.
(2020) follow the Wavelet technique to find temperature does
not necessarily affect Covid-19 cases.

Existing literature does not present any conclusive re-
sults about the association of temperature, wind speed,
and humidity with Covid-19. There is a lack of studies
examining meteorological factors, including air pressure.
Till recently, no paper has been published with the data
beyond May 2020 and employing panel data estimation.
The present study fills this gap by using panel data analysis
to examine the nexus between the Covid-19 (confirmed
cases and deaths), meteorological factors (air pressure, hu-
midity, temperature, and wind speed) including an air pol-
lutant (PM2.5) in the world’s top 10 infected countries.

Methodology

Model specification and data

This study examines the nexus between the Covid-19 con-
firmed cases, deaths, and meteorological factors, including
an air pollutant in the world’s top 10 infected countries, which
include Brazil, Chile, India, Iran, Italy, Peru, Russia, Spain,
UK, and USA (as on 30 June 2020, as per (CNA 2020)). The
secondary data is retrieved to apply panel data estimations
(that account for the heterogeneity across the nations and pro-
vide more reliable and generalizable results) from 1 February
2020 to 30 June 2020. This data relates to Covid-19 confirmed
cases and deaths (Worldometer 2020); meteorological factors
included in this study are daily air temperature, relative hu-
midity, air pressure and wind speed, and air pollutant PM2.5
(WAQI 2020). We employed Panel data regression over
cross-section and time-series data, being a better-modeled
technique in handling all the available evidence, which cannot
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be measured in pure cross-section and time-series
(Wooldridge 2002). The balanced panel data of 10 countries
covering 5 months (the most prolonged period for which data
is available) includes two Covid-19-related variables, four
meteorological variables, and one air pollutant.

The outbreak of Covid-19 has overgrown, and mortality
estimates are also rising. Hence, the study examines the nexus
by proposing two models—one, with Covid-19 confirmed
cases (as a dependent variable); and two, with Covid-19 death
cases (as a dependent variable), with simple functions equated
as follows:

Covid−19 casesit ¼ ƒ APit;Hit;Tit;WSt; PM2:5itð Þ ð1Þ
Covid−19 deathsit

¼ ƒ APit;Hit;Tit;WSt; PM2:5it; Covid−19 casesit
� � ð2Þ

where the subscripts i and t denote country and time period,
respectively. Here, Covid-19 cases and deaths are the daily
number of cases and deaths recorded; AP is the daily air pres-
sure (measured in hPa); H is the daily relative humidity (mea-
sured in %); T is the daily average air temperature (measured
in Celsius);WS is the daily wind speed (measured in m/s), and
PM2.5 is the daily particulate matter 2.5 (measured in μg/m3).

Equation (1) can be parameterized as follows:

Covid casesit ¼ APβ1iit Hβ2i
it Tβ3i

it WSβ4iit PM2:5β5iit ð3Þ
Covid deathsit

¼ APβ1iit Hβ2i
it Tβ3i

it WSβ4iit PM2:5β5iit Covid casesβ6iit ð4Þ

Data analysis and techniques

The data analysis begins with descriptive statistics to study the
basic characteristics of the variables in the study. The study
then employs econometric techniques including the cross-
sectional dependence test, first-generation unit root test,
second-generation unit root test, Westerlund cointegration
test, Dumitrescu and Hurlin’s (2012) Granger non-causality
test, DOLS, FMOLS, CCR, and AMG estimations.

Cross-sectional dependence test

The interconnections between global economies can lead to
cross-sectional interdependence between studied countries.
The CSD test, consistent with Breusch and Pagan (1980)
and Pesaran (2007), resolves this methodological problem as
shown in Eq. (5).

CSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2t

z z−1ð Þ

s

∑z−1
i¼0∑

z−1
j¼iþ1ρij

� �
ð5Þ

where CSD is cross-sectional dependence, z is cross-sections
in the panel data, t is time horizon, and pij is cross-section
correlation of error between i and j. Hence, the LM test to
study the CSD test in the data series is equated as follows:

yit ¼ αit þ βixit þ εit ð6Þ
where t is time horizon and i is the cross-section in the panel.
The null hypothesis for both the methods states that there
exists cross-sectional independence among the variables un-
der study.

First- and second-generation unit root test

Following the estimation of cross-sectional dependency, we
proceed with second-generation unit root tests, i.e., cross-
sectional augmented Im, Pesaran and Shin IPS (CIPS) test
(test for each cross-section unit), and cross-sectionally aug-
mented Dickey-Fuller (CADF) unit root test (to provide sta-
tistics for the variables individually). Since there exists high
cross-sectional dependence in the dataset, the standard panel
unit root test could not be applied. The null hypothesis for this
method is that the series under study are non-stationary. The
unit root test is depicted in Eq. (7) using Pesaran (2007):

xt ¼ αit þ βixit−1 þ ρit þ ∑n
j¼1θijΔxi; t− j þ εit ð7Þ

where αit is intercept, t is time horizon, Δ is the difference
operator, xit are variables under study, and εit is error term.

Westerlund cointegration test

The Westerlund (2007) cointegration test is further employed
to ascertain the long-term linkage among the variables. This
test assumes the existence of cross-sectional independence.
Since Banerjee et al. (1998) allow for a large degree of het-
erogeneity among the variables, Westerlund (2007) is
employed as an extension to the model and proposed four
cointegration tests. The null hypothesis states that the long-
term relationship does not exist between the variables. The test
is applied as per the below Eq. (8):

ΔY it ¼ δidt þ αiY it−1 þ λ
0
iX i;t−1 þ ∑pi

j¼1αijΔY i;t− j

þ ∑pi
j¼−qiY ijΔX i;t− j þ εit ð8Þ

where d is model residuals, i is cross-section in the panel data,
and t is time horizon.

Granger non-causality test

The direction of causality is determined using Dumitrescu and
Hurlin’s (2012) Granger non-causality test with the bootstrap
procedure. The null hypothesis states that causality between
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the selected variables does not exist. Dumitrescu and Hurlin
(2012) proposed the following regression Eq. (9):

yit ¼ αi þ ∑K
k¼1βikyi;t−k þ ∑K

K¼1γikxi;t−k þ εit ð9Þ

This equation assumes that the lag order of K is the same
for all individuals and that the panel must be balanced.

Long-run estimation approach

The FMOLS and DOLS models are tested to get a fully effi-
cient estimation; (Wang andWu 2012). The presence of serial
correlation, if any, in the model is checked using FMOLS and
DOLS. CCR exhibits lesser bias than FMOLS and DOLS and
is considered better than them (Montalvo 1995). These
cointegration regression tests indicate the impact of all the
variables on Covid-19 confirmed cases and death cases as
the dependent variables, separately.

Mean group estimate

Following the presence of cointegration, we have applied the
first-generation estimators for the panel time-series—aug-
mented mean group estimation. The mean group estimator
proposed by Pesaran and Smith (1995) does not consider the
cross-sectional dependence among the variables and includes
a regression for each panel unit (Musaad et al. 2017).
Eberhardt and Teal (2010) introduced an augmented mean
group with a long-run cointegrating estimator considering het-
erogeneity and cross-sectional dependence (Bayar 2016). The
individual regression is as follows:

yit ¼ βixit þ δxixt þ δyiyt þ eit ð10Þ

where xt = Z−1 ∑Z
1 xt is the cross-sectional average of the re-

gressors and yt = Z−1 ∑Z
1 yt is the cross-sectional average of

the dependent variable.

Dynamic common correlated effect model

The literature review highlights that the previous researchers
have not considered much of the cross-sectional effects and
have majorly worked with homogeneous slopes (Meo et al.
2020). Hence, the panel data estimations with heterogeneous
coefficients among cross-sectional units over longer periods
have attracted researchers’ attention in the recent past (Pesaran
and Smith 1995). In this work, we have applied the dynamic
common correlated effect (DCCE) approach introduced by
Chudik and Pesaran (2015) to explore the variables’ long-
term affiliations. The DCCE model considers cross-sectional
dependence and heterogeneity, providing accurate results
(Meo et al. 2020). It takes cross-sectional averages and lags
the response variable on the model’s right side with

explanatory variables. It also helps resolve variabilities
(dynamics) by integrating lag-dependent variables into the
model (Mensah et al. 2020). Moreover, this technique works
well for the small sample size by using the jack-knife correc-
tion approach (Chudik and Pesaran 2015). We use the follow-
ing the equation of the DCCE model as proposed by Chudik
and Pesaran (2015):

yit ¼ αiyit−1 þ δixit þ ∑PT
P¼0 γxipX t−p þ ∑PT

P¼0 γyipY t−p

þ μit ð11Þ

δixit refers to the set of independent variables, and PT is the
limit of lags included in the cross-section averages.

