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Abstract

Rationale: Altered lipid metabolism has been implicated in heart failure (HF) development, but 

no prospective studies have examined comprehensive lipidomics data and subsequent risk of HF.

Objective: We aimed to link single lipid metabolites and lipidomics networks to the risk of 

developing heart failure.

Methods and Results: Discovery analyses were based on 216 targeted lipids in a case-control 

study (331 incident HF cases and 507 controls, matched by age, sex, and study center), nested 

within the PREDIMED study. Associations of single lipids were examined in conditional logistic 

regression models. Furthermore, lipidomics networks were linked to HF risk in a multi-step 

workflow, including machine learning-based identification of the HF-related network-clusters, and 

regression-based discovery of the HF-related lipid patterns within these clusters. If available, 

significant findings were externally validated in a subsample of the EPIC-Potsdam cohort (2414 

at-risk-participants, including 87 incident HF-cases).

After confounder-adjustments, two lipids were significantly associated with HF risk in both 

cohorts: ceramide 16:0 (HR per SD in PREDIMED 1.28, 95%CI 1.13, 1.47) and 

phosphatidylcholine 32_0 (HR per SD in PREDIMED 1.23, 95%CI 1.08, 1.41). Additionally, lipid 

patterns in several network clusters were associated with HF risk in PREDIMED. Adjusted for 

standard risk factors, an internally cross-validated score based on the significant HF-related lipids 

that were identified in the network analysis in PREDIMED was associated with a higher HF risk 

(20 lipids, HR per SD 2.33, 95%CI 1.93, 2.81%). Moreover, a lipid score restricted to the 

externally available lipids was significantly associated with HF incidence in both cohorts (6 lipids, 

HRs per SD 1.30, 95%CI 1.14, 1.47 in PREDIMED, and 1.46, 95%CI, 1.17, 1.82 in EPIC-

Potsdam).

Conclusions: Our study identified and validated two lipid metabolites and several lipidomics 

patterns as potential novel biomarkers of HF risk. Lipid profiling may capture preclinical 

molecular alterations that predispose for incident HF.

Graphical Abstract
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INTRODUCTION

Heart failure (HF) is a life-threatening disease, which in 2017 affected over 37 million 

individuals worldwide (1), and incidence rates are rising (2). The complex clinical syndrome 

is characterized by the inability of the heart to generate the output to meet physiological 

demands (reduced ejection fraction) or adequate cardiac output but only through 

compensatory neuro-humoral stimulation (preserved ejection fraction). Etiologically, 

idiopathic HF cases in older people are generally attributable to either one of the three major 

causes: coronary artery disease (CAD), pressure overload, and type 2 diabetes (T2D) (2). 

However, all types of HF confer a substantial burden to health-care systems and drastically 

impair the quality of life (3). Therefore, effective prevention strategies are urgently needed.
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Epidemiological studies have established several risk factors for incident HF (4). Besides 

age and sex, the risk factors mostly comprise prevalent comorbidities, i.e., CAD, atrial 

fibrillation, T2D, hypertension, and chronic diseases of the lung and the kidney (4). At the 

molecular level, NTpro-BNP is an established HF-predictor but rather reflects activated 

compensation of decreasing cardiac performance (5). Other biomarkers are closely linked to 

the HF-related co-morbidities (4). Recently, the research interest shifted towards identifying 

biomarkers of pathophysiological processes in early HF-development (6).

The human heart has a continuously high energy demand. However, the failing heart is 

incapable of consistently generating the required energy for its adequate function. Among 

the potential molecular mechanisms, lipids are of central importance for short-term 

metabolic flexibility of the heart, and lipotoxic compounds could be a key factor that link 

metabolic stress to persistent damage in the myocardial tissue (7). In animal models, plasma 

lipidomic signatures reflect alterations in cardiac lipid metabolism that predispose for HF 

incidence (8). Moreover, disturbed lipid metabolism is indirectly connected to HF through 

the common comorbidities, including CAD (9) and T2D (10).

Evidence on the link between comprehensive lipid profiling data in humans and HF 

incidence is lacking. Here we present findings from a prospective case-control study nested 

within the PREDIMED (PREvención con DIeta MEDiterránea) trial (11, 12), in which we 

evaluated the association of baseline targeted lipidomics profiles with the risk of developing 

HF. Our lipidomics approach primarily targeted glycerophospholipids (PLs), sphingolipids 

(SLs), plasmalogens (PLGs), cholesterol esters (CEs), and tri-, di- and monoacylglycerols 

(TAGs, DAGs, and MAGs), as well as some specific signaling lipids. We explored single 

lipids as risk factors for HF incidence. We also generated a data-driven lipidomics network 

and investigated whether simultaneous consideration of network-based lipid clusters 

revealed additional associations between the baseline lipidomics profiles and future HF 

incidence. Finally, we evaluated the external validity of our findings in the European 

Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort.

METHODS

Expanded Methods are available online in the Supplemental Material.

Data availability.

The authors will be happy to provide access to the PREDIMED dataset (including data 

dictionaries), making possible the replication of the main analyses used for the present 

article. Due to the restrictions imposed by the Informed Consent and the Institutional 

Review Board, bona fide investigators interested in analyzing the PREDIMED dataset used 

for the present article may submit a brief proposal and statistical analysis plan to the 

corresponding authors. Upon approval from the PREDIMED Steering Committee and 

Institutional Review Boards, the data will be made available to them using an onsite secure 

access data enclave
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Study populations.

