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Rheumatoid arthritis (RA) is a widespread inflammatory disease whose clinical manifestations are joint swelling, pain, and
disability, affecting approximately 1% of individuals worldwide. Conventional anti-RA drugs currently used in clinic have severe
side effects. The present study is aimed at investigating the antiarthritic effects of total saponins from Nigella glandulifera seeds
(TSNGS) in rats with adjuvant-induced rheumatoid arthritis (AIA). Arthritis score, paw swelling, and body weight were
monitored throughout the period of TSNGS treatment. The histopathological features and levels of cytokines, including IFN-γ,
TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-17A, and OPG/RANKL signaling, were measured to determine the amelioration by
TSNGS and its potential mechanisms on the inflammatory response and bone erosion. The differentiation of regulatory T cells
(Tregs) in serum was assessed by flow cytometry. The results demonstrate that TSNGS at 10mg/kg, 50mg/kg, and 250mg/kg
inhibited AIA-induced clinical score, paw swelling, and histological changes. TSNGS reduced the immune-inflammatory
reaction by restoring the secretion and expression of inflammatory cytokines and elevating the proportion of CD4+ CD25+

Tregs, accompanied by an increase in transcription factor Foxp3 levels. TSNGS also displayed bone protection by upregulation
of the OPG/RANKL pathway. Collectively, TSNGS inhibited arthritis in AIA rats and so represents a potential novel treatment
for RA.

1. Introduction

Rheumatoid arthritis (RA) is a chronic and progressive auto-
immune disease of unknown etiology, characterized by syno-
vial inflammation and hyperplasia, the formation of pannus,
and cartilage destruction that result in irreversible joint dam-
age and severe disability [1]. It has been reported that the
prevalence of RA is between 0.4% and 1.2%, while the inci-
dence in women is almost 2-4-fold greater than in males [2,
3]. The focus of treatment given to RA patients is currently
immune suppression plus nonsteroidal anti-inflammatory
drugs (NSAIDs) and disease-modifying antirheumatic drugs

(DMARDs) to relieve their immuno-inflammatory response
and the pain symptoms of RA, including Tripterygium wil-
fordii polyglycosides, methotrexate, and glucocorticoids.
Long-term use leads to serious side effects on the kidney,
bone, stomach, and other tissues and organs. As a result,
the development of a drug that cures RA is urgently required
for clinical use.

Traditional Chinese Medicine (TCM), especially herbal
medicine, can be used to a great extent to improve RA
treatment by utilizing the synergistic effects of herbal compo-
nents and neutralizing their toxic effects in the mixture. Of
the effective clinical formulae, Gui-Zhi-Shao-Yao-Zhi-Mu
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decoction, developed by Zhongjing Zhang with extensive use
in RA treatments in China from the Han Dynasty, demon-
strates therapeutic properties with analgesic and anti-
inflammatory effects, in addition to the regulation of an
antigen-driven autoimmune response, whole-body lipid
metabolism, and matrix degradation in human joints [4].
Another TCM formula, the Bi-Qi capsule, commonly pre-
scribed for RA in China, alleviates RA-induced inflamma-
tion, synovial hyperplasia, and cartilage destruction [5].
Many extensively studied natural products used for the
therapy RA, such as sinomenine [6], curcumin [7], resvera-
trol [8], and gingerol [9], are reported to have the capability
to suppress numerous proinflammatory mediators.
Therefore, herbal products possessing beneficial properties
may serve as potential therapeutic agents to treat RA, either
alone or in combination with particular mainstream antiar-
thritic drugs.