Findings and discussion

This section begins with Table 3, presenting the ten most
infected countries’ descriptive statistics under study. The
Covid-19 confirmed cases are, on average, about 4232 with
a maximum number of cases at 54,771, while the total number
of deaths is approximately 225 with a maximum number of
deaths of 4928. Among the meteorological factors, the highest
variation is observed in the air pollutant PM2.5 at 40.673,
followed by air pressure at a variation of 34.001. In contrast,
the lowest variation is evident in the wind speed at 3.911 for
all the ten countries under study. Additionally, out of all the
variables, humidity, air pressure, and temperature are nega-
tively skewed. The values for humidity and temperature are
the closest to the kurtosis statistical value for normal distribu-
tion, i.e., 3. In contrast, the highest deviation from the standard
statistical figure is evident in the case of air pressure, followed
by wind speed and Covid-19 death cases.

Table 4 presents the cross-sectional dependence for all the
variables under study. The statistical values as per the
Breusch-Pagan LM test conducted over the raw values of
Covid-19 cases, deaths, and all the meteorological factors
are significant at 1%. The logged values for PM2.5 and wind
speed exhibit significance at 10%, and the temperature does
not reveal any significant value. According to the Pesaran
scaled LM test, all the variables indicate statistical values at
1% level of significance except for the logged values of
PM2.5 and temperature that do not exhibit any significant
value. Furthermore, as per the Pesaran CD test, the raw values
of all the variables excluding PM2.5 (no significant value) and
humidity (statistically significant at 5% level) exhibit a statis-
tically significant value at 1% level. The logged values for
PM2.5, humidity, temperature, and wind speed do not exhibit
any significant value under the Pesaran CD test. Hence, col-
lectively, all the study variables indicate statistically signifi-
cant values confirming a strong cross-sectional dependence
for the ten countries under study.
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Table 5 presents the first and second-generation unit root
test for all the variables under study. All the variables under
study report stationarity under both IPS and ADF-Fisher’s test
(first-generation unit root tests) with statistical values at 1%
level of significance. All the meteorological factors show sta-
tistically remarkable values under both CIPS and CADF tests,
with a 1% level of significance. According to the CIPS values,
Covid-19 cases and deaths exhibit statistically significant
values at the level of 1% at the first difference, while only
Covid-19 death cases represent statistically significant value
(at 5%) computed at level. Hence, the degree of significance
improves for both the Covid-19 cases and deaths, but the
opposite is not true in case of CADF test. Alternatively, as
per the CADF test, the values computed at the level for both
the Covid-19 confirmed cases and death cases exhibit statisti-
cal values at 1% level of significance, while only Covid-19
cases exhibit a statistically significant value at 10% level.
Therefore, for all the variables under study, an acceptable

level of stationarity is observed, further validating the
Westerlund cointegration test.

After the confirmation of the time-series data to be station-
ary as discussed above, Table 6 explains the Westerlund
cointegration test (Westerlund 2007). All the four statistics,
namelyGt,Ga, Pa, and Pt reject the null hypothesis at 1% level
of significance for both the Covid-19 confirmed cases and
deaths. Hence, it is evident that the parameters of both the
models indicate that the variables are cointegrated, confirming
a long-term relationship between the variables.

Table 7 discusses the Dumitrescu and Hurlin (2012)
Granger non-causality test with Covid-19 cases and Covid-
19 deaths as the dependent variables. Almost all the variables
present statistically significant values at 1% level, with the
Covid-19 cases taken as the dependent variable. The results
show that bi-directional causalities exist between all the me-
teorological variables (including the air pollutant PM2.5) and
Covid-19 cases, meaning all the variables under study drive

Table 3 Descriptive statistics
Variables Daily cases Daily deaths Humidity PM2.5 Pressure Temperature Wind

speed

Mean 4232.096 225.381 62.744 59.167 1003.370 16.609 4.412

Median 1176.500 53.000 64.650 50.250 1011.550 17.158 3.650

Maximum 54771.000 4928.000 116.400 406.500 1032.000 38.500 77.150

Minimum 0.000 0.000 7.500 2.583 2.800 -9.850 0.700

Std. Dev. 7468.903 425.095 16.212 40.673 34.001 7.760 3.911

Skewness 2.683 3.619 -0.751 1.898 -17.926 -0.081 10.025

Kurtosis 10.490 23.201 3.668 10.161 515.228 2.809 162.292

Source: authors’ computation

Table 4 Cross-sectional
dependence test Variables Breusch-Pagan LM Pesaran scaled LM Pesaran CD

Covid-19 cases Raw values 1728.8690*** 176.4413*** 25.6565***

Logged values 165.7510*** 11.6741*** 4.9356***

Covid-19 deaths Raw values 1448.2000*** 146.8562*** 21.3314***

Logged values 176.4184*** 12.7986*** 7.1736***

Air pressure Raw values 407.4721*** 37.1538*** 5.2383***

Logged values 186.0810*** 13.8171*** 4.6957***

Humidity Raw values 356.5339*** 31.7844*** 2.3924**

Logged values 82.12862*** 2.8596*** 0.2379

PM2.5 Raw values 203.8496*** 15.6901*** -0.3173

Logged values 57.9755* 0.3136 0.4543

Temperature Raw values 3477.7480*** 360.7893*** 4.1820***

Logged values 54.0055 -0.1048 −0.1804
Wind speed Raw values 103.0492*** 5.0648*** 2.9774***

Logged values 58.3650* 0.3547*** 1.2354

Source: authors’ computation

*, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively
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Covid-19 cases vice-versa. Alternatively, with Covid-19
deaths as the dependent variable, Covid-19 confirmed cases,
air pressure, humidity, and temperature exhibit statistically
prominent values at 1% level of significance, exhibiting bi-
directional causalities with deaths. A unidirectional causality
is observed from Covid-19 deaths to PM2.5 towards, and no
causal relationship between deaths and wind speed. Our find-
ings are consistent with Sarkodie and Owusu (2020),
confirming the strong evidence of causality from confirmed
cases to deaths and meteorological factors are good predictors
of Covid-19 confirmed and death cases.

With the rapid outbreak globally, most of the infected
countries, including India, implemented a country-wide
lock-down to reduce the effects of the Covid-19 pandemic
and discontinue its transmission. The measures like social
distancing and nation-wide lock-down leading to factory and
office closures and minimal traffic on roads lead to an im-
provement in the air quality and climatic conditions across
the nations (Shakoor et al. 2020). This improvement is also
validated with the causality running from Covid-19 confirmed
cases to the meteorological factors, including the air pollutants
PM2.5. The findings of bi-directional causalities are con-
firmed from the extant literature involving empirical research
(Chen et al. 2020; Mandal et al. 2020; Tobías et al. 2020;
Zangari et al. 2020; Kerimray et al. 2020), which observe that

Covid-19 spread has led to lower compositions of air pollut-
ants and more favorable weather conditions.

Table 8 depicts the long-run output elasticities using
FMOLS, DOLS, and CCR estimators, considering both the
Covid-19 confirmed cases and death cases as the dependent

Table 5 Panel unit root test
Variables IPS ADF-Fisher CIPS CADF

Covid-19 cases −9.318*** 135.168*** −1.825 (-2.812)*** −5.279*** (−1.501)*
Covid-19 deaths −14.406*** 230.317*** −1.645** (−3.641)*** −1.501* (−6.504)***
Air pressure −22.334*** 446.182*** −4.263*** (−4.379)*** −4.347*** (−4.519)***
Humidity −23.429*** 474.630*** −5.456*** (−5.106)*** −5.462*** (−5.167)***
PM2.5 −24.011*** 489.745*** −5.886*** (−5.289)*** −6.054*** (−6.045)***
Temperature −22.269*** 429.840*** −4.433*** (−4.606)*** −4.365*** (−4.595)***
Wind speed −22.981*** 461.491*** −5.126*** (−5.434)*** −5.122*** (−4.951)***

Source: authors’ computation

*, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively

Parentheses denote ΔCIPS or ΔCADF, i.e., at first-level difference

Table 6 Westerlund cointegration test

Statistic Covid-19 cases Covid-19 deaths

Gt −4.667*** −12.138***
Ga −5.849*** −14.555***
Pt −3.739*** −11.576***
Pa −3.855*** −14.831***

