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Abstract
Congenital heart defects (CHD) is one of the most common types of birth defects. Thanks to advances in surgical techniques 
and intensive care, the majority of children with severe forms of CHD survive into adulthood. However, this increase in sur-
vival comes with a cost. CHD survivors have neurological functioning at the bottom of the normal range. A large spectrum 
of central nervous system dysmaturation leads to the deficits seen in critical CHD. The heart develops early during gesta-
tion, and CHD has a profound effect on fetal brain development for the remainder of gestation. Term infants with critical 
CHD are born with an immature brain, which is highly susceptible to hypoxic-ischemic injuries. Perioperative blood flow 
disturbances due to the CHD and the use of cardiopulmonary bypass or circulatory arrest during surgery cause additional 
neurological injuries. Innate patient factors, such as genetic syndromes and preterm birth, and postoperative complications 
play a larger role in neurological injury than perioperative factors. Strategies to reduce the disability burden in critical CHD 
survivors are urgently needed.
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Introduction

Congenital heart disease (CHD) is one of the most common 
types of birth defects. Moderate–severe forms of CHD occur 
in 0.6% of live births [1]. Over the past decades, survival has 
drastically improved. Currently, 90% of neonates with CHD 

survive into adulthood and, more adults are living with CHD 
than children born with CHD [2, 3]. However, strategies to 
reduce brain injuries and disability in critical CHD have 
been less successful. Although overt neurological dysfunc-
tion is rare in survivors of critical CHD, they have a typi-
cal neurodevelopmental impairment profile consisting of a 
mild reduction in cognitive performance, challenges with 
social interaction, inattention, impulsivity, impaired execu-
tive functions and worse pragmatic language [3–6]. CHD 
neurocognitive deficits are still present in young adulthood 
and likely persist into aging. This life-long neurocognitive 
disability presents a large burden to society [3, 6]. Here 
we provide a review of mechanisms of global neurologi-
cal injury and neurodevelopmental delays in CHD. We will 
approach the matter by types of congenital heart disease, 
with specific mention to the most common pathologies, as 
well as and explore the factors that are known to impact 
neurodevelopment in these children.

The risk factors for neurocognitive impairment are mul-
tifactorial, interrelated and cumulative over time. These fac-
tors include: ((i) genetic and epigenetic factors, (ii) prema-
turity, (iii) socioeconomic factors, (iv) complications due 
to the heart disease resulting abnormal fetal cerebral blood 
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flow and hypoxia–hyperoxia damage, (v) perioperative fac-
tors relating to cardiopulmonary bypass or deep hypothermic 
circulatory arrest, and (vi) postoperative factors [3, 5, 7, 8].

Most of these factors converge on brain maturity, addi-
tive injuries and hypoxia-reperfusion insult. The presence of 
CHD reduces the rate of fetal growth, particularly the rate 
of brain growth [9]. The developing brain is highly sensitive 
to oxygen balance changes. The white matter is particularly 
vulnerable to disruptions in cerebral blood flow because the 
blood vessels in the white matter have a lower vasodilatory 
response than blood vessels in the rest of the brain [10]. 
White matter injury (WMI) and focal infarctions of the gray 
matter are the most common injuries seen in infants with 
severe CHD [11]. Preoperative WMI is present in 16–39% 
of term infants with CHD, and 35%-67% of CHD infants 
develop new postoperative WMI. Preoperative WMI is par-
ticularly common in infants diagnosed with single-ventricle 
physiology, with aortic arch obstruction, and in infants with 
a low brain maturity score. Postoperative injury is associ-
ated with preoperative injury, the use of cardiopulmonary 
bypass (CPB) with regional cerebral perfusion, and lower 
cerebral hemoglobin oxygen saturation during the myocar-
dial ischemic period. Excessive reoxygenation during CPB 
may also contribute to postoperative brain injury [4, 12–18].

Infants with hypoplastic left heart syndrome (HLHS) 
with a low birth weight have an overall poor growth rate, 
longer hospital stays and worse neurodevelopmental out-
comes [19]. In infants with undergoing surgical repair for 
HLHS, d-TGA, truncus arteriosus and interrupted aortic 
arch with a ventricular septal defect, the presence of WMI 
further delays brain growth, which increases susceptibility 
to additional postoperative mild WMI [16, 20]. The major-
ity of neonatal magnetic resonance imaging (MRI) lesions 
resolve within 4–6 months [18], but neurodevelopmental 
delays occur throughout life. At 1–1.5 years of age, infants 
that had a surgical repair for CHD had a lower scores on 
both the Psychomotor Development Index (PDI) and Mental 
Development Indexes (MDI) of the Bayley Scales of Infant 
Development 2nd edition, and the Griffiths developmental 
scales and were more likely to have neurological abnormali-
ties [21, 22].

Neurodevelopmental delays are associated with reduced 
growth in specific brain regions. Neonates and infants with 
CHD have smaller brain volumes in the frontal lobe, parietal 
lobe, cerebral white matter, subcortical gray matter, cerebel-
lum and brainstem [9, 23, 24]. In newborns with cyanotic 
CHD, reduced subcortical gray matter and increased CSF 
volumes associated with poor behavioral state regulation, 
while in newborns with non-cyanotic CHD behavioral state 
regulation deficits were associated with reduced cerebellar 
volumes [24]. Around 1 year, infants with biventricular CHD 
still have lower cerebral white matter, cerebellar white mat-
ter and brain stem volumes. Reduced cerebral white matter 

volume correlated with lower language scores [25]. Reduced 
perioperative brain growth of specific cortical regions, such 
as the Heschl’s gyrus and anterior planum temporale in the 
left temporal plane, also associated with language score 
deficits at 1 year of age [26]. Postoperative WMI is associ-
ated with lower IQ scores and attention deficits at school 
age [17]. By adolescence, the neurodevelopmental delay 
persisted and manifested as impairments of neuromotor, 
intellectual, executive function, visuomotor, perception and 
integration skills. Lasting cerebral WMI and microstructural 
alterations, cerebellar white matter and cerebellar volume 
loss contributed to the neurodevelopmental deficits [27–30].

Types of CHD

CHD is a diverse group of disorders classified by disease 
severity and cyanosis. Severe cyanotic CHD syndromes 
include d-transposition of the great arteries (d-TGA), tetral-
ogy of Fallot (TOF), double outlet right ventricle, truncus 
arteriosus and single-ventricle disorders. Single-ventricle 
physiology is divided into hypoplastic left heart syndromes 
(HLHS) with aortic or mitral atresia, and hypoplastic right 
heart syndromes with tricuspid or pulmonary atresia. Severe 
forms of non-cyanotic heart disease include atrioventricular 
septal defects, ventral septal defects, patent ductus arterio-
sus, aortic and pulmonary stenosis [1].

Cyanotic Heart Diseases

Dextro‑Transposition of the Great Arteries

d-TGA is a cyanotic heart disease that occurs when the 
two main arteries carrying blood away from the heart are 
reversed. During d-TGA, oxygen-rich blood reaches the 
pulmonary vasculature and oxygen-poor blood is pumped 
to the brain and body. The l-TGA form preserves the flow of 
oxygen-rich blood around the body and is less severe than 
d-TGA [6, 7, 28, 31]. Preoperative brain injuries are com-
mon in d-TGA. Fetal injuries occur in around 16%, preopera-
tive brain injuries, including WMI, stroke and intraventricu-
lar hemorrhages occur in 30–41% and postoperative WMI in 
25% of neonates studied [12, 32, 33]. At birth, infants with 
d-TGA have a smaller head circumference and a tendency to 
have an overall reduced brain volume [34–36].