The initiation of RA is not yet fully understood, but it has
been confirmed that dysregulation of the immuno-
inflammatory system plays a significant role in the patho-
physiology of RA [10]. The aberrant production of inflam-
matory mediators such as TNF-α, IL-1β, IL-6, IL-4, and IL-
17 secreted by a variety of immunocytes and macrophages
infiltrate into the synovium of multiple joints, leading to
long-term inflammation, ultimately resulting in irreversible
joint and cartilage destruction [11]. Given the crucial role
that proinflammatory cytokines have in the induction and
maintenance of RA, regulation of these cytokines on regula-
tory T cells (Tregs) can be a target to strengthen immune tol-
erance and protect against the formation of osteoclasts [12].
Synovitis is the principal cause of joint bone erosion, closely
associated with lack of control of a number of regulators that
maintain osteoclast homeostasis, such as increased receptor
activator of nuclear factor ?B ligand (RANKL) levels and
decreased osteoprotegerin (OPG) [13, 14]. Thus, the main
purpose of current treatments for RA is to reduce the
immuno-inflammatory response, inhibit the development of
lesions and bone damage, and protect the function of joints.

Nigella glandulifera seeds belong to the buttercup family
Ranunculaceae. As a traditional Uighur medicine, they are
widely used for hypertension, diabetes, and inflammatory
diseases such as bronchitis, arthritis, and hepatitis and
exhibit considerable efficacy with few side effects [15]. Con-
tributions to the medical properties of Nigella glandulifera
seeds are the many active constituents, of which saponins
are the principal component in extracts of water, comprising
64.5% of the total. Total saponins from Nigella glandulifera
seeds (TSNGS) have been reported to participate in provid-
ing their anti-inflammatory, analgesic, and antioxidant prop-
erties [16, 17]. We have previously reported on the potent
effects of TSNGS on reducing paw swelling and inflamma-
tion in a mouse model of collagen-induced arthritis [18].
However, there still lacks evidence for the pharmacological
mechanism for the therapeutic effects of TSNGS against
RA. In the present study, we have investigated the therapeu-
tic effects of TSNGS in an adjuvant-induced rheumatoid
arthritis (AIA) rat model and explored the potential mecha-
nism by which immuno-inflammatory function is recovered
and bone erosion diminished.

2. Materials and Methods

2.1. Chemical and Reagents. TSNGS was provided by the Xin-
jiang Institute of Materia Medica (Urumqi, China). Triptery-
gium glycosides (TG) were purchased from the Hunan
Qianjin Xieli Pharmaceutical Co. Ltd. (Zhuzhou, China).

2.2. Plant Materials and Preparation of TSNGS. Nigella glan-
dulifera seeds were collected from Hetian (Xinjiang, China)
in 2017. The strain was authenticated by Prof. Jiang He, Xin-
jiang Institute of Materia Medica. A voucher specimen (No.
NG20170830) was deposited in the Herbarium of Xinjiang
Institute of Material Medica (Urumqi, China). The extrac-
tion of TSNGS has been described in our previously pub-
lished report [17]. Qualitative analysis was performed using
a UHPLC-Q-Exactive mass spectrometry system consisting
of an Ultimate 3000 RSLC (Dionex, USA) combined with a
Quadrupole-Orbitrap-HRMS (Thermo Fisher Scientific, Bre-
men, Germany) (Figure 1).

2.3. Animals and Treatment. Wistar specific-pathogen-free
(SPF) rats (6-7 weeks old, mean body weight 180 ± 10 g,
thirty males and thirty females) were provided by the Beijing
Vital River Laboratory Animal Technology Co. Ltd (Beijing,
China). The rats were maintained in standard laboratory
conditions (21°C-25°C, 40%-60% humidity within a 12 h
light/12 h dark cycle) with free access to standard rat chow
and tap water, in accordance with the Experimental Animal
Care and Use Committee guidelines. The Animal Care and
Use Ethics Committee of the Institute of Medicinal Biotech-
nology, Chinese Academy of Medical Sciences and Peking
Union Medical College approved all animal experiments
(No. IMB-201908-D6).