Source: authors’ computation

*, **, and*** denote statistical significance at 10%, 5%, and 1% levels,
respectively

Table 7 Dumitrescu and Hurlin’s (2012) Granger non-causality test

COVID-19 confirmed cases as the dependent variable

Null hypothesis W-bar Z-bar P values

AP≠>CC 3.4586 5.4976 0.0000

CC≠>AP 5.6580 10.4156 0.0000

H≠>CC 2.6860 3.7700 0.0000

CC≠>H 2.6555 3.7018 0.0002

PM2.5≠>CC 2.0112 2.2612 0.0237

CC≠>PM2.5 3.5575 5.7187 0.0000

T≠>CC 8.9583 17.7952 0.0000

CC≠>T 3.2382 5.0047 0.0000

WS≠>CC 2.3788 3.0830 0.0020

CC≠>WS 3.5769 5.7620 0.0000

COVID-19 death cases as the dependent variable

Null hypothesis W-bar Z-bar P values

CC≠>CD 21.9771 46.9062 0.0000

CD≠>CC 12.7131 26.1914 0.0000

AP≠>CD 2.7003 3.8019 0.0001

CD≠>AP 4.9130 8.7498 0.0000

H≠>CD 2.2025 2.6888 0.0072

CD≠>H 1.9797 2.1908 0.0285

PM2.5≠>CD 1.2451 0.5480 0.5837

CD≠>PM2.5 3.5997 5.8130 0.0000

T≠>CD 9.4679 18.9347 0.0000

CD≠>T 4.0616 6.8459 0.0000

WS≠>CD 0.4930 −1.1337 0.2569

CD≠>WS 1.6253 1.3981 0.1621

Source: authors’ computation

The symbol ≠> represents “does not homogeneously cause”
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variables, separately. With Covid-19 confirmed cases as the
dependent variable, the air pollutant, namely PM2.5 alone,
exhibits a statistically significant and negative impact (at
10% level of significance) on the Covid-19 confirmed cases,
as per the FMOLS and CCR statistical values.

Alternatively, with Covid-19 death cases as the dependent
variable, Covid-19 confirmed cases reveal a statistically sig-
nificant and positive impact (at 1% level of significance) on
the Covid-19 death cases, according to all the three statistical
values under FMOLS, DOLS, and CCR. Additionally, the air
pollutant PM2.5 exhibits a statistically significant and nega-
tive impact (at 5% level of significance) on the Covid-19 death
cases, as per the FMOLS and CCR statistical values.

Hence, air pollutant PM2.5 exhibits a significant negative
impact (at 10% and 5% level of significance) on the Covid-19
confirmed cases and death cases in the concerned countries.
This finding is consistent with the result by Chen et al. (2020),
which states that reduction in the air pollutant serves as a
resistance to the continually increasing Covid-19 death cases
in China. Also, Fareed et al. (2020) and Wu, Nethery, Sabath,
Braun, and Dominici (2020) reveal that exposure to air pol-
lutant PM2.5 leads to massive deaths by Covid-19 in the USA
and China, complementing our results.

Table 9 presents the augmented mean group estimates
while considering the Covid-19 confirmed cases as the depen-
dent variable. Temperature exhibits a statistically significant
impact (at 1% level) on the Covid-19 confirmed cases of all
the countries except for Iran, where there is a significant im-
pact but at a 5% level of significance.

Moreover, our results show a positive association of tem-
perature and confirmed cases in countries like Brazil (Rosario
et al. 2020), India (Kumar 2020), Iran, and Russia. In contrast,
in most countries, it is inversely related, as supported byWang
et al. (2020) and Wu et al. (2020b). Furthermore, air pollutant
PM2.5 and air pressure impact the Covid-19 confirmed cases
in most countries under study.

All the meteorological variables, including PM2.5, have a
strong statistical and significant impact on Brazil’s Covid-19
confirmed cases. The finding is consistent with the results by
Auler et al. (2020) and Pequeno et al. (2020) that find a pos-
itive linear relationship between the meteorological factors
and cases in Brazil, while the results contradict the findings
opined by Prata et al. (2020).

In the case of India, all the meteorological variables, in-
cluding the air pollutant PM2.5, indicate a statistically signif-
icant impact (at 1% level of significance) on its Covid-19
confirmed cases. This study serves as an extension to the
research by Gupta et al. (2020), which finds no correlation
between the vulnerable weather conditions and Covid-19
new cases in India, considering its limited study timeline,
while this study includes a more extended timeline. The find-
ings also contradict the results by Kumar (2020), which opine
that the cases shall diminish in warmer, humid, and during
summer/monsoon regions, as proven by the rising number
of cases in India.

Chile reports temperature and wind speed to be statistically
significant (at 1% level) and exhibit a negative and a positive
impact on its confirmed cases, respectively. Humidity, PM2.5,

Table 8 FMOLS, DOLS, and
CCR tests COVID-19 confirmed cases as the dependent variable

Variables FMOLS DOLS CCR

Coeff Std. Error Coeff Std. Error Coeff Std. Error

Constant −3813.93 35650.03 333.60 55014.96 −10014.53 43916.55

Air pressure 13.5608 34.6428 10.3953 53.7895 20.1349 43.1194

Humidity −43.0721 77.6577 −41.6560 95.2688 −46.4783 82.9315

Temperature 84.5604 159.0306 78.8716 178.9635 88.9198 161.7144

PM2.5 −57.8187* 29.9354 −57.2588 35.9549 −60.7429* 32.2158

Wind speed −205.7897 304.2316 −419.8414 464.8477 −224.1494 367.4614

COVID-19 death cases as the dependent variable

Variables FMOLS DOLS CCR

Coeff Std. Error Coeff Std. Error Coeff Std. Error

Constant −284.7038 826.7618 −659.8415 1270.1610 −398.1481 1019.7310

Covid-19 cases 0.0428*** 0.0036 0.0461*** 0.0040 0.0426*** 0.0037

Air pressure 0.4902 0.8033 0.8682 1.2426 0.6029 1.0007

Humidity −0.5612 1.8013 −0.7017 2.2055 −0.5387 1.9319

Temperature −2.2156 3.7034 −3.7094 4.1433 −1.9952 3.8094

PM2.5 −1.5480** 0.7145 −1.2565 0.8602 −1.6409** 0.7721

Wind speed 0.4301 7.0864 −0.0466 10.8573 0.7236 8.5659

Source: authors’ computation

*, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively
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and temperature reveal a significant impact on the cases in
Iran, which is partially consistent with the findings by
Ahmadi et al. (2020) that prove humidity, wind speed, and
solar radiation exposure support the transmission of coronavi-
rus in Iran. Additionally, the results contradict the findings
opined by Jahangiri et al. (2020), finding a low correlation
between the cases and ambient temperature in Iran.

Except for humidity, all the meteorological factors confirm
a statistically significant impact on the Covid-19 confirmed
cases in Italy. The findings contradict the results proven by
Bontempi (2020) who find no relationship between the par-
ticulate matter and the rising Covid-19 cases, while the same
is consistent with the results opined by Zoran et al. (2020) who
find a significant impact of climatic variables and the cases in
Italy. A strong positive association of the concentration of
PM2.5 with cases is found in Italy (Lippi et al. 2020).

Alternatively, the findings conclude that air pressure, hu-
midity, and temperature significantly affect the cases in Peru.
Air pressure, PM2.5, and temperature have a statistically sig-
nificant impact (at 1% level of significance) on the rising cases
in Russia and Spain (contradicting the result by Briz-Redón
and Serrano-Aroca (2020) and Shahzad et al. (2020) which
prove no relation between temperature and Covid-19 cases in
Spain). The UK exhibits a statistically significant impact by
humidity, temperature, and wind speed on its confirmed cases.
The former finding is consistent with the results proven by
Travaglio, Popovic, Yu, Leal, and Martins (2020) who find
low air quality to be associated with the rising Covid-19 cases
in England.

The findings report that temperature has a significant
negative impact at 1% level of significance on the Covid-
19 confirmed cases in the USA, which is also consistent
with the findings by Bashir et al. (2020), who opine that
average temperature, minimum temperature, and air quality

to be significantly associated with the Covid-19 pandemic
in the USA.