The PREDIMED study was a multi-center dietary intervention trial that included 7,447 

participants in three intervention arms (11, 12). The discovery analyses in PREDIMED 

included 331 participants with available blood samples and incident HF during an extended 

follow-up period (recruitment between June 2003 and June 2009, censoring date December 

31st, 2017). For each case, between 1 and 3 controls were randomly selected from all 

participants at risk at the date of HF-diagnosis (incidence density sampling), matched by 

recruitment center, year of birth (± 5 years), and sex (n = 507controls, Online Figure I). The 

median follow-up time was 12y (IQR 9.9y-12.9y) among controls, and 7.2y (IQR 4.8y-9.7y) 

among cases. The study protocols were approved by the institutional review boards at all 

study locations (PREDIMED), and the Harvard TH Chan School of Public Health 

(PREDIMED case-control subproject). All participants gave written, informed consent.

The EPIC-Potsdam cohort included 27,548 participants (16,644 women and 10,904 men), 

recruited between 1994 and 1998 from the general population within the age range of 35–65 

years (13). The replication analyses in EPIC-Potsdam were based on nested case-cohorts for 

cardiovascular disease (CVD) and T2D with available lipidomics data, including a random 

subsample (subcohort, n=1,262), all participants with incident T2D (n = 820) and all 

participants with incident primary CVD (n = 583). From the 2414 at-risk-participants, 87 

developed incident HF during follow-up. The median follow-up time was 8.4y (IQR 

7.6y-9.3y) among participants without incident HF, and 5.9y (IQR 3.2y-7.4y) among 

participants with an incident event. The study was approved by the Ethics Committee of the 

State of Brandenburg, Germany (EPIC-Potsdam). All participants gave written, informed 

consent.

The baseline examination in both studies included assisted assessment of prevalent diseases 

(including T2D and hypertension), education, smoking, and medication (14) in interviews 

and with validated questionnaires. Anthropometric variables and blood pressure were 

assessed by qualified medical personnel in the study centers (Online Note I).

Targeted plasma lipid profiles.

In PREDIMED, baseline blood samples were taken after an overnight fast by trained study 

personnel according to a standard protocol, fractioned, and the EDTA plasma was stored at 

−80°C in deep freezers. At the Broad Institute (Cambridge, MA, US), profiles of plasma 

polar and nonpolar lipids were assessed using a Nexera X2 U-HPLC system (Shimadzu 

Scientific Instruments; Marlborough, MA) coupled to an Exactive Plus orbitrap mass 

spectrometer (Thermo Fisher Scientific; Waltham, MA, US). In EPIC-Potsdam, blood was 

sampled by medical personnel (most participants did not fast before). The lipidomics data 

was generated with Metabolon (Morrisville, US) using the Metabolon® Complex Lipid 

Panel (Online Note II).

Ascertainment of heart failure.

In the PREDIMED study, HF was a prespecified secondary endpoint and the uniform 

diagnostic criteria were based on the 2005 guidelines on the diagnosis and treatment of acute 

and chronic HF of the European Society of Cardiology (15, 16). Both cohorts, PREDIMED 
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and EPIC-Potsdam, used multiple sources for detection of incident HF, including medical 

records of all participants and consultation of the National Death Index (PREDIMED) and 

self-reports, death certificates, adhoc reviews of medical charts (PREDIMED), linkage to 

hospital records, and hints from other reported diseases or pharmacological treatments 

(EPIC-Potsdam). Potential cases of incident HF were validated by physicians. This study 

only included physician-verified incident HF (I50 of International Classification of Diseases, 

10th revision) during the follow-up period (Online Note III).

Statistical analysis.

For lipids with a fraction of missingness below 0.25, we imputed missing values with half 

the minimal measured value. The inverse normal transformation, which generates a rank-

based standard normal distribution (mean=0, SD=1), was applied to all lipid metabolites. We 

use the following annotation: XX_Y (XX = carbon atoms, Y = double bonds) for the 

number of carbon atoms and desaturations across several fatty acid- (FA)-residues; XX:Y for 

the number of carbon atoms and desaturations per single acyl chain.

Conditional logistic regression.

For conditional logistic regression analyses in PREDIMED, we used the clogit function in 

the survival R-package (https://CRAN.R-project.org/package=survival), stratifying by the 

matching identifier. We used the Efron-approximation (17) for partial likelihood estimators. 

According to the incidence density sampling (sampling with replacement), robust standard 

errors were generated clustering by the participant IDs. The overall model fit was evaluated 

with the robust score test (18).

Network and clustering.

To generate the lipidomics network, we used the conditional independence-based PC-

algorithm (19). The algorithm was applied to the same lipidomics data in two nested case-

control studies in the PREDIMED-trial. Then, we retained only edges that corresponded to 

partial correlations >0.1 in both case-control studies to generate a robust, biologically 

meaningful network (20, 21). In this network, we detected clusters with the walktrap-

algorithm in the igraph R-package (http://igraph.org/).

Random forest-based evaluation of cluster importance.

We performed a machine-learning-based selection of the most important lipid clusters for 

HF prediction. To keep the matched case-control design, we prepared the lipidomics data by 

calculating deviations from matching-strata-specific means (22) and grew a random forest 

for HF-prediction (500 trees, sampling rate of 2/3) (23). Then, we evaluated the importance 

of lipid clusters for HF prediction in the out-of-bag sample. To this end, we assessed the 

predictive performance of the random forest model based on information on the full 

lipidomics data as compared to the lipidomics data with the joint permutation of lipid 

variables in each of the clusters (24). Clusters were ranked by the extent to which omitting 

the information in their variables hampered the predictive performance, with the largest 

increase in prediction error corresponding to the highest cluster importance.
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Determining significant HF-predictors within important clusters.

To select the lipid patterns for high cluster importance, for each of the most important 

clusters, we simultaneously included all cluster-variables in a conditional logistic regression 

model with the model specification as described above. Then, we gradually removed the 

non-informative variables according to the highest p-value, until only significant (p-value 

<0.05) HF predictors remained (backwards selection) (25).

We also combined significant predictors across clusters into beta coefficient-weighted sum 

scores. Score1 was based on all selected within-cluster predictors of incident HF in 

PREDIMED. To derive the internally validated beta coefficients, we used 10-fold cross-

validated elastic net regression [(26), (https://CRAN.R-project.org/package=clogitL1]. 