The AIA model is a well-established chronic inflamma-
tory model, widely used for the study of diverse human
arthritis, especially rheumatoid arthritis. The AIA rat model
was established in accordance with previously published lit-
erature [19]. Briefly, 50 AIA rats were injected once with
0.1mL complete Freund’s adjuvant (CFA) (1mg/mL;
Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) intra-
dermally into the hind paw on day 1 of the experiment.
Ten control rats were injected with the same volume of nor-
mal saline. The rats were randomly divided into a control
group, AIA model group, AIA treatment groups, in which
rats were administered 10mg/kg, 50mg/kg, or 250mg/kg
TSNGS intragastrically, and AIA positive control group,
which received the drug TG (9mg/kg). There were ten rats
in each group (five males and five females). All treated AIA
rats were administrated TSNGS or TG dissolved in 0.5%
sodium carboxymethyl cellulose (CMC-Na) by oral gavage
once per day from the 3rd to the 21st day. The control group
and AIAmodel group received 0.5% CMC-Na by gavage over
the same period.

The rats were sacrificed by inducing deep anesthesia
using intraperitoneal injection of 60mg/kg pentobarbital.
Blood was obtained by cardiac puncture. Serum was obtained
from the blood by centrifugation at 1000 g for 15min after
which it was stored at -80°C for the assessment of inflamma-
tory cytokines. A proportion of the blood was anticoagulated
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Figure 1: Continued.
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in an ethylenediamine tetraacetic acid- (EDTA-) coated
anticoagulation tube at 4°C for the evaluation of Tregs.
Ankle joints and knee joints were harvested from 6 rats
in each group, three males and three females, for histo-
pathological analysis. The ankle joints, knee joints, and
synovial tissues of the remaining rats were collected for
Western blot (WB) analysis and quantitative polymerase
chain reaction (qPCR).

2.4. Evaluation of Paw Edema, Arthritis Score, and Body
Weight in AIA Rats. Paw edema, arthritis score, and body
weight were recorded to evaluate the severity of the RA path-
ological process. Prior to CFA injection, the volume of the
hind paw was measured as the baseline value. The first CFA
injection was administered on day 1. The same measure-
ments were performed on days 3, 5, 7, 9, 11, 13, 15, 17, 19,
and 21 following CFA injection. The clinical paw score of
the AIA model was recorded independently by two observers
blinded to the grouping of each rat in accordance with previ-
ous research (0 = normal, 1 = slight swelling and redness, 2
=moderate swelling and redness, 3 = severe swelling and
redness to the ankle, and 4 = extremely severe swelling and
redness representing severe deformity) [20]. In addition, the
weight of each rat was recorded (in grams (g)) every two days
from the 3rd day.

2.5. Histochemical and Immunohistochemical Evaluation.
The knee and ankle joints were harvested from rats on the
21st day after injection of CFA. The specimens were fixed
in 4% paraformaldehyde for 48 hours, decalcified in buffered
10% EDTA at 4°C for 1 month, then embedded in paraffin.
Tissues were serially sectioned onto standard glass slides at
a thickness of 4μm then subsequently deparaffinized and
stained with hematoxylin and eosin (H&E, Servicebio,
Wuhan, China). Image acquisition, morphological changes,
and cellular infiltration analysis were conducted after dehy-
dration and mounting. Notably, semiquantitative grading
with five scores was used to evaluate the histopathological
changes in the AIA joints (0 = insignificant changes, 1 =
minimal change, 2 =mild changes, 3 =moderate changes,
and 4 =marked changes).