Table 10 presents the augmented mean group estimates
while considering the Covid-19 death cases as the dependent
variable. Covid-19 confirmed cases exhibit a statistically sig-
nificant (at 1% level of significance) and positive impact on
the Covid-19 death cases across all the ten countries under
study, with the highest impact evident in Italy, where the con-
firmed cases impact the death cases by 0.1123 units. Out of all
the meteorological variables, temperature exhibits a signifi-
cant negative impact on the death cases in most countries
(Wu et al. 2020b) under study, followed by air pressure and
humidity (Ma et al. 2020). This finding is consistent with the
results byMa et al. (2020), where the author confirms temper-
ature and humidity as important factors affecting Covid-19
mortality in China.

Countries, namely, India, Spain, and the USA, reveal only
temperature and Covid-19 cases to be the essential factors af-
fecting the number of death cases in these countries. This find-
ing contradicts the results by Adhikari and Yin (2020), which
confirms no impact by any of the meteorological factors on the
death cases in NewYork, USA, while Brazil and Iran reveal air
pressure, in addition to temperature and Covid-19 confirmed
cases, to impact its death cases. Similarly, Chile shows wind
speed as an essential variable that negatively affects the death
cases in the country by 18.45 units. Furthermore, humidity in
Italy and Peru has a negative impact on the Covid-19 death
cases, as consistent with the results by Fareed et al. (2020).
Additionally, UK reveals only air pressure and confirmed cases
to have a negative and positive impact on its death cases, re-
spectively. Lastly, Russia exhibits a positive impact of air pres-
sure, humidity, temperature, and Covid-19 confirmed cases,
concluding it to be the only country wheremost of the variables
under study impact its death cases.

Table 9 Augmented mean group (COVID-19 confirmed cases as the dependent variable)

Countries/variables Constant Air pressure Humidity PM2.5 Temperature Wind speed

Overall 34620.77 −35.6179 12.2519 −6.8876 −97.2345 −28.9052
Brazil −630951.40** 625.0123** 156.0854*** 377.2397*** 652.9533*** 2855.2790***

Chile −27124.40 25.1506 −8.0566 7.0845 −303.7789*** 1777.0260***

India 95356.34*** −110.5546*** 128.8052*** 17.4921*** 238.5444*** −387.8335***
Iran 6003.82 −5.7759 11.9933** −4.71432*** 37.9936** −14.17705
Italy 127826.00*** −121.9681*** −12.1677 36.2624*** −246.0241*** −134.9306***
Peru −253809.80*** 265.7233*** −52.0348** 0.3423 −440.5213*** −11.9321
Russia 63184.86*** −60.9156*** −8.0054 −42.1488*** 212.4598*** 41.2581

Spain 49911.29*** −45.4864*** 18.0563 −23.6618*** −181.8085*** −78.1316
UK −7364.99 12.8288 −62.5167*** −0.6704 −123.8335*** 349.5079***

USA 7501.69 −3.0417 61.6737 −66.2375 −641.5810*** 22.7662

Source: authors’ computation

*, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively
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Considering the issue of endogeneity and cross-sectional
dependence (confirmed from the CD test), the study further
employs the DCCEmodel. Table 11 presents the results of the
DCCEmodel. The first part of Table 11 shows the results with
Covid-19 confirmed cases as the dependent variable.
Consistent with the results proven by the augmented mean
group estimation technique, all the variables (except for hu-
midity and wind speed) report a significant impact on the
Covid-19 confirmed cases. Overall, temperature and air
pressure exhibit a significant but negative impact, implying

that an increase in temperature and air pressure shall decrease
the number of confirmed cases. Moreover, our results indicate
that there is a negative association of temperature and
confirmed cases in most countries, which is also supported
by Wang et al. (2020) and Wu et al. (2020b). Air pollutant
PM2.5 indicates a positive and statistically significant impact,
implying that an increase in their levels will ultimately lead to
an increase in the number of confirmed cases. Our result is
partially consistent with the results byHeneghan and Jefferson
(2020), where the authors state that the climatic conditions,
including temperature and air pressure have a significant
impact on the transmission of the disease. Lolli et al. (2020)
also find a negative correlation between temperature and virus
transmission, while air pressure exhibits a certain degree of
correlation. Hence, it is possible to speculate that cool and dry
weather conditions with lower temperature shall contribute to
the transmission of the Covid-19 pandemic.

The second part of Table 11 presents the results with Covid-
19 death cases as the dependent variable. Similar to the aug-
mented mean group estimation technique, temperature and
Covid-19 confirmed cases exhibit statistically significant re-
sults. The findings are aligned with Wu et al. (2020b), who
opine that temperature is negatively associated with the daily
new deaths of Covid-19 worldwide. However, unlike the pre-
vious tests, we find air pollutant PM2.5 to positively and sig-
nificantly impact death cases (at 5% level of significance). This
impact of PM2.5 is further validated by Zoran et al. (2020),
Magazzino et al. (2020), and Wu, Nethery, Sabath, Braun, and
Dominici (2020), who conclude that air pollutant PM2.5 re-
ports a strong positive impact on the Covid-19 death cases.
Also, wind speed and humidity do not exhibit any significant
impact. This finding partially contradicts the results byMa et al.
(2020) and Sobral et al. (2020), where the authors confirm the
significant impact of humidity, and no impact of temperature
on Covid-19 death cases, respectively.

Table 10 Augmented mean group (COVID-19 death cases as the dependent variable)

Countries/variables Constant Air pressure Humidity PM2.5 Temperature Wind speed Covid-19 cases

Overall 529.25 −0.4343 −0.1614 0.0657 −4.5765* −0.4067 0.0364***

Brazil −15320.32** 16.5607** 1.2267 0.4780 −13.6685*** −41.8146 0.0318***

Chile 84.57 0.0469 0.4234 0.1155 −3.7739* −18.4571*** 0.0078***

India 2784.17 −2.4807 −0.7962 −0.1660 −10.4452* −3.7573 0.0382***

Iran 931.21* −0.9071* 0.4154 0.0796 −1.2489** −0.9300 0.0407***

Italy 1743.83 −1.5856 −1.5063** 0.0215 −3.3447** −0.3098 0.1123***

Peru −2035.72 2.6181 −2.0947*** 0.0830 −18.3167*** −1.0065 0.0108***

Russia −728.15** 0.6663** 0.6031** 0.2640 2.4595*** 0.5017 0.0105***

Spain −379.56 0.3680 0.4440 −0.0644 −5.2776** 2.9427 0.0773***

UK 2200.93*** −2.2574*** −0.0176 −0.1435 3.8124 −0.7229 0.0516***

USA 124.51 −0.0409 −3.9137 3.9048 −0.3409 0.0482 0.0103***

Source: authors’ computation

*, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively

Table 11 Dynamic common correlated effect (DCCE) estimation

COVID-19 confirmed cases as the dependent variable

Explanatory variables Coeff Std. error

Constant −247.83 198.6260

Air pressure −3.9536*** 1.2981

Humidity 0.3085 0.2818

PM2.5 0.0251*** 0.0021

Temperature −0.3675** 0.1721

Wind speed 0.2056 0.1720

COVID-19 death cases as the dependent variable

Explanatory variables Coeff Std. error

Constant −933.80*** 250.0650

Covid-19 cases 0.0323** 0.0141

Air pressure 1.9540 2.6348

Humidity 0.0343 0.5112

PM2.5 0.7548** 0.3782

Temperature −5.7023** 2.4512

Wind speed −2.8108 3.6213

Source: authors’ computation

** and *** denote statistical significance at 5% and 1% levels,
respectively
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Conclusions

The coronavirus cases have reached up to 26million cases and
0.8 million deaths worldwide as of 5 September 2020
(Worldometer 2020). Given the virus’s novelty and the con-
stant increase in the number of cases and deaths, it is impera-
tive to look for the causes behind this widespread pandemic.
While there has been progress in managing this disease, the
factors apart from age, which affect the severity and mortality
of this pandemic, are still not clear (Travaglio et al. 2020).
Heneghan and Jefferson (2020) exert that other environmental
factors, including air density, air pollution, and daily sunlight,
require urgent verification and should be considered for fur-
ther investigation and testing. Additionally, extant literature
highlighted the possible impact of the meteorological factors
but has been inconclusive about the role and the degree of
influence of such factors on the Covid-19 cases (Iqbal et al.
2020; Xie and Zhu 2020). Given the climatic differences
among these most affected ten countries, it seems reasonable
to examine the impact of such meteorological factors, includ-
ing an air pollutant for each of these countries too. This is one
of the first studies that take into consideration the nexus be-
tween the confirmed Covid-19 confirmed cases, deaths, me-
teorological factors, including an air pollutant in the world’s
top 10 infected countries, from 1 February 2020 through 30
June 2020, using advanced econometric techniques (Sharma
et al. 2020a; Nathaniel et al. 2020), including the novel
Dynamic Common Correlated Effect (DCCE) model that ac-
counts for the heterogeneity across the nations and provide
more reliable and generalizable results (Mensah et al. 2020;
Meo et al. 2020)