Adolescents with d-TGA have abnormal WM microstruc-
ture and reduced gray matter volumes and thicknesses in 
the parietal, midline, and subcortical brain regions, which 
correlates with their neurocognitive performance [31, 37, 
38]. They typically have lower test scores within the average 
range for academic achievement, memory, executive func-
tions, visual-spatial skills, attention, and social cognition 
than a normative population. Up to 65% of adolescents with 
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d-TGA has received remedial academic or behavioral ser-
vices [7, 28].

Single‑Ventricle Physiology

Single-ventricle physiology occurs when one of the heart 
ventricles is smaller, underdeveloped or missing a valve. 
Because there is only one functioning ventricle, the same 
blood flows to the lungs and the body. Left-sided single-
ventricle defects include hypoplastic left heart syndrome 
(HLHS) where the entire left side of the heart (aorta, aortic 
valve, left ventricle and mitral valve) are underdeveloped, 
mitral valve atresia which impairs blood flow from the left 
atrium to the left ventricle, and aortic arch obstructions that 
impair blood flow from the left ventricle to the body. Right 
side lesions include hypoplastic right heart syndrome, tri-
cuspid atresia where the blood cannot flow from the right 
atrium to the right ventricle, and pulmonary atresia where 
blood cannot flow from the right ventricle to the lungs [1, 6]. 
Somatic growth restriction occurs in approximately 16% of 
fetuses with HLHS. Some HLHS fetuses have a small head 
size and WMI at mid-gestation, but the majority of fetuses 
have a normal head size. During the second and third tri-
mester, approximately 50% of fetuses subsequently develop 
poor head growth that manifests as the reduced head circum-
ference. Microcephaly occurs in 12% of HLHS newborns. 
Microcephaly was associated with a low birth weight and 
birth length, but not with the aortic valve anatomy [5, 34, 
39, 40].

Autopsy analysis of 11 HLHS fetuses showed some 
degree of chronic WMI in all the fetuses, despite normal 
brain weights. The WMI localized to the deep and inter-
mediate white matter, with widespread multifocal involve-
ment of adjacent central nervous system (CNS) structures 
and gray matter injury. None of the fetuses had infarcts [39]. 
A second autopsy analysis of 40 HLHS infants found that 
55% of the cohort had no acquired brain lesions, and the 
remaining 45% had hypoxic-ischemic lesions or intracranial 
hemorrhage [41].

MRI studies have identified preoperative WMI or stroke 
in 16–45%, and postoperative WMI or strokes in 50% of 
neonates with HLHS [12, 32, 33]. Brain lesions occur in up 
to 75% of neonates with tricuspid atresia [33]. Single-ventri-
cle physiology delays cortical growth and gyrification [42].

HLHS delays performance on the PDI to a larger extent 
than other types of single-ventricle deficits [43]. At around 
14 months of age, neonates that had corrective surgery for 
HLHS had reduced PDI and MDI scores. This developmen-
tal delay was more highly associated with innate patient fac-
tors, like low birth weight, maternal education and genetic 
anomalies, and with complications after the surgery during 
the first year of life, than with intraoperative management 

strategies [44]. The PDI and MDI delays in HLHS persist at 
30 months of age [43].

Adolescents with single-ventricle disease have wide-
spread WM microstructure abnormalities, reduced gray 
matter volumes, and asymmetric brain sulcal patterns on 
MRI. They also have compromised integrity of multiple cor-
tical, subcortical and cerebellar regions that are involved in 
autonomic control, mood and cognition. Adolescents with 
single-ventricle disease have deficits in all of these func-
tional areas [45–47]. Volume loss of the mammillary bod-
ies in the limbic system associates cognitive and memory 
deficits [48]. The majority of school-aged HLHS survivors 
have IQ scores within the normal range, but a lower mean 
performance than the general population and a third of the 
children require special education [49, 50]. Children and 
adolescents with HLHS also have impaired executive func-
tioning and intellectual disability occurs in 18% of HLHS 
survivors [28, 49]. Attention deficit hyperactivity disorder 
(ADHD) occurs in 28–50% of school-aged survivors, gross 
motor deficits such as cerebral palsy occur in 17–64%, clini-
cally significant anxiety occurs in 18%, and approximately 
50% of HLHS survivors use remedial education [10, 51].

Tetralogy of Fallot

Tetralogy of Fallot (TOF) is a severe cyanotic heart dis-
ease that consists of four congenital anomalies: (i) a right 
ventricular outflow tract obstruction, (ii) a ventricular sep-
tal defect, (iii) an overriding aorta which receives blood 
from both ventricles, and (iv) right ventricular hypertrophy 
[52]. Currently, the 20–30-year survival rates of TOF is 
close to 90%, but their survival rates decrease after middle 
age and these patients have life-long morbidity [53]. TOF 
affects brain growth from early in gestation. Fetuses with 
TOF already have reduced cortical and subcortical gray and 
white matter volumes and enlarged CSF spaces by 25 weeks 
of gestation, which persist throughout gestation. The mean 
cerebellar volume was not affected by TOF [52]. At birth, 
neonates with TOF have reduced head circumference [34]. 
Around 1/5th of fetuses and neonates with TOF also have 
abnormal preoperative MRIs [33]. During adolescence, 
patients that had surgery for TOF had lower scores on tests 
of academic achievement, memory, executive functions, vis-
ual-spatial skills, attention and social cognition. Co-morbid 
genetic abnormalities occur in up to 25% of adolescents, 
which further impairs neurocognitive performance. In TOF 
without other genetic abnormalities, the strongest predictors 
of adverse neurocognitive outcomes were related to surgi-
cal complications and postoperative seizures [54]. TOF 
also increases the incidence of motor dysfunction, which 
correlates with neurological dysfunction, lower IQ scores, 
reduced expressive language, behavioral problems, reduced 
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expressive language, self-esteem and school competence 
around 7 years of school age [55, 56].

Non‑cyanotic Disorders

Aortic Valve Stenosis and Atrial, Ventricular 
and Atrioventricular Septal Defects

There are fewer studies on outcomes after non-cyanotic 
CHD. Somatic growth restrictions occur in around 13% of 
neonates with isolated aortic valve stenosis. Aortic valve ste-
nosis affects antegrade aortic blood flow, which may reduce 
cerebral blood flow and impact CNS development. Aortic 
valve stenosis leads to microcephaly or head growth restric-
tion in approximately 25% of neonates, despite relatively 
mild blood flow disturbances. The reduction in head growth 
is likely due to complex factors which affect both CNS and 
cardiac development, rather than due to reduced antegrade 
aortic blood flow [39].