Score2 was based on externally validated within-cluster predictors, using the backwards 

selection as described above.

All the p-values in PREDIMED- analyses were derived from two-sided tests. An alpha-level 

of 0.05 was considered statistically significant. Where applicable we adjusted for multiple 

testing by controlling the false discovery rate (FDR) (27).

Validating the PREDIMED-discoveries in the EPIC-Potsdam cohort.

For lipids with two or more FA-residues, the lipidomics data in EPIC-Potsdam was more 

specific in terms of carbon atoms and desaturations contained in the single acyl-chains. 

Therefore, we first summed all lipids in EPIC-Potsdam corresponding to the sum formula in 

PREDIMED (Online Note IV). If the HF risk association was replicated on the sum level, 

we also evaluated which of the underlying lipids in EPIC-Potsdam drove the association. To 

this end, we simultaneously included all the EPIC-Potsdam lipids that matched the sum 

formula in PREDIMED and selected the most significant predictors using a backwards 

procedure.

HF risk associations in the EPIC-Potsdam cohort were assessed in Cox proportional hazards 

regression models, with age as the underlying time scale, applying the coxph function of the 

survival R-package (https://CRAN.R-project.org/package=survival). Ties were handled 

using the Efron method (17), and we used robust variance estimators clustering by 

participants’ ID. All models accounted for age and sex, as strata variables; further 

adjustments were similar to the models in PREDIMED. We considered directionally 

consistent (as compared to PREDIMED) estimates with a one-tailed p-value <0.05 as 

significant replications.

RESULTS

Descriptive statistics.

Overall, the PREDIMED-trial consisted of participants at increased cardiovascular risk due 

to a high prevalence of adiposity, T2D, and hypertension. Compared to the age- and sex-

matched controls, participants with incident HF tended to have a higher BMI, and prevalent 

T2D and hypertension were more frequent among them (Table 1). Slight difference in the 

proportion of women between cases and controls arose from the varying number of controls 
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per case. Compared to the PREDIMED sample, the included EPIC-Potsdam participants 

were younger, had a lower BMI (although overweight and obesity were also common), 

tended to have higher educational attainment and were more likely to be former or current 

smokers, but less likely to have prevalent T2D and hypertension (Online Table I). Over 97% 

of the PREDIMED participants and over 99.9% of the EPIC-Potsdam participants were 

white Europeans. Based on the covariance structure of the lipidomics data, we constructed a 

conditional independence lipid network with 26 densely connected clusters (Online Figure 

II).

Single lipid-HF associations.

After controlling the FDR (<0.05), only ethanolamide (EA) 18:1 was significantly 

associated with HF risk (RR 1.38, 95%CI 1.21, 1.57) in the minimally adjusted model. 

Further adjustment for other HF risk factors, namely prevalent T2D and hypertension at 

baseline, educational attainment, family history of early CAD, smoking, BMI, and 

intervention group attenuated the association (1.26, 95% CI 1.09, 1.46, FDR 0.066). This 

effect attenuation was largely observed after simultaneous adjustment for T2D and BMI, 

while the other factors played a minor role.

In addition, 26 lipids were marginally significantly associated with HF risk but with FDR > 

0.05 (Online Table II), from which 15 were available in EPIC-Potsdam. Controlling for age 

and sex, 8 of these lipids were directionally consistently and significantly associated with 

HF risk in EPIC-Potsdam. Six of these 8 replicated associations were rendered non-

significant after further adjustment for the other HF risk factors in PREDIMED, with similar 

effect attenuation in EPIC-Potsdam (Online Table III). However, the HF-associations of 

diacyl-phosphatidylcholine (PC) 32_0 and ceramide (CER) 16:0 were robust against these 

adjustments in both cohorts (Table 2). In both models, the FDR for these two lipid 

metabolites was significant (<0.05) after adjusting for the fifteen tested lipid metabolites in 

the replication study (Online Table III). Further adjustment for prevalent dyslipidemia 

(PREDIMED) or HDL- and total cholesterol and total TAGs (EPIC-Potsdam) did not 

attenuate the associations (Online Table IV). Leveraging the higher FA-resolution of the 

isomeric lipids in EPIC-Potsdam, we found that the association of PC 32_0 with HF risk 

was mainly attributable to PC 16:0/16:0 (Table 2).

Lipid network-HF associations.

We ranked the lipid network-clusters according to the joint importance of the cluster-

variables for HF-prediction in a random forest model. Within each of the 8 top-ranking 

clusters, backwards selection identified a subset of lipids that were significantly associated 

with HF risk in PREDIMED: cluster 1, EA 16:1+MAG 16:1; cluster 2, seven SLs; cluster 3, 

2 long-chain saturated fatty acid (SFA)-containing PCs; cluster 4, six PLs; cluster 5, one 

DAG with lc-SFA; cluster 6, five PLGs, cluster 7, two DAGs with unsaturated FA; and, 

cluster 8, four TAGs (Table 3 and Online Table V). Although not all the selected lipids were 

available, for 6 out of 8 clusters the best corresponding model was also significantly 

predictive for HF incidence in EPIC-Potsdam (Table 3).
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By simultaneously considering the cluster-based lipid groups we detected the following 

lipid-HF risk associations in PREDIMED and replicated them in EPIC-Potsdam: CER 16:0, 

and sphingomyelin (SM) 18:0 (higher HF risk), and SM 18:1 (lower HF risk) in cluster 2; 

PC 32_0 (higher HF risk, attributed to PC 16:0/16:0 in EPIC-Potsdam) in cluster 3; PC 34_2 

(higher HF risk, attributed to PC 18:1/16:1 in EPIC-Potsdam) in cluster 4; 

phosphatidylethanolamine- (PE-)PLG 36_1 (higher HF risk, attributed to PE-PLG 18:0/18:1 

in EPIC-Potsdam) and PE-PLG (lower HF risk, attributed to PE-PLG 18:1/22:6 in EPIC-

Potsdam) in cluster 6; DAG 34_1 (higher HF risk, attributed to DAG 16:1/18:0 in EPIC-

Potsdam) in cluster 7; and, TAG 55_2 and TAG 56_5 1 (higher HF risk, attributed to TAG 

55_2-fa18:1 and TAG 56_5-fa16:0 in EPIC-Potsdam), and TAG 58_7 (lower HF risk, 

attributed to TAG 58_7-fa16:0 in EPIC-Potsdam) (Table 4, Figure 1, and Figure 2). All 

replicated lipids were consistently associated with HF risk if we used the sum of all isomeric 

lipids in EPIC-Potsdam (Online Table VI) instead of selecting the strongest predictor among 

all possible matches.