Our findings confirm a strong cross-sectional dependence
between Covid-19 cases, deaths, and the meteorological
factors, including air pollutant PM2.5, for all the ten most
infected countries under study. The Westerlund (2007)
cointegration test confirms a long-term relationship between
all the variables under investigation. With Covid-19 cases as
the dependent variable, there exists bi-directional causalities
running between the Covid-19 cases and all the meteorologi-
cal factors, namely temperature, wind speed, humidity, air
pressure, and PM2.5 (an air pollutant). With Covid-19 death
cases as the dependent variable, the bi-directional causality
runs between the Covid-19 death cases, and Covid-19 con-
firmed cases, air pressure, humidity, and temperature.
Temperature and air pressure exhibit a statistically significant
and negative impact on the Covid-19 confirmed cases. Air
pollutant PM2.5 also exhibits a significant but positive impact
on the Covid-19 confirmed cases. Temperature indicates a
statistically significant and negative impact on Covid-19 death
cases. Simultaneously, Covid-19 confirmed cases and air pol-
lutant PM2.5 exhibit a statistically significant and positive
impact on the Covid-19 death cases across the ten countries
under study. Hence, it is possible to postulate that cool and dry

weather conditions with lower temperature and higher humid-
ity promote indoor activities and human gatherings (assem-
bling), leading to virus transmission.

This study contributes both practically and theoretically to
the concerned field of pandemic management. The results
herewith provide a better understanding and may assist in
taking appropriate measures in implementing intersectoral
policies and actions as necessary in a timely and efficient
manner. Hence, protection and prevention measures must be
adopted to reduce the transmission and possible collapse of
the public health system. Such measures shall also encourage
e-government initiatives, work-from-home policies for corpo-
rates and businesses, improved healthcare sector and facilities,
investment in sustainable infrastructure, and better policies for
the most vulnerable societies, including the migrants and the
daily wage earners. In conclusion, this study provides vital
information on the impact of meteorological factors, including
an air pollutant, on the rising Covid-19 confirmed cases and
death cases. Such information shall lead to a better under-
standing of the weather parameters responsible for spreading
the Covid-19 virus across the most infected countries under
study. Lastly, the results may also help the weather forecasting
authorities better identify the regions with similar weather
conditions that further support the virus’s spread. The present
air quality scenarios have gathered all stakeholders’ attention
from a scientific, academic, policy decision, and political
background, emphasizing the need to identify how to handle
future air quality scenarios. Additionally, the experts may re-
think and reform the policy measures to reduce the overall
impact on the environment and economy together, keeping
the policy decisions in line with the sustainable development
goals (SDGs).

The study has some limitations. The study has not consid-
ered other factors, including demographic variables, personal
behaviors, healthcare infrastructure, medical resources, socio-
economic factors, and healthcare sector programs and policies
(government response), regulating the transmission of the dis-
ease. Therefore, these confounding factors should also be in-
corporated into such models (as the ones used in this study)
and as much as possible empirically tested in future studies.
The dataset used for this study is very extensive, but a more
extensive dataset, including varying weather conditions,
should also be considered by future studies. Also, the dataset
included in the study includes the data from February to June;
therefore, more recent data could be added to give a more
comprehensive picture of the findings.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11356-021-12668-5.

Acknowledgements The authors are grateful to Guru Gobind Singh
Indraprastha University for providing funds and allowing time to conduct
this research.

28636 Environ Sci Pollut Res  (2021) 28:28624–28639

https://doi.org/10.1007/s11356-021-12668-5


Author Contribution Conceptualization: GDS, SB. Data curation: AY,
IG, MJ. Formal analysis: AY, MJ. Investigation: GDS, SB.
Methodology: AY, IG. Project administration: SB. Resources: GDS,
SB. Software: AY, MJ. Supervision: GDS, SB. Validation: GDS, SB.
Visualization: GDS, AY, MJ. Original draft: AY, IG, MJ. Review and
editing: GDS. Proof-reading: GDS, SB.

Data availability The datasets used and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

References

Adhikari A, Yin J (2020) Short-term effects of ambient ozone, PM2.5,
and meteorological factors on COVID-19 confirmed cases and
deaths in Queens, New York. Int J Environ Res Public Health 17:
1–13. https://doi.org/10.3390/ijerph17114047

Ahmadi M, Sharifi A, Dorosti S, Jafarzadeh Ghoushchi S, Ghanbari N
(2020) Investigation of effective climatology parameters on
COVID-19 outbreak in Iran. Sci Total Environ 729:138705.
https://doi.org/10.1016/j.scitotenv.2020.138705

Al-Rousan N, Al-Najjar H (2020) The correlation between the spread of
COVID-19 infections and weather variables in 30 Chinese prov-
inces and the impact of Chinese government mitigation plans. Eur
Rev Med Pharmacol Sci 24:4565–4571. doi: 10.26355/
eurrev_202004_21042

Auler AC, Cássaro FAM, da Silva VO, Pires LF (2020) Evidence that
high temperatures and intermediate relative humidity might favor
the spread of COVID-19 in tropical climate: a case study for the
most affected Brazilian cities. Sci Total Environ 729:139090.
https://doi.org/10.1016/j.scitotenv.2020.139090

Banerjee A, Dolado JJ, Mestre R (1998) Error-correction mechanism
tests for cointegration in a single-equation framework. J Time Ser
Anal. 19:267–283. https://doi.org/10.1111/1467-9892.00091

Bashir MF, Ma B, Bilal et al (2020) Correlation between climate indica-
tors and COVID-19 pandemic in New York, USA. Sci Total
Environ 728:138835. https://doi.org/10.1016/j.scitotenv.2020.
138835

Bayar Y (2016) Financial development and unemployment in emerging
market economies. Sci Ann Econ Bus 63:237–245. https://doi.org/
10.1515/aicue-2016-0019

Berman JD, Ebisu K (2020) Changes in U.S. air pollution during the
COVID-19 pandemic. Sci Total Environ 739:139864. https://doi.
org/10.1016/j.scitotenv.2020.139864

Bontempi E (2020) First data analysis about possible COVID-19 virus
airborne diffusion due to air particulate matter (PM): the case of
Lombardy (Italy). Environ Res 186:109639. https://doi.org/10.
1016/j.envres.2020.109639

Breusch TS, Pagan AR (1980) The Lagrange multiplier test and its ap-
plications to model specification in econometrics. Rev Econ Stud
47:239. https://doi.org/10.2307/2297111

Briz-Redón Á, Serrano-Aroca Á (2020) A spatio-temporal analysis for
exploring the effect of temperature on COVID-19 early evolution in
Spain. Sci Total Environ 728:138811. https://doi.org/10.1016/j.
scitotenv.2020.138811

Casanova LM, Jeon S, RutalaWA,Weber DJ, SobseyMD (2010) Effects
of air temperature and relative humidity on coronavirus survival on
surfaces. Appl EnvironMicrobiol 76:2712–2717. https://doi.org/10.
1128/AEM.02291-09

Chakraborty I, Maity P (2020) COVID-19 outbreak: migration, effects on
society, global environment and prevention. Sci Total Environ 728:
138882. https://doi.org/10.1016/j.scitotenv.2020.138882

Chen K,WangM, Huang C, Kinney PL, Anastas PT (2020) Air pollution
reduction and mortality benefit during the COVID-19 outbreak in
China. Lancet Planet Heal 2020(03):23.20039842–23.2003e212.
https://doi.org/10.1016/S2542-5196(20)30107-8

Chien LC, Chen LW (2020) Meteorological impacts on the incidence of
COVID-19 in the U.S. Stoch Environ Res Risk Assess 8. https://doi.
org/10.1007/s00477-020-01835-8

Chudik A, Pesaran MH (2015) Common correlated effects estimation of
heterogeneous dynamic panel data models with weakly exogenous
regressors. J Econom 188:393–420. https://doi.org/10.1016/j.
jeconom.2015.03.007