A study of a mixed group of children with predominantly 
non-cyanotic CHD that had open-heart surgery at school age 
found no deficits in general intelligence and neurocognitive 
functioning before and after surgery. However, this study 
excluded 26% of children that had a physical or mental defi-
cit before surgery from their analysis [57]. A second study 
of surgical correction in children with non-cyanotic CHD 
also did not find any baseline differences on any neuropsy-
chological domain before surgery, and a mild postoperative 
decline in cognitive function at 6 months after surgery. This 
decline was not specifically attributable to using CPB dur-
ing the surgery [58]. Studies of children with atrial septal 
defects found mean scores for IQ, general conceptual abil-
ity (analogous to IQ), academic achievement, language and 
memory within the normal range before and after correction 
with surgical repair or a catheter-delivered device. These 
children were also generally healthy. However surgical cor-
rection affected visuospatial and visuomotor skills, which 
reduced their performance IQ scores in one study [59, 60].

The incidence of preoperative MRI abnormalities in 
ventricular septal defects (VSD) and atrioventricular sep-
tal defects (AVSD) ranges from 16–50%, but relatively 
low amounts of infants have been studied [33]. At 1 year, 
the MDI and PDI scores of children that underwent surgi-
cal repair for a VSD with or without an additional aortic 
arch obstruction were within normal limits [61]. Around 
6–7  years of age (range 3–16  years), children that had 
surgical correction of VSD with or without cardiac insuf-
ficiency had intermediate neurodevelopmental deficits. 
Children without cyanosis before the operation had a nor-
mal performance on most domains, including full-scale IQ, 
internalizing behavior, externalizing behavior, executive 
functioning, quality of life, verbal memory, attention and 
concentration, cognitive flexibility and problem-solving, and 

academic skills. However, children with VSD had reduced 
performance IQ, visual-motor ability and reduced adaptive 
behavior deficits. Another study of VSD complicated by car-
diac insufficiency at the time of operation found that around 
7 years of age these children had increased internalizing 
and externalizing problems, reduced school performance and 
lower use of expressive and receptive language, comparable 
to children with TOF. Therefore the degree of cardiac insuf-
ficiency affects neurodevelopmental outcomes in children 
with surgically corrected VSD [55, 56, 62]. Around 9 years 
of age, children with surgically corrected VSD had subtle 
problems in attention and visuospatial information process-
ing, while children with surgically corrected atrial septal 
defect secundum type had lower scores on tests of visuospa-
tial processing, working memory, sensorimotor functioning, 
language, attention, and social perception and lower school 
performance [63, 64].

Patent Ductus Arteriosus (PDA)

The ductus arteriosus is a fetal blood vessel between the 
aorta and the pulmonary artery that normally closes shortly 
after birth. Sustained opening of the ductus arteriosus or 
PDA may lead to heart failure later in life. PDA is one of 
the most common types of CHD with an incidence between 
5 and 10% in term infants, and up to 60% in preterm infants 
born before 29 weeks of gestation. In term infants, PDA is 
associated with functional defects, while in preterm infants, 
PDA is associated with prematurity. PDA is commonly asso-
ciated with morbidity and mortality in preterm infants and 
often accompanied by other complications of prematurity, 
such as necrotizing enterocolitis, intraventricular hemor-
rhage, pulmonary hemorrhage, chronic lung diseases and 
retinopathy of prematurity [65–69].

PDA reduces cerebral oxygen saturation. WM and cer-
ebral injuries due to immaturity and hypoxic-ischemic inju-
ries are also common in preterm PDA and a major cause 
of neurodevelopmental impairments. Treatment options 
for PDA consist of pharmacotherapy with cyclooxygenase 
inhibitors, fluid restriction, or surgical ligation. Approxi-
mately 20–36% of preterm survivors of PDA have a neurode-
velopmental disability such as cerebral palsy, hearing loss, 
blindness, or PDI and MDI scores below 70 at 1.5–2 years 
of age. Infants that had a surgical ligation had a higher inci-
dence of neurodevelopmental deficits than infants treated 
pharmacologically or left untreated. However, the higher 
incidence of neurodevelopmental disorders after ligation 
treatment may be due to confounding by additional risk fac-
tors, rather than the ligation itself. At birth, risk factors for 
neurodevelopmental disability include gestational age, birth 
weight, multiple gestation, antenatal corticosteroids, intrau-
terine growth restriction and sex. At the time of discharge, 
neonatal morbidities of prematurity, sepsis and major brain 
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injury are associated with neurodevelopmental impairments 
at 18–24 months of age [65–69]. Since brain injury and neu-
rodevelopmental disability in PDA is intertwined with the 
complications of preterm birth in general, we excluded PDA 
from the rest of the review.

Factors that Predict Neurological Injury 
and Neurodevelopmental Deficits

Preoperative Factors

Patient-specific preoperative factors are stronger predictors 
of adverse neurodevelopmental outcome than intraoperative 
factors [10, 22, 70, 71].

Delayed Brain Growth

A substantial amount of neurological damage in critical 
CHD occurs prenatally due to global CNS dysmaturation of 
white and gray matter, resulting in impaired neuronal con-
nectivity and long-term neurodevelopmental impairment. 
Human brain development begins at the 3rd week at gesta-
tion with the differentiation of neural progenitor cells and 
continues into late adolescence. Neurogenesis starts at the 
6th week of gestation and is mostly complete by mid-ges-
tation [72]. The fetal heart development is nearly complete 
by the 7th week of gestation and the occurrence of critical 
CHD can disrupt fetal blood flow and oxygen delivery to the 
brain for the rest of the gestational period [73]. By the end 
of the 8th week of gestation, the basic structures of the CNS 
are established. The subsequent period until mid-gestation 
is critical for the formation of the neocortex. Around mid-
gestation, the myelination process starts. During the third-
trimester blood supply to the brain increases to 25% of the 
combined ventricular output to allow the increased forma-
tion of synaptic connections and neuronal activity. By the 
end of gestation, the formation of major subcortical path-
ways like the thalamocortical pathway is complete. While 
the production and migration of neurons is largely completed 
prenatally, the proliferation and migration of glial precursors 
and differentiation into astrocytes and myelinating oligo-
dendrocytes continue after birth and the maturation of glial 
cells continue into early childhood. These processes play a 
critical role in the functional maturation of neural circuits. 
Substantial cortical neurogenesis and migration of neurons 
to the frontal lobe also occur postnatally [8, 72, 74]. Critical 
CHD impairs cortical growth and maturation by reducing 
the proliferation of neural progenitor cells and neurogenesis 
in the subventricular zone [75]. The brain size only reaches 
90% of the adult brain volume by age 6 [72].

Pregnancies in which the fetus has a CHD often have 
an impaired uteroplacental environment and increased 

incidences of pre-eclampsia, preterm birth and low gesta-
tional age births. Impaired fetal-placental oxygen exchange 
reduces systemic and cerebral oxygenation that results in a 
delay of body and brain growth [36, 76, 77]. The majority 
of studies of CHD, particularly studies of HLHS, d-TGA 
and TOF, report impaired fetal brain growth [34]. Struc-
tural brain abnormalities are present in 28% of fetuses with 
CHD. The most common abnormalities are enlarged ven-
tricles, agenesis of the corpus callosum, ventricular bleed-
ing, increased extra-axial space, vermian hypoplasia, white 
matter abnormalities and delayed brain development [78].