Tissue sections were created for evaluation by immuno-
histochemistry and incubated with anti-forkhead box p3
(Foxp3) antibody (Servicebio) at 4°C overnight, a color reac-
tion developed using diaminobenzidine tetrahydrochloride
(DAB), and nuclei counterstained with hematoxylin in
accordance with the manufacturer’s instructions. Images
were acquired using an inverted microscope (Thermo Fisher
Scientific, Carlsbad, CA, United States) and the ImageJ soft-
ware used for qualification (National Institutes of Health,
Bethesda, MD, United States).
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Figure 1: Analysis of the UHPLC-HRMS chromatogram of TSNGS. The chemical composition of TSNGS was confirmed by UHPLC-HRMS
based on retention time and fragmentation behavior, in addition to accurate mass measurement and characteristic fragmentation. A total of
21 compounds were identified, including triterpene saponins, alkaloids, flavonoid glycosides, and phenolic compounds. (a) UHPLC-Q-
Orbitrap-HRMS chromatogram of TSNGS. UHPLC-PDA chromatogram of TSNGS at the wavelengths: (b) 210 nm, (c) 254 nm, (d)
330 nm, and (e) 365 nm.
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2.6. qPCR Analysis. The expression of tumor necrosis factor-
alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6),
interleukin-10 (IL-10), and interleukin-17A (IL-17A) at the
mRNA level was quantified by qPCR, in accordance with
standard protocols. Firstly, total RNA was isolated from rat
synovial tissue using a Cell/Tissue Total RNA Isolation Mini
kit (Vazyme Biotech, Nanjing, China), of which 100ng was
reversed transcribed to complementary DNA (cDNA) using
a HiScript II First Strand cDNA Synthesis kit combined with
an amplification procedure in the thermocycler as follows:
37°C for 15min, then 85°C for 5 sec. ChamQ SYBR Master
Mix was used to perform qPCR analysis using a real-time
PCR system (BIOER, Hangzhou, China) in accordance with
the manufacturer’s instruction. Ten μM specific forward
and reverse primers was used in the assay, as detailed in
Table 1. Additionally, GAPDH was used as the internal refer-
ence. The qPCR procedure was performed in a thermal cycler
as follows: predenaturation at 95°C for 30 sec, then denatur-
ation at 95°C for 10 sec, and extension at 60°C for 30 sec
repeated for 40 cycles. Relative gene expression was calcu-
lated using the 2-ΔΔCT method.

2.7. Flow Cytometric Analysis of CD4+ CD25+ Tregs.A 100μL
aliquot of blood was incubated with Cyanine7-conjugated
anti-CD45, fluorescein isothiocyanate- (FITC-) conjugated
anti-CD3, Cyanine5.5-conjugated anti-CD4, and phycoery-
thrin- (PE-) conjugated anti-CD25 antibodies (Biolegend,
San Diego, CA, United States) at 4°C for 30min, respectively.
The cell suspension was transferred into tubes and washed in
phosphate-buffered saline (PBS). All stained cells were ana-
lyzed using a FACSCanto II flow cytometer (BD Biosciences)
and the FlowJo software.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA) Analysis.
ELISA of rat serum samples was performed to measure the
expression of interferon-gamma (IFN-γ), TNF-α, IL-1β,
interleukin-4 (IL-4), IL-6, IL-10, IL-17A, RANKL, and OPG
using the respective ELISA kits (RayBioech, Guangzhou,
China), in accordance with the manufacturer’s instructions.
OD values at a wavelength of 450 nm were measured using
a Spark 20M multimode microplate reader (Tecan Group
Ltd., Mannedorf, Switzerland). Concentrations were calcu-
lated from standard curves.

2.9. Western Blot Analysis. The primary antibodies used in
the present study were against the following antigens:
RANKL (rabbit polyclonal antibody, dilution 1 : 1000, Pro-
teintech), OPG (rabbit polyclonal antibody, dilution 1 : 300,
Abcam, Cambridge, MA, USA), and β-actin (internal con-
trol, rabbit polyclonal antibody, dilution 1 : 5000, Abcam).
Proteins from the knee joint were separated using SDS-
PAGE then transferred to polyvinylidene difluoride mem-
branes. The intensity of each protein was normalized using
β-actin and expressed as a proportion of the control. Analysis
of Western blots was performed in accordance with a previ-
ous study [21].

2.10. Statistical Analysis. The experimental data are
expressed as means ± standard error of themean (SEM) and
analyzed using the GraphPad Prism version 8.0 software

(GraphPad, Inc., La Jolla, CA, United States). Arthritis
scores, body weight, and paw edema were analyzed using
repeated measures one-way analysis of variance (ANOVA).
Other data were analyzed using ANOVA and post hoc testing
or with a Student t-test. P values <0.05 were considered sta-
tistically significant.