Several lipid-HF risk associations in PREDIMED were not replicated in EPIC-Potsdam. 

Cluster 1 contained two oppositely directed predictors in PREDIMED, MAG 16:1 (lower 

HF risk) and EA 16:1 (higher HF risk); the latter was not available in EPIC-Potsdam and 

MAG 16:1 was not significantly associated with HF risk without adjustment for EA 16:1, in 

neither of the cohorts. Cluster 5 contained a single significant predictor, DAG 36_0, which 

was not available in EPIC-Potsdam (Online Table V). The external validity of the risk 

associations of six lipids, namely, EA 16:1, SM 16:1, PE-PLG 34_3 and PE-PLG 42_11 

(higher HF risk), and DAG 36_0 and PC-PLG 36_2 (lower HF risk), could not be tested 

because these lipids were not available in the lipidomics dataset in EPIC-Potsdam (Online 

Table V). Moreover, the network cluster-based analysis suggested 12 HF predictors in 

PREDIMED that were not statistically significantly associated with HF risk in EPIC-

Potsdam (Online Table V).

Network-based lipid scores and HF risk.

Out of the 29 significant within-cluster predictors, 20 were selected as independent HF 

predictors based on cross-validated elastic net regression: EA 16:1, MAG 16:0, CER 16:0, 

SM 16:1, CER 24:1, SM 24:0, SM 24:1, PC 32_0, LPC 16:1, PC 30_1, PC 34_2, PE 38_2, 

PI 38_4, DAG 36_0, PEPLG 34_3, PC-PLG 36_2, PE-PLG 40_7, PE-PLG 42_11, TAG 

56_5, TAG 58_7. We summarized the HF association of these lipids in a sum score, 

weighted with the cross-validated betas (Score1). Higher Score1 points were associated with 

markedly increased HF risk (RR per SD 2.38, 95%CI 1.99, 2.85). Adjustment for the 

prevalence of T2D, hypertension, BMI, family history of CVD, intervention group, and 

smoking status did not alter the association of Score1 with HF incidence (RR per SD 2.33, 

95%CI 1.93, 2.81) (Table 5), and no test for interaction by one of these covariables was 

statistically significant (data not shown).

We also selected 6 mutually independent HF-predictors from the 11 within-cluster predictors 

that were replicated in EPIC-Potsdam (PEPLG 36_1, TAG 56_5, TAG 40_7, TAG 55_2, 

DAG 34_1, and PC 32_0) and constructed a score, weighted with the beta coefficients in 

PREDIMED (Score2). Higher Score2 was consistently associated with increased HF risk in 
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PREDIMED (RR per SD 1.39, 95%CI 1.24–1.57) and in EPIC-Potsdam (RR per SD 1.55, 

95%CI 1.25–1.93) (Table 5). The association of the replicated Score2 in PREDIMED was 

only slightly attenuated after adjustment for all these risk factors (RR per SD 1.30, 95%CI 

1.14, 1.47). This modest effect attenuation was mostly attributable to adjustment for baseline 

BMI, and none of the tests for multiplicative interaction was significant. In EPIC-Potsdam, 

adjustment of the Score2-HF risk association for the analogous covariables had comparably 

small impact on the effect estimate (RR per SD 1.46, 95% CI 1.14, 1.86) (Table 5).

Sensitivity analyses.

We adjusted the scores for standard lipid markers (prevalence of dyslipidemia in 

PREDIMED, total and HDL-cholesterol and total TAGs in EPIC-Potsdam), which had no 

appreciable effect on the risk estimates (Online Table VII). We also evaluated whether the 

marked difference in effect sizes between Score1 (based on all within-cluster hits in 

PREDIMED) and Score2 (based only on the lipids that were available and replicated in 

EPIC-Potsdam) was rather attributable to the lack of information (lipids not available in 

EPIC-Potsdam) or to the failed replications. To this end, we used the same workflow as for 

Score1 (10-fold cross-validated elastic net regression) to construct another score in 

PREDIMED, but removing EA 16:1, SM 16:1, DAG 36_0, PC-PLG 36_2, PE-PLG 34_3, 

PE-PLG 42_11 from the lipid set because we had no corresponding measurements in EPIC-

Potsdam. In PREDIMED, the cross-validated lipid score based on lipids available in EPIC 

(regardless of the replication results) was associated with a RR for HF of 1.46 (1.30, 1.63) 

per SD, a rather minor difference compared to the risk estimate of the replicated Score2.

Moreover, we assessed the HF risk association of the main lipid markers (CER 16:0, PC 

32_0, Score1, and Score2) across strata according to diet intervention group. For all selected 

lipid markers, the HF risk estimates were very similar across the intervention groups (Online 

Table VIII). Excluding the 35 participants who developed HF during the first three years of 

follow-up in PREDIMED (lag-time analysis) had no appreciable effects on the HF risk 

estimates of the main lipid markers. The confounder-adjusted HRs per SD (95%CI) were: 

CER 16:0, 1.27 (1.12, 1.45); PC 32_0, 1.24 (1.07, 1.44); Score1, 2.21 (1.80, 2.72) and 

Score2 1.24 (1.07, 1.42). Excluding the 21 PREDIMED-participants who developed HF 

after an acute myocardial infarction had negligible effects, rendering the following 

confounder-adjusted HR per SD (95%CI): CER 16:0, 1.24 (1.08, 1.43); PC 32_0, 1.28 (1.10, 

1.48); Score1, 2.20 (1.82, 2.67) and Score2 1.30 (1.13, 1.49).