CNA (2020) Novel Coronavirus COVID-19 - Latest news | CNA.
Channel News Asia, In

Dogan E, Aslan A (2017) Exploring the relationship among CO2 emis-
sions, real GDP, energy consumption and tourism in the EU and
candidate countries: Evidence from panel models robust to hetero-
geneity and cross-sectional dependence. Renew Sustain Energy Rev
77:239–245. https://doi.org/10.1016/j.rser.2017.03.111

Dogan E, Seker F, Bulbul S (2017) Investigating the impacts of energy
consumption, real GDP, tourism and trade on CO2 emissions by
accounting for cross-sectional dependence: a panel study of OECD
countries. Curr Issues Tour 20:1701–1719. https://doi.org/10.1080/
13683500.2015.1119103

Dumitrescu EI, Hurlin C (2012) Testing for Granger non-causality in
heterogeneous panels. Econ Model 29:1450–1460. https://doi.org/
10.1016/j.econmod.2012.02.014

Dutheil F, Baker JS, Navel V (2020) COVID-19 and air pollution : the
worst is yet to come. Environ Sci Pollut Res 27:44647–44649.
https://doi.org/10.1007/s11356-020-11075-6

EberhardtM, Teal F (2010) Productivity analysis in global manufacturing
production. Econ Ser Work Pap

Fareed Z, Iqbal N, Shahzad F, Shah SGM, Zulfiqar B, Shahzad K,
Hashmi SH, Shahzad U (2020) Co-variance nexus between
COVID-19 mortality, humidity, and air quality index in Wuhan,
China: new insights from partial and multiple wavelet coherence.
Air Qual Atmos Heal 13:673–682. https://doi.org/10.1007/s11869-
020-00847-1

Gupta S, Raghuwanshi GS, Chanda A (2020) Effect of weather on
COVID-19 spread in the US: a prediction model for India in 2020.
Sci Total Environ 728:138860. https://doi.org/10.1016/j.scitotenv.
2020.138860

Habib Y, Xia E, Fareed Z, Hashmi SH (2020) Time–frequency co-
movement between COVID-19, crude oil prices, and atmospheric
CO2 emissions: fresh global insights from partial and multiple co-
herence approach. Environ Dev Sustain:1–21. https://doi.org/10.
1007/s10668-020-01031-2

Hazbavi Z, Mostfazadeh R, Alaei N, Azizi E (2020) Spatial and temporal
analysis of the COVID-19 incidence pattern in Iran. Environ Sci
Pollut Res:1–11. https://doi.org/10.1007/s11356-020-11499-0

Heneghan C, Jefferson T (2020) Effect of latitude on COVID-19. In:
Cent. Evidence-Based Med. https://www.cebm.net/covid-19/
effect-of-latitude-on-covid-19/. Accessed 20th November 2020

Iqbal N, Fareed Z, Shahzad F, He X, Shahzad U, Lina M (2020) The
nexus between COVID-19, temperature and exchange rate in
Wuhan city: new findings from partial and multiple wavelet coher-
ence. Sci Total Environ 729:138916. https://doi.org/10.1016/j.
scitotenv.2020.138916

Islam ARMT, Hasanuzzaman M, Shammi M et al (2020) Are meteoro-
logical factors enhancing COVID-19 transmission in Bangladesh?
Novel findings from a compound Poisson generalized linear model-
ing approach. Environ Sci Pollut Res 1–14. https://doi.org/10.1007/
s11356-020-11273-2

28637Environ Sci Pollut Res  (2021) 28:28624–28639

https://doi.org/10.3390/ijerph17114047
https://doi.org/10.1016/j.scitotenv.2020.138705
https://doi.org/10.1016/j.scitotenv.2020.139090
https://doi.org/10.1111/1467-9892.00091
https://doi.org/10.1016/j.scitotenv.2020.138835
https://doi.org/10.1016/j.scitotenv.2020.138835
https://doi.org/10.1515/aicue-2016-0019
https://doi.org/10.1515/aicue-2016-0019
https://doi.org/10.1016/j.scitotenv.2020.139864
https://doi.org/10.1016/j.scitotenv.2020.139864
https://doi.org/10.1016/j.envres.2020.109639
https://doi.org/10.1016/j.envres.2020.109639
https://doi.org/10.2307/2297111
https://doi.org/10.1016/j.scitotenv.2020.138811
https://doi.org/10.1016/j.scitotenv.2020.138811
https://doi.org/10.1128/AEM.02291-09
https://doi.org/10.1128/AEM.02291-09
https://doi.org/10.1016/j.scitotenv.2020.138882
https://doi.org/10.1016/S2542-5196(20)30107-8
https://doi.org/10.1007/s00477-020-01835-8
https://doi.org/10.1007/s00477-020-01835-8
https://doi.org/10.1016/j.jeconom.2015.03.007
https://doi.org/10.1016/j.jeconom.2015.03.007
https://doi.org/10.1016/j.rser.2017.03.111
https://doi.org/10.1080/13683500.2015.1119103
https://doi.org/10.1080/13683500.2015.1119103
https://doi.org/10.1016/j.econmod.2012.02.014
https://doi.org/10.1016/j.econmod.2012.02.014
https://doi.org/10.1007/s11356-020-11075-6
https://doi.org/10.1007/s11869-020-00847-1
https://doi.org/10.1007/s11869-020-00847-1
https://doi.org/10.1016/j.scitotenv.2020.138860
https://doi.org/10.1016/j.scitotenv.2020.138860
https://doi.org/10.1007/s10668-020-01031-2
https://doi.org/10.1007/s10668-020-01031-2
https://doi.org/10.1007/s11356-020-11499-0
https://www.cebm.net/covid-19/effect-of-latitude-on-covid-19/
https://www.cebm.net/covid-19/effect-of-latitude-on-covid-19/
https://doi.org/10.1016/j.scitotenv.2020.138916
https://doi.org/10.1016/j.scitotenv.2020.138916
https://doi.org/10.1007/s11356-020-11273-2
https://doi.org/10.1007/s11356-020-11273-2


Jahangiri M, Jahangiri M, Najafgholipour M (2020) The sensitivity and
specificity analyses of ambient temperature and population size on
the transmission rate of the novel coronavirus (COVID-19) in dif-
ferent provinces of Iran. Sci Total Environ 728:138872. https://doi.
org/10.1016/j.scitotenv.2020.138872

Jain S, Sharma T (2020) Social and travel lockdown impact considering
coronavirus disease (Covid-19) on air quality in megacities of india:
present benefits, future challenges and way forward. Aerosol Air
Qual Res 20:1222–1236. https://doi.org/10.4209/aaqr.2020.04.
0171

Kerimray A, Baimatova N, Ibragimova OP, Bukenov B, Kenessov B,
Plotitsyn P, Karaca F (2020) Assessing air quality changes in large
cities during COVID-19 lockdowns: the impacts of traffic-free ur-
ban conditions in Almaty, Kazakhstan. Sci Total Environ 730:
139179. https://doi.org/10.1016/j.scitotenv.2020.139179

Kumar S (2020) Will COVID-19 pandemic diminish by summer-
monsoon in India? Lesson from the first lockdown. medRxiv
2020.04.22.20075499. https://doi.org/10.1101/2020.04.22.
20075499

Lee J-W, McKibbin WJ (2004) Globalization and disease: the case of
SARS. Asian Econ Pap 3:113–131. doi: 10. 1162/1535351041747932

Lin C, Lau AKH, Fung JCH et al (2020) A mechanism-based
parameterisation scheme to investigate the association between
transmission rate of COVID-19 andmeteorological factors on plains
in China. Sci Total Environ 737. https://doi.org/10.1016/j.scitotenv.
2020.140348

Lippi G, Sanchis-Gomar F, Henry BM (2020) Association between en-
vironmental pollution and prevalence of coronavirus disease 2019
(COVID-19) in Italy. medRxiv 19:2020.04.22.20075986. https://
doi.org/10.1101/2020.04.22.20075986

Liu J, Zhou J, Yao J, Zhang X, Li L, Xu X, He X, Wang B, Fu S, Niu T,
Yan J, Shi Y, Ren X, Niu J, Zhu W, Li S, Luo B, Zhang K (2020)
Impact of meteorological factors on the COVID-19 transmission: a
multi-city study in China. Sci Total Environ 726:138513. https://doi.
org/10.1016/j.scitotenv.2020.138513

Lolli S, Chen YC, Wang SH, Vivone G (2020) Impact of meteorological
conditions and air pollution on COVID-19 pandemic transmission
in Italy. Sci Rep 10:16213. https://doi.org/10.1038/s41598-020-
73197-8

Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, Yan J, Niu J, Zhou J, Luo B
(2020) Effects of temperature variation and humidity on the death of
COVID-19 in Wuhan, China. Sci Total Environ 724:138226.
https://doi.org/10.1016/j.scitotenv.2020.138226

Magazzino C, Mele M, Schneider N (2020) The relationship between air
pollution and COVID-19-related deaths: an application to three
French cities. EnerarXiv

Mandal CC, Panwar MS (2020) Can the summer temperatures reduce
COVID-19 cases? Public Health 185:72–79. https://doi.org/10.
1016/j.puhe.2020.05.065

Mandal A, Roy R, Ghosh D, et al (2020) COVID-19 pandemic: sudden
restoration in global environmental quality and its impact on climate
change. EnerarXiv

Méndez-Arriaga F (2020) The temperature and regional climate effects
on communitarian COVID-19 contagion in Mexico throughout
phase 1. Sci Total Environ 735:139560. https://doi.org/10.1016/j.
scitotenv.2020.139560

Mensah IA, Sun M, Gao C et al (2020) Investigation on key contributors
of energy consumption in dynamic heterogeneous panel data
(DHPD) model for African countries: fresh evidence from dynamic
common correlated effect (DCCE) approach. Environ Sci Pollut Res
27:38674–38694. https://doi.org/10.1007/s11356-020-09880-0

Meo MS, Sabir SA, Arain H, Nazar R (2020) Water resources and tour-
ism development in South Asia: an application of dynamic common
correlated effect (DCCE) model. Environ Sci Pollut Res 27:19678–
19687. https://doi.org/10.1007/s11356-020-08361-8

Montalvo JG (1995) Comparing cointegrating regression estimators:
some additional Monte Carlo results. Econ Lett. 48:229–234.
https://doi.org/10.1016/0165-1765(94)00632-C

Musaad HMA, Bin ZY, Ameer W (2017) The long-run effect of FDI
inflows on total factor productivity : evidence from African
countries

Nakada LYK, Urban RC (2020) COVID-19 pandemic: environmental
and social factors influencing the spread of SARS-CoV-2 in São
Paulo. Brazil. Environ Sci Pollut Res:1–7. https://doi.org/10.1007/
s11356-020-10930-w

Nathaniel S, Nwodo O, Sharma G, Shah M (2020) Renewable energy,
urbanization, and ecological footprint linkage in CIVETS. Environ
Sci Pollut Res 27:19616–19629. https://doi.org/10.1007/s11356-
020-08466-0

Pani SK, Lin NH, Babu SR (2020) Association of COVID-19 pandemic
with meteorological parameters over Singapore. Sci Total Environ
740:140112. https://doi.org/10.1016/j.scitotenv.2020.140112

Pequeno P, Mendel B, Rosa C, Bosholn M, Souza JL, Baccaro F,
Barbosa R, Magnusson W (2020) Air transportation, population
density and temperature predict the spread of COVID-19 in Brazil.
PeerJ 8:e9322. https://doi.org/10.7717/peerj.9322

Pesaran MH (2007) A simple panel unit root test in the presence of cross-
section dependence. J Appl Econom 22:265–312. https://doi.org/10.
1002/jae.951

Pesaran MH, Smith R (1995) Estimating long-run relationships from
dynamic heterogeneous panels

Prata DN, Rodrigues W, Bermejo PH (2020) Temperature significantly
changes COVID-19 transmission in (sub)tropical cities of Brazil.
Sci Total Environ 729:138862. https://doi.org/10.1016/j.scitotenv.
2020.138862

Raza A, Khan MTI, Ali Q, Hussain T, Narjis S (2020) Association be-
tween meteorological indicators and COVID-19 pandemic in
Pakistan. Environ Sci Pollut Res:1–16. https://doi.org/10.1007/
s11356-020-11203-2

Rosario DKA, Mutz YS, Bernardes PC, Conte-Junior CA (2020)
Relationship between COVID-19 and weather: case study in a trop-
ical country. Int J Hyg Environ Health 229:1–5. https://doi.org/10.
1016/j.ijheh.2020.113587

Sarkodie SA, Owusu PA (2020) Impact of meteorological factors on
COVID-19 pandemic: evidence from top 20 countries with con-
firmed cases. Environ Res 191:110101. https://doi.org/10.1016/j.
envres.2020.110101

Sethwala A, Akbarally M, Better N et al (2020) The effect of ambient
temperature on worldwide COVID-19 cases and deaths - an epide-
miological study. Medrxiv:1–22. https://doi.org/10.1101/2020.05.
15.20102798

Shahzad F, Shahzad U, Fareed Z, Iqbal N, Hashmi SH, Ahmad F (2020)
Asymmetric nexus between temperature and COVID-19 in the top
ten affected provinces of China: a current application of quantile-on-
quantile approach. Sci Total Environ 736:139115. https://doi.org/
10.1016/j.scitotenv.2020.139115

Shahzad K, Shahzad U, Iqbal N, Shahzad F, Fareed Z (2020) Effects of
climatological parameters on the outbreak spread of COVID-19 in
highly affected regions of Spain. Environ Sci Pollut Res 27:39657–
39666. https://doi.org/10.1007/s11356-020-10551-3

Shakoor A, Chen X, Farooq TH, Shahzad U, Ashraf F, Rehman A, Sahar
N, Yan W (2020) Fluctuations in environmental pollutants and air
quality during the lockdown in the USA and China: two sides of
COVID-19 pandemic. Air Qual Atmos Heal 13:1335–1342. https://
doi.org/10.1007/s11869-020-00888-6

Sharma GD, Rahman MM, Jain M, Chopra R (2020a) Nexus between
energy consumption, information and communications technology,
and economic growth: an enquiry into emerging Asian countries. J
Public Aff. https://doi.org/10.1002/pa.2172

28638 Environ Sci Pollut Res  (2021) 28:28624–28639

https://doi.org/10.1016/j.scitotenv.2020.138872
https://doi.org/10.1016/j.scitotenv.2020.138872
https://doi.org/10.4209/aaqr.2020.04.0171
https://doi.org/10.4209/aaqr.2020.04.0171
https://doi.org/10.1016/j.scitotenv.2020.139179
https://doi.org/10.1101/2020.04.22.20075499
https://doi.org/10.1101/2020.04.22.20075499
https://doi.org/10.1016/j.scitotenv.2020.140348
https://doi.org/10.1016/j.scitotenv.2020.140348
https://doi.org/10.1101/2020.04.22.20075986
https://doi.org/10.1101/2020.04.22.20075986
https://doi.org/10.1016/j.scitotenv.2020.138513
https://doi.org/10.1016/j.scitotenv.2020.138513
https://doi.org/10.1038/s41598-020-73197-8
https://doi.org/10.1038/s41598-020-73197-8
https://doi.org/10.1016/j.scitotenv.2020.138226
https://doi.org/10.1016/j.puhe.2020.05.065
https://doi.org/10.1016/j.puhe.2020.05.065
https://doi.org/10.1016/j.scitotenv.2020.139560
https://doi.org/10.1016/j.scitotenv.2020.139560
https://doi.org/10.1007/s11356-020-09880-0
https://doi.org/10.1007/s11356-020-08361-8
https://doi.org/10.1016/0165-1765(94)00632-C
https://doi.org/10.1007/s11356-020-10930-w
https://doi.org/10.1007/s11356-020-10930-w
https://doi.org/10.1007/s11356-020-08466-0
https://doi.org/10.1007/s11356-020-08466-0
https://doi.org/10.1016/j.scitotenv.2020.140112
https://doi.org/10.7717/peerj.9322
https://doi.org/10.1002/jae.951
https://doi.org/10.1002/jae.951
https://doi.org/10.1016/j.scitotenv.2020.138862
https://doi.org/10.1016/j.scitotenv.2020.138862
https://doi.org/10.1007/s11356-020-11203-2
https://doi.org/10.1007/s11356-020-11203-2
https://doi.org/10.1016/j.ijheh.2020.113587
https://doi.org/10.1016/j.ijheh.2020.113587
https://doi.org/10.1016/j.envres.2020.110101
https://doi.org/10.1016/j.envres.2020.110101
https://doi.org/10.1101/2020.05.15.20102798
https://doi.org/10.1101/2020.05.15.20102798
https://doi.org/10.1016/j.scitotenv.2020.139115
https://doi.org/10.1016/j.scitotenv.2020.139115
https://doi.org/10.1007/s11356-020-10551-3
https://doi.org/10.1007/s11869-020-00888-6
https://doi.org/10.1007/s11869-020-00888-6
https://doi.org/10.1002/pa.2172