At birth, infants with CHD typically have a birth weight 
and birth length below average, a mean head circumference 
1 standard deviation below normal, and a delay of 1 month 
in structural brain development. Neonates with CHD have 
delayed gyrification, a 21% reduction in overall brain volume 
and regional brain volume reductions of 8–28% [9, 12, 19, 
32, 34, 79, 80]. In particular, smaller brain volumes in the 
frontal lobe, parietal lobe, cerebral white matter, thalamus, 
cerebellum and brainstem have been found around the time 
of birth. The reduction in frontal and parietal lobe size corre-
lates with delayed white matter microstructure development, 
while reduced subcortical and cerebellar volumes associates 
with regional deficits in cerebral WM energy metabolism 
[9, 23].

The underdeveloped brain metabolism and WM micro-
structure of term infants with CHD increase both the risk 
of preoperative and postoperative WMI and the severity of 
the brain injury [12–14, 16, 81]. WMI occurs in the central, 
frontal and posterior periventricular regions in both term 
and preterm CHD infants [12–14]. Neonatal brain injuries 
are already detectable on a fetal MRI in 27% of cases [33], 
thus brain injuries in this population are a mixture of prena-
tal, perinatal and postoperative injuries. Preoperative brain 
injury in term neonates is associated with subsequently 
impaired corticospinal tract development [82]. Delays in 
brain growth vary by the type of CHD. Neonates with HLHS 
have a lower global and regional brain growth rate than neo-
nates with d-TGA [20].

Abnormal brain growth and brain injury in the antenatal 
period has life-long effects. Focal WM lesions consisting 
of small punctate mineralization or WM iron deposits are 
relatively common on structural MRIs of adolescents with 
CHD. These MRI abnormalities are likely related to micro 
hemorrhage that occurred at the time of corrective surgery 
[7, 54]. When compared to controls, adolescents with CHD 
have lower total brain volumes and lower volumes of WM 
and cortical, subcortical and cerebellar gray matter but com-
parable cerebrospinal fluid (CSF) volumes. Adolescents with 
cyanotic CHD have more WM and subcortical brain volume 
loss than non-cyanotic CHD. The reduction in regional brain 
volumes correlated with impairments in cognitive, motor 
and executive functions [83]. After controlling for the total 
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brain volume, the extent of hippocampal volume loss after 
CHD correlated with total IQ, working memory, episodic 
memory and verbal comprehension. The extent of WM vol-
ume loss correlated with verbal comprehension and motor 
performance and the cerebellar volume correlated with 
working memory and static balance [83–85]. Adolescents 
with CHD also have global WM microstructural abnormali-
ties and a disruption of the WM network topology. Some 
of these WM disturbances correlate with performance in 
specific functional domains.

On a microstructural level, adolescents have a lower 
apparent density of axonal packing, but not altered axonal 
orientation. The reduced WM axonal packing could impair 
communication between different brain regions [86]. The 
degree of global WM network topology disturbances corre-
lates with overall neurocognitive performance, WMI in the 
uncinate fasciculus correlates with verbal memory impair-
ments, WMI in the frontal lobe associates with working 
memory deficits, and WMI of the middle cerebellar pedun-
cle correlates with auditory attention span [30, 31, 87].

Fetuses with CHD have lower cerebellar volumes and 
an overall reduced growth rate of the cortical and subcorti-
cal gray matter and cerebellum over the fetal period, which 
results in reduced total brain volumes at birth and 3 months 
of age [80, 88]. CHD reduces the rate of brain volume gain 
over the third trimester. Fetuses with CHDs with single-
ventricle physiology experience a greater slowing of brain 
growth than fetuses with two-ventricle CHDs. Fetuses with 
two-ventricle CHD have a steady increase in brain volume 
across most regions during the third trimester. In fetuses 
with single-ventricle CHD the rate of cerebral brain growth 
slows between 32 and 35 weeks of gestation, the rate of 
total brain, cortical plate, and deep gray matter growth slows 
around 35 weeks of gestation, and cerebellar growth slows 
around 34 weeks of gestation. Fetuses with single-ventricle 
and two-ventricle CHD had similar rates of WM volume 
gain over the third trimester [89]. There is a strong corre-
lation between the total brain volume and volumes of the 
cortical gray matter, unmyelinated white matter and CSF 
on the fetal MRI at 33 weeks of gestation and neonatal MRI 
within the first week after birth [90].

Cerebral Blood Flow Obstructions

Fetuses have different blood flow patterns than neonates 
because their gas exchange occurs in the placenta. The 
oxygenated blood from the placenta flows from the right 
atrium across the foramen ovale to the left atrium, which 
streams oxygen-rich blood to the brain. Critical CHD causes 
modifications to the intracardiac circulation, which changes 
the characteristics of cerebral blood flow to the brain. CHD 
reduces both the blood flow to the brain (ischemia) and the 
oxygen content of the blood (hypoxia). Inadequate blood 

flow to the brain reduces both oxygen and glucose delivery, 
which affects brain growth. The fetus attempts to compen-
sate by reducing cerebral vascular resistance to increase cer-
ebral blood flow, but this ‘brain sparing’ mechanism is insuf-
ficient to ensure adequate blood supply to the brain [8, 91].

The type of CHD affects fetal cerebrovascular blood 
flow distribution and the level of brain immaturity. Single-
ventricle physiology occurs when one of the ventricles is 
smaller, underdeveloped or missing a valve. In HLHS, the 
left side of the heart is underdeveloped. Oxygen-rich blood 
from the placenta mixes with deoxygenated blood in the 
right atrium, which reduces the overall oxygen content of 
the blood. Blood with a reduced oxygen content is ejected 
into the pulmonary trunk and the ductus arteriosus. Retro-
grade blood flow and a reduced diameter of the aortic arch 
further restricts blood flow into the brain. In HLHS, the fetal 
brain thus receives less blood (ischemia) and the blood that 
flows to the brain has a reduced oxygen content (hypoxia). 
In fetuses with left-ventricular outflow tract obstructions, 
the flow of blood to the brain is reduced (ischemia) but the 
relative oxygen content of the blood that reaches the brain is 
within normal limits. The brain compensates for left-sided 
lesions by lowering cerebrovascular resistance to increase 
blood flow to the brain. Fetuses with obstructions of the 
right side of the heart have higher cerebrovascular resist-
ance than infants with HLHS. In d-TGA, the two main arter-
ies carrying blood away from the heart are reversed so that 
the brain receives relatively deoxygenated blood from the 
superior vena cava through the right ventricle. Thus d-TGA 
causes a severe reduction in the oxygen content of the blood 
delivered to the brain (hypoxia), but less cerebral blood flow 
disturbances (ischemia) than left-ventricular outflow tract 
obstructions and single-ventricle physiology with aortic arch 
obstructions [8, 36, 42, 81]. These differences in cerebrovas-
cular blood flow distribution likely affect subsequent brain 
injuries [8, 10, 35, 92].