3. Results

3.1. TSNGS Relieved RA-Like Symptoms including Paw
Swelling and Clinical Score in AIA Rats. Following subcuta-
neous injection of CFA in rat hind paws, compared with
the control group, the volume of the hind paws increased,
the inflammatory symptoms, erythema, and swelling
increased significantly, relevant spontaneous activity of the
rats decreased, and clinical scores were maintained at 3 to 4
points, peaking on day 3 (Figures 2(a)–2(c), P < 0:001), indi-
cating the onset of arthritis.

During the progression of RA, the mean clinical score in
the AIA group was significantly higher than that of the con-
trol group (Figure 2(a), P < 0:001). Hind paw swelling was
observed to be approximately 3mm in thickness in AIA rats
(Figures 2(b) and 2(c), P < 0:001). Treatment with 10mg/kg,
50mg/kg, and 250mg/kg TSNGS significantly reduced the
clinical score and inhibited paw swelling in AIA rats during
the period of the experiment (P < 0:01‐0:001). TSNGS at
250mg/kg displayed protective effects comparable with those
of the positive drug, TG, in the rats. No statistical difference
was observed in body weight among different treatment
groups (Figure 2(d)).

3.2. TSNGS Improved Histological Changes in Knee and Ankle
Joints in AIA Rats.H&E staining of knee and ankle joints was
conducted to evaluate inflammation and bone lesions in AIA
rats. As can be observed in Figure 3, no abnormal patholog-
ical changes occurred in the knee and ankle joints of control
rats. The synovial cells of the joints in the control group were

Table 1: PCR primer sequences used for qPCR.

Primer name Primer sequence

Tnf-F 5′-CCGACTCTGACCCCCATTAC-3′
Tnf-R 5′-CCCAGAGCCACAATTCCCTT-3′
Il1β-F 5′-CAGGATGAGGACCCAAGCAC-3′
Il1β-R 5′-GTCGTCATCATCCCACGAGT-3′
Il6-F 5′-TGCCTTCTTGGGACTGATGT-3′
Il6-R 5′-TGGTCTGTTGTGGGTGGTATC-3′
Il17a-F 5′-GTCCTGAAGAGGGAGCCTGA-3′
Il17a-R 5′-GCGGACAATAGAGGAAACGC-3′
Il10-F 5′-GACAAAGGTGTCTACAAGGCCA-3′
Il10-R 5′-CAGTAGATGCCGGGTGGTTC-3′
Gapdh-F 5′-AGTGCCAGCCTCGTCTCATA-3′
Gapdh-R 5′-AGAGAAGGCAGCCCTGGTAA-3′
F: forward; R: reverse.
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smooth and continuous in morphology. Conversely, sections
of AIA rats exhibited markedly severe synovitis, character-
ized by synovial cell proliferation and inflammatory cell infil-
tration into the joint cavity. The erosion of bone and cartilage
and formation of pannus and small blood vessels was evident,
consistent with increased synovial hyperplasia and inflam-
mation (all P < 0:001). These pathological symptoms were
mitigated to varying degrees after treatment with 10mg/kg,
50mg/kg, and 250mg/kg TSNGS (P < 0:05-0.001). In partic-
ular, at a dose of 250mg/kg, synovial cell proliferation, carti-
lage erosion, and infiltration of inflammatory cells were
clearly attenuated and represented a better therapeutic effect
than TG.

3.3. TSNGS Downregulated the Expression of Cytokines
Mediated by Inflammation in AIA Rats. ELISA and qPCR
were performed to detect proinflammatory factors, including
TNF-α, IL-1β, IL-6, IL-17A, IFN-γ, and anti-inflammatory
factors IL-10 and IL-4 in rat serum and synovial tissue. The
mRNA expression levels in the synovial tissue and/or serum
concentration of TNF-α, IL-1β, IL-6, IL-17A, and IFN-γ in
AIA rats were significantly higher than in the control
(Figures 4(a)–4(d) and 4(g), P < 0:01-0.001). mRNA and

protein expression levels of IL-10 and IL-4 declined in the
synovial tissue and/or serum in AIA rats (Figures 4(e) and
4(f), P < 0:05-0.001). Treatment with TSNGS significantly
inhibited inflammation by downregulation of TNF-α, IL-
1β, IL-6, IFN-γ, and IL-17A and upregulation of IL-10 and
IL-4 in the serum and synovial tissues (P < 0:05-0.001). A
dosage of 250mg/kg TSNGS displayed anti-inflammatory
effects similar to those of TG.