DISCUSSION

In this prospective HF case-control study nested within the PREDIMED trial, we assessed 

baseline concentrations of 216 targeted lipids. The associations of CER 16:0 and PC 32_0 

with higher HF risk were robust against confounder adjustment and externally replicated in 

the EPIC-Potsdam cohort, where auxiliary analyses attributed the latter association to PC 

16:0/16:0. We also discovered eight HF-related lipidomics network clusters in PREDIMED: 

EA 16:1+MAG 16:1; seven SLs; two long-chain SFA-containing PCs; six PLs; five PLGs; 

three DAGs from two distinct clusters; and four TAGs. Albeit not all the lipids were 

available, for six out of eight patterns, the best-matching models also significantly predicted 
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HF incidence in EPIC-Potsdam. After adjustment for other HF risk factors, a cross-validated 

lipid score based on all the significantly HF incidence-related lipids in PREDIMED was 

associated with a 133% (95%CI 93%−185%) higher HF risk per SD. A lipid score restricted 

to the externally available and replicated lipids was also associated with HF incidence, 30% 

(95%CI 14%−47%) higher risk per SD in PREDIMED and 46% (95%CI 17%−82%) higher 

risk per SD in EPIC-Potsdam.

Our results linked enrichment of palmitate-containing lipids (PC16:0/16:0 and CER16:0) to 

higher HF risk, robust against adjustment for other risk factors for HF and classical blood 

lipid markers. The simultaneous analysis of interconnected lipid groups corroborated these 

findings and further identified metabolites with palmitoleic acid (C16:1) and stearate 

(C18:0) in several lipid classes (SMs, PCs, PLGs, and DAGs) as markers for higher HF risk. 

To our knowledge, this is the first study that links a lipidomics screen in disease-free 

participants to future HF incidence. Previous targeted assessments of a limited number of 

SLs consistently detected elevated HF risk with high CER 16:0 plasma concentrations (28, 

29). However, these studies did not measure the SMs 16:1 and 18:0, which we identified as 

complementary high-risk-markers. A FA-profiling study in men linked high relative 

palmitate abundance and a high C16:1/C16:0-ratio in plasma phospholipids to higher HF 

risk (30). We assessed higher HF-risk with high concentrations of C16:0- and C16:1-

containing lipids, namely PCs 16:0/16:0 and 18:1/16:1 and DAG 16:1/18:0, which is overall 

coherent but more specific than the previous reports.

We observed associations of very-long-chain-FA-containing SLs (CER 24:1, SM 24:0, and 

SM 24:1) with lower HF risk in PREDIMED when models were mutually adjusted for high-

risk SLs. Consistently, higher plasma concentration of CER 24:0 (28) and SM 24:0 (29) 

were associated with lower HF risk in other studies, also dependent on simultaneously 

accounting for the high-risk SLs, and high relative lignoceric acid (C24:0) abundance in 

total circulating plasma lipids was related to lower HF risk (31). However, the SL-studies did 

not measure SM C18:1, for which we replicated the inverse HF risk association in the EPIC-

Potsdam cohort. On the pattern-level, we further discovered and replicated lower HF risk 

associated with the polyunsaturated FA (PUFA)-containing lipids PE-PLG 18:1/22:6 and 

TAG 58_7-fa16:0. Several lines of research link PUFAs to HF incidence (32–34), but the 

evidence was hitherto not specific in terms of their localization in lipid classes. Metabolites 

from the same lipid classes with shorter acyl chains and fewer double-bonds (PE-PLG 

18:0/18:1; TAG 55_2-fa18:1, TAG 56_5-fa16:0) were associated with higher HF risk in 

PREDIMED and EPIC-Potsdam. To our knowledge, this was the first analysis that linked 

PLG- and TAG-profiles to HF incidence.

Distinct reasons may explain why some PREDIMED-findings were not replicated in EPIC-

Potsdam. The probability of false discoveries among the replicated associations is very low, 

but a considerable fraction of the non-replicated marginally significant HF risk-associations 

in PREDIMED were probably due to chance. However, some of the divergent associations 

may also reflect differences in the source populations between both cohorts, for example, in 

terms of genetic background, diet, lifestyle, and socio-economic background (as reflected in 
the marked differences in the distribution of highest educational attainment); or differences 

between the applied lipidomics platforms.
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The different platforms certainly precluded the replication of lipids that were not assessed in 

EPIC-Potsdam. For example, EA 16:1, SM 16:1, DAG 36_0, and several PLGs were integral 

components of the HF-related lipid clusters in PREDIMED with no available measurements 

in EPIC-Potsdam. In the replication-analyses, this may have also compromised the 

sensitivity for the associations of other lipids within the same pattern. Overall, it is 

remarkable that, despite the different lipidomics platform used in EPIC-Potsdam, most 

model-associations were replicated on the lipid pattern-level.

We summarized the joint effect of the selected lipid-patterns on HF-risk in weighted scores. 

Score1 was based on all the significant within-cluster predictors in PREDIMED, deriving 

beta weights with cross-validated elastic net regression to avoid overfitting. While this 

should have produced internally robust risk estimates, we could not test the external 

generalizability of the very strong association (138% higher HF risk per SD). Score2 relied 

on the replicated lipids only, a conservative approach. In both cohorts, higher Score2 was 

associated with a markedly increased HF risk, 39% per SD in PREDIMED, and 55% per SD 

in EPIC-Potsdam. The slightly stronger estimate for Score2 in EPIC-Potsdam suggests 

advantages of the more specific measurements for isomeric lipids for risk assessment in the 

replication cohort.