Fetuses with HLHS have a progressive delay white and 
gray matter brain growth, brain metabolism and cortical 
folding over the third trimester [93, 94]. The delays in WM 
microstructural development and WMI are worse in infants 
with smaller ascending aortas or aortic atresia [95, 96]. In 
severe HLHS, there is a decrease in cerebral oxygen satura-
tion and cerebral oxygen extraction accompanied by a switch 
to anaerobic metabolism starting in the fetal period. More 
than 50% of neonates with HLHS have elevated brain lactate 
levels, sometimes accompanied by focal ischemic lesions 
[18, 94, 97]. The relative hypoxia persists throughout early 
childhood. Infants with single-ventricle physiology (includ-
ing HLHS) have reduced blood oxygen saturation at 1 and 
3 years of age [98]. Reduced cerebral oxygen saturation per-
sists in HLHS after stage I Norwood RVTA shunt and stage 
II Glenn repairs, but returns to normal after the stage III 
Fontan repair [97].



7Pediatric Cardiology (2021) 42:1–18	

1 3

Fetuses with d-TGA have impaired brain growth and 
metabolism over the third trimester [94]. However, the 
impairment in brain growth in d-TGA is less severe than 
in single-ventricle physiology with aortic arch obstruc-
tion. Neonates with d-TGA or a left ventricle outflow tract 
obstruction have more mature WM microstructure than 
infants with single-ventricle physiology with aortic arch 
obstruction [81].

CHD delays cortical growth and maturation: infants with 
mild forms of d-TGA have normal brain development of gyr-
ification, while gyrification is delayed in infants with single-
ventricle physiology. However, infants with severe d-TGA, 
that requires preoperative palliation with balloon atriosepto-
stomy, have a higher risk of delayed gyrification and reduced 
cortical volumes [42]. The use of balloon atrioseptostomy 
also increases the risk of WMI [99]. At 1 year, both infants 
with d-TGA and single-ventricle physiology have reduced 
brain volumes. But by 3 years of age onwards, brain volumes 
in the d-TGA group normalize but remain small in infants 
with the single-ventricle disease [98]. Severe hypoxia and 
acidosis before corrective surgery in d-TGA predispose to 
neurodevelopmental impairments during adolescence [100].

The impact of other types of CHD on blood flow and 
cerebral oxygenation is varied. TOF, patent ductus arteriosus 
and pulmonary atresia reduce cerebral oxygen saturation. 
However, children with ventricular septal defects and aortic 
coarctation have cerebral oxygen saturation levels compa-
rable to controls [97].

Prenatal Diagnosis

The majority of CHD cases can be diagnosed with prena-
tal echocardiography. Tertiary perinatal centers can detect 
85–95% of CHD cases prenatally, but the average prenatal 
detection rate in the US is around 34%. CHD lesions vis-
ible on a 4 chamber view are more likely to be detected 
prenatally than those requiring outflow tract visualization 
[101, 102].

Prenatal treatments of fetal abnormalities are a rapidly 
developing area. However, prenatal detection of the CHD 
and brain injuries do not necessarily improve outcomes. 
Most diagnostic techniques can only detect fetal heart 
defects after 18 weeks of gestation, by which time consider-
able organ damage has already occurred which can no longer 
be corrected, even with intrauterine surgery [102].

In CHD infants with standard mortality risk, a prenatal 
diagnosis reduces the risk of death due to cardiovascular 
compromise before the planned surgical intervention but 
does not affect mortality after surgery. However, the most 
critical infants may be considered too high risk for surgery 
and only receive palliative care and pregnancies with a pre-
natal diagnosis of complex CHD may be terminated. Pre-
natal diagnosis also increases the likelihood of a scheduled 

delivery, which results in infants being born earlier with 
lower birth weights [103–107].

Despite the potential drawbacks of prenatal diagnosis, 
in neonates with single-ventricle physiology or d-TGA, a 
prenatal diagnosis reduces the incidence of perioperative 
brain injuries and increases the rate of WM microstructural 
development. These beneficial brain findings are likely due 
to improved cardiovascular stability [107]. The brain vol-
umes on fetal MRI late in gestation strongly correlate with 
neonatal brain volumes in CHD. Fetuses with lower brain 
volumes on MRI are at a higher risk of having a neona-
tal ischemic brain injury, and neonatal brain injuries are 
already detectable on a fetal MRI in 27% of cases [33, 90]. 
Therefore, a fetal diagnosis of CHD is considered beneficial 
in terms of preoperative mortality and brain development. 
Once prenatal investigations confirmed the diagnosis of an 
operable CHD the main target for physicians will consist 
of an early optimized hemodynamic postnatal stabilization 
that in turn will improve neurological morbidity and WM 
development [6, 108, 109].

Other Preoperative Factors

Around 30% of infants with CHD have an additional genetic 
anomaly. Infants with an additional genetic anomaly are born 
at a lower gestational age and weight, have a smaller head 
circumference at birth and worse performance on the PDI 
and MDI at 1 year of age [70, 110].

In patients without genetic anomalies, innate risk factors 
(birth weight, Apgar score, race, APOE-E genotype) are 
associated with lower scores on the PDI. Low birth weight, 
Apgar score, male sex, maternal education level, genetic 
anomalies and APOE-E genotype are associated with lower 
scores on the MDI between 1 and 1.5 years of age [22, 70, 
110]. Interestingly, the APOE-E2 genotype is associated 
with worse neurodevelopmental outcomes in CHD, while 
the APOE-E2 genotype is protective against the late-life 
neurodegenerative disease Alzheimer’s disease [110, 111]. 
Male sex, delivery by C-section, and an acute hypoxic insult 
due to preoperative cardiac arrest are also risk factors for 
WMI in CHD [6, 96, 99]. Male sex is also a risk factor for 
worse outcomes after a hypoxic-ischemic insult in otherwise 
healthy newborns [112]. Preoperative seizures predicted 
lower IQ in school age children with HLHS [49].

Perioperative Factors

The majority of neonates with mild-severe CHD requires 
surgery within the first few weeks after birth to survive. 
Intraoperative brain injuries are predominantly due to the 
methods of CPB and deep hypothermic circulatory arrest 
(DHCA) used after stopping blood circulation and brain 
function for surgery. Complications of these methods 
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include low cardiac output syndrome, hypoperfusion, air 
emboli and systemic inflammation [6, 73, 113].

Embolism

Most heart surgery procedures involve opening the left side 
of the circulation, which brings a risk of vascular air embo-
lism, hypoperfusion and thromboembolism. The risk of 
stroke in CHD has been reduced over the last few decades, 
but preoperative strokes still occur in 2–25% and postopera-
tive strokes occur in 0–19% of infants with surgery for CHD 
[113–115].