Sharma GD, Talan G, Jain M (2020b) Policy response to the economic
challenge from COVID-19 in India : a qualitative enquiry. J Public
Aff:1–16. https://doi.org/10.1002/pa.2206

Sharma GD, Talan G, Srivastava M, Yadav A, Chopra R (2020c) A
qualitative enquiry into strategic and operational responses to
Covid-19 challenges in South Asia. J Public Aff. https://doi.org/
10.1002/pa.2195

Sharma S, Zhang M, Anshika et al (2020d) Effect of restricted emissions
during COVID-19 on air quality in India. Sci Total Environ 728:
138878. https://doi.org/10.1016/j.scitotenv.2020.138878

Shehzad K, Sarfraz M, Shah SGM (2020) The impact of COVID-19 as a
necessary evil on air pollution in India during the lockdown.
Environ Pollut 266:1–5. https://doi.org/10.1016/j.envpol.2020.
115080

Shi P, Dong Y, Yan H, Zhao C, Li X, Liu W, HeM, Tang S, Xi S (2020)
Impact of temperature on the dynamics of the COVID-19 outbreak
in China. Sci Total Environ 728:138890. https://doi.org/10.1016/j.
scitotenv.2020.138890

SobralMFF, Duarte GB, da Penha Sobral AIG,MarinhoMLM, de Souza
Melo A (2020) Association between climate variables and global
transmission oF SARS-CoV-2. Sci Total Environ 729:138997.
https://doi.org/10.1016/j.scitotenv.2020.138997

Tobías A, Carnerero C, Reche C, Massagué J, Via M, Minguillón MC,
Alastuey A, Querol X (2020) Changes in air quality during the
lockdown in Barcelona (Spain) one month into the SARS-CoV-2
epidemic. Sci Total Environ 726:138540. https://doi.org/10.1016/j.
scitotenv.2020.138540

Tosepu R, Gunawan J, Effendy DS, Ahmad LOAI, Lestari H, Bahar H,
Asfian P (2020) Correlation between weather and Covid-19 pan-
demic in Jakarta, Indonesia. Sci Total Environ 725:138436.
https://doi.org/10.1016/j.scitotenv.2020.138436

Travaglio M, Popovic R, Yu Y et al (2020) Links between air pollution
and COVID-19 in England. medRxiv 2020.04.16.20067405.
https://doi.org/10.1101/2020.04.16.20067405

Wang M, Jiang A, Gong L et al (2020) Temperature significant change
COVID-19 Transmission in 429 cities. medRxiv. https://doi.org/10.
1101/2020.02.22.20025791

Wang Q, Wu N (2012) Long-run covariance and its applications in
cointegration regression. Stata J 12:515–542. https://doi.org/10.
1177/1536867x1201200312

WAQI (2020) COVID-19 worldwide air quality data. https://aqicn.org/
data-platform/covid19/. Accessed 1st July 2020

Westerlund J (2007) Testing for error correction in panel data. Oxf Bull
Econ Stat 69:709–748. https://doi.org/10.1111/j.1468-0084.2007.
00477.x

WHO (2020) Archived: WHO timeline - COVID-19. In: World Heal.
Organ. https://www.who.int/news-room/detail/27-04-2020-who-
timeline%2D%2D-covid-19. Accessed 10th July 2020

Wooldridge JM (2002) Econometric analysis of cross section and panel
data. MIT press, Cambridge, Massachusetts

Worldometer (2020) Covid-19 coronavirus pandemic. In: Worldometer.
https://www.worldometers.info/coronavirus/? Accessed 6th
September 2020

Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, du M, Liu M (2020b)
Effects of temperature and humidity on the daily new cases and new
deaths of COVID-19 in 166 countries. Sci Total Environ 729:
139051. https://doi.org/10.1016/j.scitotenv.2020.139051

Wu X, Nethery RC, Sabath BM et al (2020a) Exposure to air pollution
and COVID-19 mortality in the United States. medRxiv
2020.04.05.20054502. https://doi.org/10.1101/2020.04.05.
20054502

Xie J, Zhu Y (2020) Association between ambient temperature and
COVID-19 infection in 122 cities from China. Sci Total Environ
724:138201. https://doi.org/10.1016/j.scitotenv.2020.138201

Xu K, Cui K, Young LH, Wang YF, Hsieh YK, Wan S, Zhang J (2020)
Air quality index, indicatory air pollutants and impact of covid-19
event on the air quality near central china. Aerosol and Air Quality
Research, 20(6):1204–1221. https://doi.org/10.4209/aaqr.2020.04.
0139

Zangari S, Hill DT, Charette AT, Mirowsky JE (2020) Air quality chang-
es in New York City during the COVID-19 pandemic. Sci Total
Environ 742:140496. https://doi.org/10.1016/j.scitotenv.2020.
140496

Zhu L, Liu X, Huang H et al (2020a) Meteorological impact on the
COVID-19 pandemic: a study across eight severely affected regions
in South America. Sci Total Environ 744. https://doi.org/10.1016/j.
scitotenv.2020.140881

Zhu Y, Xie J, Huang F, Cao L (2020b) Association between short-term
exposure to air pollution and COVID-19 infection: evidence from
China. Sci Total Environ 727:138704. https://doi.org/10.1016/j.
scitotenv.2020.138704

Zoran MA, Savastru RS, Savastru DM, Tautan MN (2020) Assessing the
relationship between surface levels of PM2.5 and PM10 particulate
matter impact on COVID-19 in Milan, Italy. Sci Total Environ 738:
139825. https://doi.org/10.1016/j.scitotenv.2020.139825

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

28639Environ Sci Pollut Res  (2021) 28:28624–28639

https://doi.org/10.1002/pa.2206
https://doi.org/10.1002/pa.2195
https://doi.org/10.1002/pa.2195
https://doi.org/10.1016/j.scitotenv.2020.138878
https://doi.org/10.1016/j.envpol.2020.115080
https://doi.org/10.1016/j.envpol.2020.115080
https://doi.org/10.1016/j.scitotenv.2020.138890
https://doi.org/10.1016/j.scitotenv.2020.138890
https://doi.org/10.1016/j.scitotenv.2020.138997
https://doi.org/10.1016/j.scitotenv.2020.138540
https://doi.org/10.1016/j.scitotenv.2020.138540
https://doi.org/10.1016/j.scitotenv.2020.138436
https://doi.org/10.1101/2020.04.16.20067405
https://doi.org/10.1101/2020.02.22.20025791
https://doi.org/10.1101/2020.02.22.20025791
https://doi.org/10.1177/1536867x1201200312
https://doi.org/10.1177/1536867x1201200312
https://aqicn.org/data-platform/covid19/
https://aqicn.org/data-platform/covid19/
https://doi.org/10.1111/j.1468-0084.2007.00477.x
https://doi.org/10.1111/j.1468-0084.2007.00477.x
https://www.who.int/news-room/detail/27-04-2020-who-timeline%2D%2D-covid-19
https://www.who.int/news-room/detail/27-04-2020-who-timeline%2D%2D-covid-19
https://www.worldometers.info/coronavirus/?
https://doi.org/10.1016/j.scitotenv.2020.139051
https://doi.org/10.1101/2020.04.05.20054502
https://doi.org/10.1101/2020.04.05.20054502
https://doi.org/10.1016/j.scitotenv.2020.138201
https://doi.org/10.4209/aaqr.2020.04.0139
https://doi.org/10.4209/aaqr.2020.04.0139
https://doi.org/10.1016/j.scitotenv.2020.140496
https://doi.org/10.1016/j.scitotenv.2020.140496
https://doi.org/10.1016/j.scitotenv.2020.140881
https://doi.org/10.1016/j.scitotenv.2020.140881
https://doi.org/10.1016/j.scitotenv.2020.138704
https://doi.org/10.1016/j.scitotenv.2020.138704
https://doi.org/10.1016/j.scitotenv.2020.139825

	Meteorological factors, COVID-19 cases, and deaths in top 10 most affected countries: an econometric investigation
	Abstract
	Introduction
	Literature review
	Methodology
	Model specification and data
	Data analysis and techniques
	Cross-sectional dependence test
	First- and second-generation unit root test
	Westerlund cointegration test
	Granger non-causality test
	Long-run estimation approach
	Mean group estimate
	Dynamic common correlated effect model


	Findings and discussion
	Conclusions
	References