Our sensitivity analyses revealed that the marked difference in risk estimates between 

Score1 and Score2 was almost entirely attributable to removing the six lipids that were not 

assessed in EPIC-Potsdam. These results underpin that our multi-marker approach relied on 

simultaneous information on all components. In lipid metabolism, metabolically closely 

related compounds can have opposite systemic effects, for example initiating versus 

resolving inflammatory responses, likely producing divergent disease associations of closely 

correlated metabolites. Such interdependent risk relations are only detectable with statistical 

workflows that consider interrelated lipids simultaneously.

Independent of the underlying cause, decreased FA-oxidation is a major metabolic 

characteristic of the failing heart (35). The selection of palmitate-containing lipids as 

markers for high HF risk is coherent with cardiac lipotoxic effects of palmitate in 

mechanistic studies (36). The plasma lipidome might integrate information on the heart’s 

metabolic flexibility and the circulating substrate availability, possibly reflecting the 

myocardial susceptibility to lipotoxic damage. Furthermore, palmitate-containing lipid 

metabolites, particularly CER 16:0, were implicated in systemic inflammatory and 

metabolic signaling (37), which regulate cardiac remodeling and contractile mechanics and 

are, therefore, critical in heart failure progression (38). Plasma lipid profiles were also linked 

to T2D and CAD (9, 10, 39, 40), which are among the major underlying conditions of HF. 

For example, we have previously shown an association of CER 16:0 with higher CVD-risk 

in PREDIMED (41).Therefore, part of the HF-related lipid profiles may reflect general 

cardiometabolic health, which is linked to HF risk through mediating clinical conditions.

From a translational point of view, lipid-based multi-biomarker panels may capture 

information on common etiological mechanism of several important cardiometabolic 

endpoints. In addition to the above-discussed link to cardiometabolic risk, lipid profiles 

reflect individual traits including genome and microbiome and environmental disease 
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determinants including the diet. The PREDIMED trial and other studies have demonstrated 

that lipid profiles are modifiable through dietary interventions (41, 42). However, the 

Mediterranean diet intervention in the PREDIMED study did not substantially affect HF risk 

and, concordantly, the risk associations of the selected lipid profiles did not differ between 

the dietary intervention arms. Studies are warranted that investigate if other diet and lifestyle 

interventions affect the HF-associated lipid metabolites, and in turn possibly prevent HF 

incidence (16).

Several limitations of this study must be acknowledged. The HF diagnosis was based on the 

2005 (time of study design) guidelines of the European Society of Cardiology (15, 16). Ever 

since, the diagnostic criteria for HF have been refined, and future studies should investigate 

whether the updated case definition affects the risk association of the selected lipid 

metabolites. However, more specific HF detection is expected to strengthen true risk 

associations. It would also be interesting to evaluate if the prospective associations for the 

selected lipids differ between types of HF (for example, preserved vs. reduced ejection 

fraction), but this information was not available for many of HF cases in the PREDIMED 

trial. Moreover, we used different lipidomics platforms in the discovery and the replication 

cohort. The effect attenuation of the replicated score due to missing information on some 

lipids was discussed above. But for the remaining lipids, our results suggest the robustness 

of measurements despite different laboratories and analytical platforms, both important 

preconditions for clinical implementation. Still, replicability studies are warranted to 

systematically investigate the comparability of lipidomics measurements between two of the 

most frequently used platforms. Our study relied on moderate sample-sizes. We used a 

statistical workflow that included resampling and cross-validation to avoid overfitting in the 

discovery cohort, and we externally validated our main findings, indicating their 

generalizability. We also increased the sensitivity for true associations by considering data-

driven lipid groups. However, similar studies with higher statistical power may find 

additional robust HF-risk-associations among the lipids that we analyzed. Moreover, 

investigation of the generalizability of our findings to other races and ethnicities is warranted 

as we only demonstrated external validity of our findings in middle-aged to older, white 

populations.

In summary, we identified specific lipid metabolites and lipidomics patterns that were 

significantly associated with future HF risk in two independent cohorts. The available 

evidence on the role of lipid metabolism and lipotoxicity in HF pathogenesis suggests that 

the identified lipidomics traits reflect early molecular mechanisms of HF development. 

Another possible underlying mechanism connects the identified lipids to HF incidence 

through mediating cardiometabolic conditions, including T2D and CAD. Our results suggest 

that lipid profiling may provide novel tools for HF risk prediction and risk stratification and 

thus facilitate personalized prevention efforts.
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Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations

CAD coronary artery disease

CE cholesterol ester

CER ceramide

CVD cardiovascular disease

DAG diacylglycerol

EA ethanolamide

EPIC European Prospective Investigation into Cancer and Nutrition

FA fatty acid

FDR false discovery rate

HF heart failure

MAG monoacylglycerol

PC diacyl-phosphatidylcholine

PE phosphatidylethanolamine
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PLG plasmalogen

PL glycerophospholipid

PREDIMED PREvención con DIeta MEDiterránea

PUFA polyunsaturated fatty acid

SFA saturated fatty acid

SL sphingolipid

SM sphingomyelin

T2D type 2 diabetes

TAG triacylglycerol
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NOVELTY AND SIGNIFICANCE

What Is Known?

• Disturbed lipid metabolism was implicated in the pathogenesis of chronic 

heart failure through in vitro studies and animal models.

• Plasma lipidomics profiles were associated with prevalent heart failure in 

cross-sectional studies.

What New Information Does This Article Contribute?

• Baseline plasma concentrations of two palmitate-containing lipid metabolites 

(phosphatidylcholine C16:0/C16:0 and ceramide C16:0) were associated with 

a higher risk of subsequent heart failure.