3.4. TSNGS Increased the Proportion of CD4+ CD25+ Tregs in
Peripheral Blood and the Expression of Foxp3 in Knee Joints in
AIA Rats. CD4+ CD25+ Tregs are an essential subpopulation
of T cells, positively expressing the transcription factor Foxp3
and yielding inflammatory factors. Functioning as an immu-
nosuppressive group, CD4+ CD25+ Tregs maintain immuno-
logic self-tolerance and negatively modulate the occurrence
and development of immune disorders [22]. The percentage
of CD4+ CD25+ Tregs declined significantly in peripheral
blood (Figures 5(a) and 5(b), P < 0:05), accompanied by
decreased levels of Foxp3 in the knee joint of AIA rats
(Figures 5(c) and 5(d), P < 0:01). Treatment with TSNGS
resulted in a significant increase in the percentage of CD4+

CD25+ Tregs and upregulated expression of Foxp3 in AIA
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Figure 2: TSNGS relieved RA-like symptoms in AIA rats. (a) TSNGS significantly decreased clinical scores in AIA rats compared with model
rats. (b) TSNGSmarkedly mitigated the swelling of the hind paws in AIA rats compared with model rats. (c) Representative images of swollen
hind paws of rats in each group. (d) Rat body weights were not significantly different in each group. Results are presented as means ± SEM,
n = 10. ###P < 0:001 vs. sham, ∗∗P < 0:01, ∗∗∗P < 0:001 vs. model.
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rats (P < 0:05-0.001), suggesting that the promotion of a
CD4+ CD25+ Treg response contributed to the immuno-
inflammatory suppressive effect of TSNGS.

3.5. TSNGS Decreased Bone Erosion by Increasing the
OPG/RANKL Ratio in AIA Rats. To investigate the potential
mechanism of the anti-RA effects of TSNGS on bone erosion,
the OPG/RANKL ratio was measured to signify the degree of
osteoclastogenesis. As shown in Figure 6, the level of OPG

decreased significantly, and RANKL increased both in serum
and in the knee joint, resulting in a reduced OPG/RANKL
ratio compared with the control group (Figures 6(a)–6(e), P
< 0:05‐0:001). Treatment with TSNGS resulted in a notice-
able decrease in the levels of RANKL and an apparent
increase in OPG levels, resulting in an increased
OPG/RANKL ratio in AIA rats (P < 0:05‐0:001). Further-
more, the ameliorative action of TSNGS on the
OPG/RANKL ratio indicated that bone erosion was
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Figure 4: Continued.
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equivalent to that in rats in which TG had been administered.
These results indicate that TSNGS might reduce bone ero-
sion by restoring the abnormal OPG/RANKL axis against
RA injury.

4. Discussion

There are twomajor contributions the present study provides
to the science of TSNGS action. To our knowledge, this is the
first study to establish the beneficial effects of TSNGS against
RA by alleviating inflammation, enhancing immunosuppres-
sive function, and decreasing bone erosion. Second, following
RA-associated perturbation, TSNGS was found to interfere
with the counter-balancing of systemic and local inflamma-
tory cytokines, elevation of the proportion of CD4+ CD25+

Tregs, and bone-protection due to upregulation of
OPG/RANKL pathways. Therefore, these findings provide
novel evidence and insights into TSNGS that clarify its ther-
apeutic effects and possible mechanisms against RA injury.