Choice of Surgical Procedures

The Norwood Procedure for HLHS  The stage I Norwood pro-
cedure is the first of three palliative operations for HLHS. 
While the stage II (Hemi-Fontan or bidirectional Glenn) 
and stage III Fontan procedures are now relatively low risk, 
the Norwood procedure remains a high-risk procedure [116, 
117]. Cerebral oxygen saturation in HLHS remains low 
after the stage I and II repairs but improves after the stage III 
Fontan procedure [97]. Altered cardiovascular hemodynam-
ics after stage II repair, particularly increased atrial filling 
and Glenn pressures, associated with reduced brain volumes 
and worse neurodevelopmental outcomes [118]. Both sur-
vival and neurodevelopmental outcomes after the Norwood 
procedure have improved between 1998 and 2005, but neu-
rodevelopmental scores of survivors remain below normal 
[119]. However, neurodevelopmental outcomes in HLHS 
survivors is comparable between infants that had a staged 
reconstruction with the Norwood procedure and infants that 
had a heart transplant, which indicates intrinsic patient fac-
tors play a larger role than intraoperative factors. Preopera-
tive seizures and a longer total DHCA time predicted lower 
IQ scores in HLHS survivors [10]. Hemodynamic instabil-
ity and postoperative death after the Norwood procedure 
remain problematic. Here we discuss several variations on 
the Norwood procedure. The first variable that can influ-
ence the surgical outcome is the choice of shunt used dur-
ing the operation. Several studies have compared outcomes 
after the modified Blalock–Taussig shunt (MBTS) to the 
right ventricle-to-pulmonary artery (RVPA) shunt modifica-
tion of the Norwood procedure. The use of the RVPA shunt 
has reduced mortality rates and improved the PDI score 
of infants with HLHS, likely because it promotes a more 
stable hemodynamic status [19, 119, 120]. However, the 
RVPA shunt may cause fibrotic tissue to develop over the 
long-term and an individualized shunt choice based on birth 
weight and aorta size can further improve outcomes [117].

A second consideration is the use of support techniques 
during the operation. Regional cerebral perfusion (RCP), 
also known as antegrade or low-flow cerebral perfusion, is 

a support technique that provides antegrade cerebral blood 
flow and maintains oxygen supply to the brain, while still 
maintaining a relatively bloodless intraoperative field. This 
allows more time to complete the repair [6, 121]. The uptake 
of RCP has increased in recent years [119].

A single randomized clinical trial did not find improved 
neurodevelopmental outcomes of RCP vs. deep hypother-
mic circulatory arrest (DHCA) used in the Norwood pro-
cedure at 1 year of age or during a follow-up investigation 
at 5–8 years [122, 123]. However, further improvements of 
the RCP technique have been suggested including neuro-
logical monitoring, with near-infrared spectroscopy (NIRS) 
and transcranial Doppler ultrasound (TCD), to adjust flow 
rates during RCP to standardize cerebral oxygen delivery for 
the individual patient. These results in an increased cerebral 
flow rate, which does not appear to cause more neurological 
injuries than the standard CPB [16, 121, 124]. Standard-
izing cerebral oxygen flow during RCP has improved the 
cognitive outcomes of survivors to levels comparable to the 
reference population at 1 year of age. However, mean lan-
guage and motor outcomes remain lower than the reference 
population mean by 0.8–0.9 standard deviations. The dura-
tion of RCP was not associated with adverse outcomes and 
prolonged RCP appears to be safe [121]. The age-at-surgery 
is a remaining consideration. A shorter time to surgery may 
decrease perioperative WMI [125].

Arterial Switch Operation for  d‑TGA​  The arterial switch 
operation (ASO) is the standard of care for neonates with 
d-TGA. The procedure has a low mortality rate. Lower cer-
ebral oxygen saturation before and during the procedure, 
longer CPB and cross-clamping times, and anesthetic use 
were associated with adverse neurodevelopmental outcomes 
[100, 126, 127].

Cardiopulmonary Bypass

Open-heart surgery with CPB is standard care for 
CHD. However, open-heart surgery causes a planned 
ischemia–reperfusion injury, which resembles the hypoxic-
ischemic injury during perinatal asphyxia [113]. CPB is 
associated with cerebral microhemorrhages, which are still 
present in early adulthood (mean age 26.7 years) [128]

The use of CPB with RCP and lower cerebral hemoglobin 
oxygen saturation during surgery increases the risk of WMI 
and adverse neurodevelopmental outcomes [4, 126]. Lower 
nasopharyngeal temperatures during CPB were associated 
with a lower score on the PDI and a lower head circumfer-
ence at 1–1.5 years of age [70]. Longer CPB times associ-
ated with adverse neurodevelopmental outcomes. However, 
the predictive value of CPB time was lower than that of 
preoperative and postoperative factors. A longer CPB time 
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is likely a surrogate marker for more complex surgery with 
longer postoperative stays [49, 71].

CPB techniques are continuously improving. Notable 
advances in CPB technique over the last few years include 
the use of low prime CPB circuits and modified ultrafil-
tration [119]. A recent systematic review of interventions 
during CPB found that the clinical evidence for neuropro-
tective and neuromonitoring interventions curing CPB was 
limited and the only intervention with sufficient evidence 
was avoiding extreme hemodilution during CPB [129]. Low 
prime CPB circuits minimize hemodilution that improves 
the hematocrit values and reduces the need for red blood cell 
transfusions [119, 130, 131]. Modified ultrafiltration reduces 
systemic inflammation during CPB, which reduces morbid-
ity and mortality [132].

Cardiopulmonary Bypass Complications

Low Cardiac Output Syndrome  Low cardiac output syn-
drome (LCOS) is a major perioperative complication after 
open-heart surgery with CPB. LCOS has multiple contribut-
ing factors, including ischemia–reperfusion injury, surgical 
trauma, endothelial dysfunction and the activation of inflam-
matory, complement and coagulation processes [113, 133]. 
Preoperative multifocal brain injuries are also associated 
with LCOS [134]. CPB affects cerebrovascular resistance 
by increasing the pulsatility of the middle cerebral artery 
during surgery [133]. Increased cerebrovascular resistance, 
elevated venous pressure, LCOS and low blood pressure 
compromise oxygen delivery to the brain, which increases 
the risk of postoperative neurological damage [113]. LCOS 
contributed to 30% of new postoperative multifocal brain 
injuries in a clinical cohort [134]. Several putative biomark-
ers of neurological damage during CPB have been identified. 
Infants with postoperative neurological damage have higher 
plasma levels of the brain injury protein activin A during 
CPB [135]. The plasma levels adrenomedullin, a vasoactive 
peptide that regulates cerebral blood flow, decreases during 
cardiac surgery with CPB. Low adrenomedullin levels at the 
end of CPB and after surgery associated with neurological 
damage and LCOS [133, 136].

Systemic Inflammation and Blood–Brain Barrier Compro‑
mise  While surgery by itself causes a systemic inflamma-
tory response, exposure of blood cells to the circuit surface 
during CPB initiates an even stronger systemic inflam-
matory reaction, which worsens HI reperfusion injury 
[132, 137–139]. Infants with CHD have a preoperative 
increase in neuron-specific marker phosphorylated neuro-
filament heavy and the calcium-binding protein S100B, 
and detectable levels of neuron-specific enolase (NSE) in 
their plasma, which suggest a compromised blood–brain 
barrier. Infants with cyanotic CHD have higher plasma 

S100B levels preoperatively, during surgery with CPB 
and at 24 h postoperatively than infants with non-cyanotic 
CHD. The increases in perioperative plasma S100B lev-
els correlated with increased oxygenation levels during 
CPB. This is thought to reflect hyperoxia stress during 
reperfusion. Although S100B is not exclusively a neu-
ronal marker, neuronal damage is the most likely source 
of elevated plasma S100B levels. Elevated S100B release 
from other sources such as adipose tissues is unlikely 
because the adipose marker adiponectin remains constant 
in the perioperative period [137, 140, 141]. CHD also 
increases serum levels of the complement proteins C5a 
and sC5b9 and the inflammatory cytokines IL-12p70, 
IL‑6, IL‑8, IL‑10 and TNF‑α levels preoperatively. CPB 
further increases cytokine levels and complement remains 
activated after surgery [137]. The use of modified ultrafil-
tration during CPB reduces inflammation and morbidity 
after surgery [132].