• Lipidomics network clusters that included sphingolipids, two diacyl 

phosphatidylcholine-containing clusters, plasmalogens, diacylglycerols, and 

triacylglycerols were associated with the risk of developing heart failure.

• Lipid scores based on the clusters were associated with a markedly higher 

heart failure risk.

A link between plasma lipid profiles and heart failure risk is supported by cross-sectional 

investigations and experimental evidence. However, prospective human studies that relate 

comprehensive lipidomics screens to the risk of developing heart failure were lacking. 

Herein, we showed that baseline plasma concentrations of diacyl phosphatidylcholine 

C16:0/C16:0 and ceramide C16:0 were associated with higher heart failure risk in two 

independent cohorts. We also demonstrated that considering a data-driven lipidomics 

network revealed additional associations of interrelated lipid clusters with heart failure 

incidence. In clusters of sphingolipids, diacyl phosphatidylcholines, plasmalogens, 

diacylglycerols, and triacylglycerols, we detected patterns of lipid metabolites that were 

significantly associated with heart failure risk. The weighted combination of the selected 

lipid predictors resulted in scores that were strongly associated with heart failure risk. 

Our study establishes for the first time a link between circulating lipidomics profiles at 

baseline and subsequent occurrence of heart failure. Our results encourage mechanistic 

studies into the biological role of the selected lipid predictors in heart failure etiology and 

suggest that lipid metabolites may improve risk prediction and facilitate risk stratification 

for targeted heart failure prevention.
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Figure 1: 
Lipidomics network – selected clusters 1 to 4 and HF risk. Colored border: HF risk 

association in PREDIMED; Colored filling: HF risk association in EPIC-Potsdam; Grey 
filling: not available in EPIC-Potsdam; Edge-width: partial correlation strength between 

lipids, adjusted for all other lipids.
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Figure 2: 
Lipidomics network – selected clusters 5 to 8 and HF risk. Colored border: HF risk 

association in PREDIMED; Colored filling: HF risk association in EPIC-Potsdam; Grey 
filling: not available in EPIC-Potsdam; Edge-width: partial correlation strength between 

lipids, adjusted for all other lipids.
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Table 1:

Descriptive statistics of matched heart failure case-control samples in the PREDIMED

Characteristics Controls (n=507) Cases (n=331)

Age [years] 72 (66, 75)* 71 (65, 75)

Women 55% 59%

BMI [kg/sqm] 29.2 (26.9, 31.8) 30.8 (28.5, 33.5)

Highest education

 Primary school 83% 85%

 Sec./high school 11% 11%

 College/higher 6% 4%

Smoker

 Never 62% 60%

 Former 11% 14%

 Current 27% 25%

Family history of CAD 19% 19%

Prevalent T2D
† 51% 59%

Prevalent HT
‡ 84% 88%

Diet intervention group
§

 Low-fat (control) 37% 37%

 MedDiet+EVOO 37% 31%

 MedDiet+nuts 26% 32%

*
Median (IQR), all such values

†
T2D: type 2 diabetes

‡
HT: hypertension;

§
Participants were randomly assigned to one of three long-term intervention diets: low-fat (control), Mediterranean Diet (MedDiet) enriched with 

extra-virgin olive oil (+EVOO) or with nuts (+nuts).
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Table 2:

Single lipid associations with heart failure risk

PREDIMED EPIC-Potsdam

Model Lipid RR (95% CI)* p-value† Matched lipid‡ RR (95% CI)* p-value
||

M1 PC32_0 1.21 (1.07, 1.36) 0.00180 PC 16:0/16:0 1.49 (1.19, 1.86) 0.00024

M2 1.23 (1.08, 1.41) 0.00224 1.43 (1.14, 1.8) 0.00101

M1 CER16:0 1.20 (1.07, 1.34) 0.00226 CER 16:0 1.60 (1.29, 1.99) 1.2E-05

M2 1.28 (1.13, 1.47) 0.00017 1.48 (1.17, 1.87) 0.00048

Two lipids were significantly (p-value<0.05) associated with HF risk in PREDIMED, and the association was replicated in EPIC-Potsdam in both, 
a minimally adjusted model (M1, adjusted for age, sex, and study center if applicable) and a confounder-adjusted model (M2, additionally adjusted 
for T2D- and hypertension prevalence, BMI, smoking status, educational attainment, family history of early CAD, and intervention group if 
applicable).

*
In PREDIMED, the relative risks (RR) correspond to OR from a conditional logistic regression model.

†
Two-tailed p-value in PREDIMED.

‡
For isomeric lipids with multiple matches in EPIC-Potsdam, the best predictor among these lipids was selected according the lowest p-value 

(backwards selection).

§
In EPIC-Potsdam, RRs correspond to hazard ratios from a Cox model.

||
One-tailed p-value in EPIC-Potsdam (testing for directionally consistent estimates only).
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Table 3:

Most important network clusters for heart failure prediction

PREDIMED
†

EPIC-Potsdam
‡

Rank* Cluster-characteristic Lipids df Model P df Model P

1 MAGs & EA 16:1 2 0.00272 1 0.44730

2 Sphingolipids 7 5.4E-08 6 0.00022

3 PCs with long-chain SFAs 2 0.00051 2 0.00068

4 Phospholipids 6 3.2E-09 0.04645

5 DAGs with long-chain SFA 1 0.00485 - -

6 Plasmalogens 5 0.00012 2 0.00248

7 DAGs with unsaturated FAs 2 0.00014 2 0.02490

8 TAGs with long-chain FA 4 0.00158 4 3.2E-06

*
Cluster ranks correspond to the joint cluster-variable importance in a random forest model.

†
PREDIMED, df (degrees of freedom): number of retained significant HF-predictors; model P: robust score test-based p-value for the model fit.