CFA-induced RA in rats is a stable, reliable, and repro-
ducible model of short experimental duration and similar
clinical characteristics to that of human RA regarding
inflammatory cell infiltration, synovitis, synovial hyperplasia,
and cartilage degradation. Thus, it is widely used in the pre-
clinical pharmacological evaluation of anti-RA drugs [23,
24]. TG, selected as a positive control drug in the present
study, is routinely used for RA treatment due to its proven
efficacy, relative safety, and cost-effectiveness [25]. Neverthe-
less, similar to DMARDs, TG has side effects, causing liver
injury, gastrointestinal discomfort, and gonad toxicity [26]
and therefore should be recommended only for use in
patients without reproductive needs. Attention has thus
focused on plant-derived products with multifactorial effi-
cacy and relatively few side effects as potential candidate
drugs for RA treatment.

Following adjuvant injection, arthritis-related symptoms
were gradually exacerbated in AIA rats, in which paw swell-
ing, clinical score, histopathological parameters, and body
weight were used to assess the severity of arthritis and the
beneficial effects of TSNGS. No statistical difference was
observed in the body weight of AIA rats, implying that
TSNGS did not produce systemic toxicity. Subsequent results
demonstrated a powerful inhibition of TSNGS on paw swell-
ing and clinical score, as well as histopathological parameters.
Significantly, the effects of 250mg/kg TSNGS on the volume
of hind paws, clinical score, and histopathological parameters
suggested a therapeutic potency similar or even better than
that of TG, indicating that TSNGS represents a new potential
therapy for the treatment of RA.

Critical proinflammatory cytokines TNF-α, IL-1β, IL-6,
IL-17A, and others derived from activated macrophages
and synovial fibroblasts are primary factors that cause
inflammation in RA [27–30], not only in joints and synovial
fluid but also in serum [31]. TNF-α activates the cytokine
cascade in RA via stimulation of proinflammatory cytokines
and inhibition of anti-inflammatory cytokines such as IL-4
and IL-10 [32]. Although five TNF inhibitors (etanercept,
infliximab, adalimumab, certolizumab, and golimumab)
and one IL-6 inhibitor (tocilizumab) are available for the rou-
tine clinical treatment of RA [33, 34], more than a third of
RA patients do not respond to this treatment [35, 36]. There-
fore, those partial responders and nonresponders to cytokine
inhibitors are in great need of substitutable, effective anti-
inflammatory drugs. In the present study, observation of
aberrant levels of the proinflammatory cytokines TNF-α,
IL-1β, IL-6, and IL-17A, besides anti-inflammatory cytokines
IL-4 and IL-10 in the serum and synovial tissues of rats, indi-
cates that the AIA model of RA was successfully established.
It is evident that administration of TSNGS downregulated
the expression of TNF-α, IL-1β, IL-6, and IL-17A and upreg-
ulated IL-4 and IL-10 expression, displaying a useful
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Figure 4: TSNGS downregulated the level of cytokines mediated by inflammation in AIA rats. The level of TNF-α (a), IL-1β (b), IL-6 (c), IL-
17A (d), IL-10 (e), IL-4 (f), and IFN-γ (g) in rat serum or synovial tissue was measured by ELISA or qPCR. Results are presented as
means ± SEM, n = 4. #P < 0:05, ##P < 0:01, ###P < 0:001 vs. sham, ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 vs. model.
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improvement of the inflammatory environment. Thus, these
results confirm the effectiveness of TSNGS in RA therapy,
illustrated by potent inhibition of the inflammatory response.

Considering that CD4+ T cells regulate the inflammatory
environment in RA through a variety of subsets, we investi-
gated the regulation by TSNGS of the diverse population of
CD4 T cells in AIA rats. Naïve CD4+ T cells may differentiate
into T helper cells (Th) and Tregs, characterized by cytokines
IL-4 and IL-17 [37]. Tregs play a critical role in peripheral
immune tolerance and inflammatory homeostasis regulators,
of which the Foxp3 expression is defined as an inherent hall-
mark [38]. Studies have demonstrated that an imbalance in