Systemic Lactate Levels  Lactate is formed during anaer-
obic metabolism. The greatest increase in lactate levels 
over the perioperative period occurs during CPB. Longer 
durations of CPB and aortic cross-clamping, low hema-
tocrit levels during the operation, and younger ages at 
operation associated with increased postoperative serum 
lactate levels. Elevated postoperative serum lactate lev-
els reflect reduced cerebral and renal oxygen saturation 
levels, which increases the risk of postoperative mortality 
and morbidity in infants [142–144].

Reoxygenation Injury and  Controlled Oxygen Support 
During CPB  Standard CPB with a pump prime has a 
partial oxygen pressure that is relatively hyperoxic for 
a cyanotic patient. Cyanotic CHD patients, particularly 
those with the single-ventricle disease, have a high risk 
of reoxygenation and reperfusion injuries during CPB, 
which plays a central role inflammatory response induced 
by CPB. The plasma levels of the neuronal injury marker 
S100B increases as oxygenation increases during surgery. 
Controlling the partial oxygen pressure during CPB to 
match the patient’s partial oxygen levels reduced plasma 
markers of organ damage, inflammation, stress, and oxida-
tive stress in single-ventricle patients, but not in double-
ventricle patients [139, 140, 145, 146]. Supplementing 
nitric oxide (NO) has also been assessed as a strategy to 
reduce reperfusion injury. CPB damages endothelial cells 
which normally secrete NO. Hemoglobin released from 
hemolysis during CPB further scavenges NO. NO has a 
beneficial role in maintaining the vascular tone and reduc-
ing oxidative stress. Administration of NO donors during 
CPB has improved outcomes in pediatric trials [139].
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Deep Hypothermic Circulatory Arrest (DHCA) 
and Continuous Hypothermic Low‑Flow Bypass

The circulatory arrest is often used in open-heart surgery 
because of the absence of blood in the operative field. 
During this procedure, the body is cooled to 15–18 °C and 
the circulation is completely stopped, which induces a risk 
of hypoxic-ischemic and reperfusion brain injuries [73]. 
DHCA is based on the principle that there is a ‘safe’ dura-
tion for circulatory arrest under deep hypothermia [147]. 
However, extended durations of DHCA have deleterious 
effects on children. Traditionally periods of 45–50 min 
of DHCA have been considered safe [10]. However, the 
true ‘safe’ duration is likely much shorter. During the first 
20 min of DHCA, the cerebral metabolism remains aero-
bic, after this period, anaerobic metabolism and cerebral 
lactate concentrations start to increase. Increased anaero-
bic metabolism eventually leads to cerebral energy failure 
[113]. The relationship between neurological impairment 
and the length of DHCA is not linear [10]. In HLHS chil-
dren that had DHCA for the Norwood procedure, longer 
DHCA durations were associated with lower IQ scores in 
some, but not all, studies [10, 121]. Longer durations of 
hypothermia and support time and lower tympanic mem-
brane temperatures during surgery were also associated 
with structural brain damage in d-TGA [37]. In general, 
the weight at operation and having DHCA were weak pre-
dictors of delays in PDI and MDI scores at 1–1.5 years of 
age in CHD, and the time of DHCA was a weak predic-
tor of MDI scores. However, patient-specific factors were 
stronger predictors of neurodevelopmental outcomes than 
intraoperative factors [70].

Continuous hypothermic CPB at a low-flow rate (low-
flow bypass) has been evaluated as an alternative to DHCA. 
The low-flow bypass has the advantages of maintaining the 
cerebral blood flow during surgery, but it requires longer 
durations of extracorporeal blood flow than DHCA, which 
increases the risk of pump-related brain injuries such as air 
or particulate emboli [10, 147]. A randomized trial which 
compared DHCA to low-flow bypass for d-TGA surgeries 
found that the EEG activity recovers more rapidly after 
low-flow bypass, which associates with fewer postoperative 
seizures and lowers brain creatinine kinase release [147].

Glucose Levels

Intraoperative hyperglycemia increases the risk of postop-
erative infections [148]. Infections may increase the post-
operative length of stay, which is a risk factor for adverse 
neurodevelopmental outcomes [71]. However, intraoperative 
glucose levels were not correlated with long-term clinical, 
developmental or MRI deficits at 1, 4 or 8 years of age [149].

Anesthetic Use

The use of high doses of the benzodiazepine or volatile anes-
thetics in the perioperative and postoperative period asso-
ciates with reduced neurodevelopmental scores at 1 year. 
A greater number of subsequent anesthetic exposures after 
the initial surgery was also associated with worse neurode-
velopmental outcomes at 1 year of age [121, 126, 150]. At 
1.5–2 years of age, there was no association between the 
dose and duration of anesthetic drugs in the perioperative 
period and on mental, motor and vocabulary scores [151]. 
At 4–5 years, there was a weak association between the days 
on chloral hydrate anesthesia during the perioperative period 
and lower performance IQ, the cumulative dose of benzodi-
azepine anesthesia and visual-motor integration scores, and 
the cumulative dose of volatile anesthetics and full-scale IQ 
and verbal IQ scores [152, 153].

Postoperative Factors

Postoperative diffuse and focal WMI occurs in 26–50% of 
neonates with surgery for critical CHD. Hypoxemia and 
hypotension (both low mean and low diastolic blood pres-
sure) in the early postoperative period, the age-at-operation 
and lower brain maturity scores associates with WMI [4, 
16, 154]. Postoperative hyperglycemia increases the rate 
of early mortality and early CNS morbidity [155–157]. 
However, postoperative hyperglycemia was not associated 
with adverse neurodevelopmental outcomes at 1 year of age 
[158] and a randomized clinical trial of tight glycemic con-
trol postoperatively did not find improvements on mortal-
ity, morbidity or length of stay [159]. Postoperative cerebral 
desaturation due to low cardiac output or loss of cerebral 
autoregulation is common in infants with cardiac surgery for 
single-ventricle defects but it is unclear if cerebral desatu-
ration predicts neurodevelopmental delays [160, 161]. The 
need for extracorporeal membrane oxygenation (ECMO) or 
ventricular assist device support postoperatively, as well as 
increases in the postoperative length of stay associated with 
lower scores on the PDI and MDI at 1–1.5 years of age [70, 
71]. The use of ECMO and ventricular assist devices also 
increases the risk of stroke [115]. Additional postoperative 
risk factors for brain injuries in HLHS include multiple sur-
geries, prolonged hypoxemia, failure to thrive and the risk of 
strokes before and after the Fontan procedure due to abnor-
malities in coagulation factors [10]. Children with HLHS 
are operated at younger ages than children with other types 
of CHD and have a significantly longer postoperative length 
of stays, more surgeries and lower scores on tests of cogni-
tion, fine motor skills, executive function, and math skills at 
4 years than infants than other subtypes of CHD. Children 
with d-TGA also have earlier surgeries with longer post-
operative stays than infants operated for TOF or VSD. The 
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neurodevelopmental performance at 4 years was comparable 
between d-TGA, TOF and VSD, but the children were more 
likely to have an impairment in at least 1 functional domain 
than the general population [162]. Additional reversible fac-
tors during development also play a role in neurodevelop-
mental outcomes. Obstructive sleep apnea occurred in 57% 
of a mild-moderate CHD cohort and was associated with 
worse neurodevelopmental outcomes [163]. Early motor 
screening and early physical therapy could alleviate some 
of the early locomotor deficits in CHD [164].