‡
EPIC-Potsdam, df: number of PREDIMED-selected HF predictors available for replication; model P:log-likelihood test-based p-value for the 

model fit.
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Table 4:

Lipid clusters and heart failure incidence

PREDIMED EPIC-Potsdam

Model Lipid RR (95% CI)* p-value†
Matched lipid

‡
RR (95% CI)

§
p-value

||

Cluster 2: Sphingolipids

M1 CER16:0 1.24 (1.06, 1.46) 0.00777 CER16:0 1.81 (1.24, 2.63) 0.00102

M2 1.27 (1.06, 1.51) 0.00848 1.72 (1.14, 2.6) 0.00507

M1 SM18:0 1.61 (1.16, 2.24) 0.00470 SM18:0 1.71 (0.93, 3.16) 0.04294

M2 1.43 (1.01, 2.02) 0.04242 1.54 (0.82, 2.9) 0.09111

M1 SM18:1 0.57 (0.39, 0.85) 0.00604 SM18:1 0.53 (0.3, 0.96) 0.01734

M2 0.66 (0.43, 1.02) 0.05918 0.63 (0.34, 1.15) 0.06556

Cluster 3: lc-SFA PCs

M1 PC32_0 1.27 (1.12, 1.45) 0.00021 PC16:0/16:0 1.31 (0.99, 1.73) 0.02996

M2 1.25 (1.08, 1.44) 0.00216 1.34 (1.01, 1.79) 0.02200

Cluster 4: Phospholipids

M1 PC34_2 1.66 (1.38, 2) 1.1E-07 PC18:1/16:1 1.82 (1.25, 2.63) 0.00097

M2 1.54 (1.25, 1.89) 4.3E-05 1.82 (1.24, 2.67) 0.00141

Cluster 6: Plasmalogens

M1 PE-PLG36_1 1.16 (1.03, 1.32) 0.01811 PE-PLG18:0/18:1 1.48 (1.17, 1.86) 0.00052

M2 1.12 (0.98, 1.28) 0.08904 1.39 (1.1, 1.76) 0.00336

M1 PE-PLG40_7 0.65 (0.51, 0.82) 0.00026 PE-PLG18:1/22:6 0.76 (0.6, 0.97) 0.01178

M2 0.68 (0.53, 0.87) 0.00216 0.79 (0.62, 1) 0.02319

Cluster 7: Unsaturated FA-DAGs

M1 DAG34_1 1.63 (1.3, 2.03) 1.7E-05 DAG16:1/18:0 1.45 (1.02, 2.06) 0.02004

M2 1.31 (1.03, 1.67) 0.02780 1.35 (0.94, 1.93) 0.05001

Cluster 8: TAGs

M1 TAG55_2 1.16 (1, 1.34) 0.04918 TAG55_2-fa18:1 1.42 (0.99, 2.03) 0.02867

M2 1.13 (0.96, 1.33) 0.13176 1.43 (0.95, 2.17) 0.04394

M1 TAG56_5 1.26 (1.09, 1.45) 0.00208 TAG56_5-fa16:0 3.06 (1.69, 5.55) 0.00011

M2 1.2 (1.03, 1.41) 0.02159 2.6 (1.41, 4.78) 0.00107

M1 TAG58_7 0.55 (0.4, 0.76) 0.00024 TAG58_7-fa16:0 0.38 (0.23, 0.63) 8.4E-05

M2 0.49 (0.35, 0.7) 0.00010 0.38 (0.23, 0.65) 0.00017

*
PREDIMED: relative risks (RRs) based on OR from a conditional logistic regression model.

†
Two-tailed p-value in PREDIMED.

‡
For isomeric lipids with multiple matches in EPIC-Potsdam, the best predictor among these lipids was selected according the lowest p-value.

§
In EPIC-Potsdam, RRs correspond to HRs from a Cox model.

||
One-tailed p-value.

#
d.i., directionally inconsistent

M1: controlled for age, sex, and study center (if applicable).
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M2: additionally adjusted for T2D- and hypertension prevalence, BMI, smoking status, educational attainment, family history of early CAD, and 
intervention group (if applicable).
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Table 5:

Lipid scores and heart failure incidence

PREDIMED* EPIC-Potsdam†

RR (95%CI) PPREDIMED RR (95%CI) PEPIC

Score1 (cross-validated) M1 2.38 (1.99, 2.85) <2.2E-16

M2 2.33 (1.93, 2.81) <2.2E-16

Score2 (replicated) M1 1.39 (1.24, 1.57) 6.0E-08 1.55 (1.25, 1.92) 6.96E-05

M2 1.30 (1.14, 1.47) 8.2E-05 1.46 (1.17, 1.82) 8.01E-04

Score1: 20 lipid-markers, selected from all within-cluster predictors in PREDIMED based on cross-validated elastic net regression (Formula: 
0.18*EA 16:1 – 0.04*MAG 16:0 + 0.14*CER 16:0 + 0.24*SM 16:1 – 0.05*CER 24:1 – 0.18*SM 24:0 – 0.11*SM 24:1 + 0.33* PC 32_0 + 
0.17*LPC 16:1 −0.19* PC 30_1 + 0.04* PC 34_2 – 0.01*PE 38_2 – 0.35*PI 38_4 – 0.17*DAG 36_0 + 0.16* PEPLG 34_3 – 0.25* PCPLG 36_2 – 
0.22* PEPLG 40_7 + 0.20* PEPLG 42_11 + 0.19* TAG 56_5 – 0.08* TAG 58_7).

Score2: 6 mutually independent lipid-markers selected from the 11 externally validated HF-predictors with conditional logistic regression-based 
backwards selection: (Formula: 0.14* PEPLG 36_1 + 0.14* TAG 56_5 – 0.19*PEPLG 40_7- 0.21*TAG 55_2 + 0.25*DAG 34_1 + 0.21*PC 32_0).

M1: controlled for age, sex, and study center (if applicable).

M2: additionally adjusted for T2D- and hypertension prevalence, BMI, smoking status, educational attainment, family history of early CAD, and 
intervention group.
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