IL-17-producing Th17 and Tregs affects the pro- or anti-
inflammatory T cell-mediated immune response and makes
a considerable contribution to the pathological direction of
RA [39]. A previous study demonstrated that IL-1β, IL-6,
and TGF-β promotes the differentiation of naive T cells into
Th17 cells [40] and in turn suppresses Treg differentiation,
leading to homeostasis disorders. IL-17 generated by Th17
affects a variety of immune cells that activates inflammation
and the differentiation of osteoclasts by induction of RANKL
in the synovium [41]. Therefore, the balance between Treg
and Th17 cell differentiation is defined by the patterns of
cytokine production and function towards pro- or anti-
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Figure 5: TSNGS increased the proportion of CD4+ CD25+ Tregs in peripheral blood and the expression of Foxp3 in knee joints in AIA rats.
(a) Representative images of CD4+ CD25+ Tregs in peripheral blood detected by flow cytometry. (b) Quantification of the percentage of CD4+

CD25+ Tregs in peripheral blood. (c) Representative immunohistochemical staining images of Foxp3 protein. (d) Percentage of positive cells
expressing Foxp3. Results represent means ± SEM, n = 4. #P < 0:05, ##P < 0:01 vs. sham, ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 vs. model.
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inflammation. In the present study, treatment with TSNGS
caused high expression of CD4+ CD25+ Tregs combined with
upregulated Foxp3 expression in AIA rats, displaying excel-

lent immune amelioration by maintaining the frequency of
Tregs and the patterns of cytokine production. Therefore,
an increase in the proportion of CD4+ CD25+ Tregs resulting
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Figure 6: TSNGS decreased bone erosion by increasing the OPG/RANKL ratio in AIA rats. Levels of OPG (a) and RANKL (b) in rat serum
were measured using ELISA. (c) Ratio of OPG/RANKL expression in rat serum. (d) Representative images of OPG and RANKL in the various
groups. (e) QuantitativeWB analysis. Results representmeans ± SEM. n = 4, #P < 0:05, ##P < 0:01, ###P < 0:001 vs. sham, ∗P < 0:05, ∗∗P < 0:01
, ∗∗∗P < 0:001 vs. model.
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from TSNGS treatment might be a mechanism of inflamma-
tory inhibition in RA.

Osteoclast-mediated bone destruction that occurs
through the abnormal OPG/RANKL axis plays a crucial role
in RA [42, 43]. In the present study, TSNGS reduced damage
to the articular cartilage and bone in AIA rats. Thus, the
molecular balance between OPG and RANKL that
determines the proliferation and activity of osteoclasts and
osteoblasts was investigated. OPG acts as an inhibitor of
RANKL, a critical factor in the formation of osteoclasts by
activating osteoclasts and bone resorption. OPG reduces the
interaction between RANKL and RANK and is produced
by a number of cell types, including T cells, macrophages,
and synovial fibroblasts in RA, thus inhibiting the formation
of osteoclasts. Therefore, restoration of the OPG/RANKL
ratio plays a vital role in reducing bone damage in RA. Nota-
bly, TSNGS reduced the level of RANKL and increased the
level of OPG both in serum and the knee joints of AIA rats,
thus raising the ratio of OPG/RANKL and so suppressing
inflammation-induced osteoclastogenesis. These observa-
tions suggest that bone protection resulting from TSNGS
might be associated with upregulation of OPG/RANKL.

Nevertheless, the present study has some limitations. Firstly,
it is necessary to establish a greater number of RA models both
in vivo and in vitro to clarify the specific molecular mechanism
of the therapeutic effects of TSNGS and to analyze the key path-
ological genes and proteins in RA. Therefore, the extraction
process or composition of TSNGS should be enhanced in the
future to exert a more significant anti-RA effect in patients.

5. Conclusions

In conclusion, the present study has demonstrated that treat-
ment with TSNGS inhibits arthritis caused by AIA, suppress-

ing a local and systemic inflammatory response and bone
erosion. The underlying mechanism of the action of TSNGS
may be associated with restoration of the balance of pro- and
anti-inflammatory cytokines, elevation of the frequency of
CD4+ CD25+ Tregs, and reduction of the bone injury via
the OPG/RANKL pathway (Figure 7).
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