Discussion

Neurological damage in CHD is a complex multifactorial 
insult affecting multiple brain regions. Here we discuss those 
innate patient factors, such as genetic risk factors, reduced 
cerebral blood flow and delayed brain growth, which results 
in an immature brain [16, 19, 20]. Adverse neurodevelop-
mental outcomes are likely due to the cumulative effect of 
critical CHD on several brain regions. CHD affects neural 
progenitor cells, which impairs the growth and maturation 
of the prefrontal cortex, which is essential for higher-order 
functions. Higher-order functions also require proper con-
nectivity and communication between neurons throughout 
the brain. White matter development plays a crucial role in 
this and WMI and an underdeveloped white matter micro-
structure is frequently observed in CHD studies. Delayed 
development and injury of the subcortical areas, particularly 
the cerebellum, further impair neurocognitive performance 
[73–75, 83–85]. The immature brain is highly susceptible to 
hypoxia–hyperoxia and ischemia caused by cerebral blood 
flow disturbances due to the CHD itself or CPB during the 
surgical correction. An increased length of stay postopera-
tively also predicts worse outcomes, likely because it indi-
cates a more complicated disease course [16, 19, 20].

Care must be taken when generalizing risk factors. CHD 
consists of a spectrum of disorders with varying degrees of 
severity and blood flow and blood oxygenation disruptions. 
Even after subdivision into syndromes such as d-TGA or 
HLHS, studies include heterogeneous patient populations 
with multiple risk factors for CNS dysmaturation and neu-
rodevelopmental impairments. Neonates with multiple risk 
factors, such as genetic comorbidities, delayed brain growth, 
intraoperative and postoperative complications have a far 
greater risk of long-term disabilities than neonates with a 
prenatal diagnosis without additional comorbidities and a 
successful surgical repair [10]. These innate patient factors 
should be considered when predicting the prognosis for an 
individual patient and designing strategies to reduce neuro-
logical injuries in these populations.

There is a lot of room for improvement in understand-
ing brain injuries after CHD. The current ‘best’ statistical 

models only explain around 30% of the variability in neu-
rodevelopmental performance at 1 year of age and thus 
important factors remain unidentified [71]. There is also 
room for improving our outcome measures. The Bayley 
Scales of Infant Development is widely used to assess neu-
rodevelopment within the first 3 years of life. However, a 
meta-analysis of the Bayley scales in preterm infants found 
that the MDI score explained 37% of the variance in cogni-
tive functioning later in life, which was considered strongly 
predictive. The PDI scores only explained 12% of the vari-
ance and were considered moderately predictive. Thus, 
although the Bayley scales are helpful, they do account for 
the majority of variance in cognitive and motor performance 
later in life [165]. Having a low PDI or MDI score before 
3 years does not necessarily mean the child will have poor 
performance at school age. The cognitive performance of 
children with low MDI can improve over time [166]. The 
reverse is also true. In a study of CHD children, there was 
an overall good correlation between scores on the Bayley 
scale at age 2 and neurodevelopmental performance at age 
4. However, several children who scored in the average range 
of the Bayley scales at age 2, had developed neurodevelop-
mental deficits by age 4 [167]. Abnormal cerebral findings in 
the prenatal and preoperative period may be better predictors 
of neurodevelopmental deficits. Findings of a cerebral devel-
opmental delay, abnormal Doppler parameters of cerebral 
blood flow are particularly frequent in infants with a neu-
rodevelopmental delay but no single cerebral abnormality 
predicts the poor neurodevelopmental outcome by itself. The 
neurodevelopmental outcome is likely the cumulative effects 
of delays in global brain development, combined with mul-
tiple hypoxic-ischemic events during the perinatal period, 
rather than a single factor [168].

Our current knowledge indicates that patient, preoperative 
and postoperative factors play a far greater role in adverse 
neurodevelopmental outcomes than perioperative techniques 
[71]. Unfortunately, innate patient factors are far more dif-
ficult to address and prevent than perioperative factors, and 
neurological damage starts early in gestation. Although car-
diac surgery in the first few weeks of life can restore cardiac 
function, surgery does not correct pre-existing brain inju-
ries and the brain developmental delays persist throughout 
life. Since the number of adults with CHD now outnumber 
children born with CHD, there is a need to identify ways 
to reduce WMI after birth and risk factors for secondary 
injuries across the lifespan [3, 6]. Successful mitigation of 
long-term neurological injuries will require consideration of 
the hemodynamic effects and brain injury patterns in differ-
ent CHD types, more widespread adoption of fetal diagnosis 
and early surgical correction, and rehabilitation strategies to 
reduce functional deficits.

Understanding the impact of CHD on neurologi-
cal functioning in adulthood and aging will be key in 
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future studies. Data from the Quebec congenital heart 
disease database estimated the prevalence of CHD to be 
8.23/1000 infants, 13.11/1000 children, 6.12/1000 adults 
and 3.80/1000 of the elderly. It is estimated that in 2010, 
there were 1.4 million adults and 1 million children living 
with CHD in the US [3]. Adult survivors of CHD have a 
high incidence of heart failure [169] and poor exercise 
capacity associated with a greater risk of hospitalization 
and death [170]. Higher plasma levels of von Willebrand 
factor, which reflect liver congestion due to right-sided 
heart failure, was also associated with increased all-cause 
mortality in adults with CHD [171]. A wide spectrum of 
structural brain abnormalities and lower estimated IQ lev-
els has been identified in adults with CHD at a mean age 
of 26.7 years [128]. Further studies at more advanced ages 
are eagerly awaited.

There is an urgent need to discover therapies or reha-
bilitative strategies to improve neurological outcomes 
in CHD. This is further complicated by an incomplete 
understanding of the causes of brain dysmaturation in 
CHD. Continued research into animal and cellular mod-
els of CHD is essential to deliver on this need. It is now 
possible to develop cardiac and brain organoid systems 
for disease modeling and therapeutic discoveries [172]. 
Advances in CRISPR-cas9 gene-editing technologies 
allow us to improve our rodent, sheep and pig models of 
CHD. Combining our genetics, cell and molecular biol-
ogy knowledge in future studies has great potential to find 
targets and therapies for neurological damage in CHD. 
Improvements to our clinical trial design are also essential 
to improve outcomes in CHD. The majority of clinical tri-
als in CHD included heterogeneous cohorts with limited 
follow-up. Future prospective clinical trials should take 
care to include patients with the same type of CHD and 
combine this with meticulous long-term follow-up, such 
as in the Boston Circulatory Arrest Trial [74].

To conclude, we have made tremendous progress in 
improving the survival of infants with CHD over the past 
decades. Improving the quality of life of those survivors 
is our next frontier.
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