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PACIFIC: a lightweight 
deep‑learning classifier 
of SARS‑CoV‑2 and co‑infecting 
RNA viruses
Pablo Acera Mateos1,2,6, Renzo F. Balboa1,3,6, Simon Easteal1,3, Eduardo Eyras1,2,4,5* & 
Hardip R. Patel1,3*

Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and severity. 
However, there is currently no dedicated method to identify viral co-infections in patient RNA-seq 
data. We developed PACIFIC, a deep-learning algorithm that accurately detects SARS-CoV-2 and 
other common RNA respiratory viruses from RNA-seq data. Using in silico data, PACIFIC recovers the 
presence and relative concentrations of viruses with > 99% precision and recall. PACIFIC accurately 
detects SARS-CoV-2 and other viral infections in 63 independent in vitro cell culture and patient 
datasets. PACIFIC is an end-to-end tool that enables the systematic monitoring of viral infections in 
the current global pandemic.

Acute respiratory tract infections are the third largest global cause of death, infecting 545 million people and 
claiming 4 million lives every year1–3. RNA viruses such as influenza, parainfluenza virus, respiratory syncytial 
virus, metapneumovirus, rhinovirus, and coronavirus are amongst the top pathogens causing respiratory infec-
tions and disease4,5. Novel respiratory diseases, including coronaviruses, cross species boundaries repeatedly. 
Since December 2019, millions of people have been affected by COVID-19, an infectious zoonotic disease 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, NCBI Taxonomy ID: 2697049). Novel 
zoonotic coronaviruses also caused the 2002–2003 outbreak of SARS-CoV respiratory disease with at least 8,098 
known cases and the ongoing 2012–2020 outbreaks of Middle East respiratory syndrome coronavirus (MERS-
CoV) with at least 2,519 known cases5–8. This recurrent emergence of respiratory viruses warrants increased 
surveillance and highlights the need for rapid, accurate, and timely diagnostic tests.

Diagnostic testing, treatment, and disease severity are complicated by the occurrence of respiratory co-
infections. Up to 40% of individuals infected with respiratory viruses test positive for co-infections with up to 
three different pathogens9,10, and recent studies have reported that ~ 20% of SARS-CoV-2 positive individuals had 
a co-infection with other respiratory viruses11. Viral co-infections can alter the severity of disease and modify 
survival rates. While COVID-19 remains poorly understood, early studies indicate a potential for increased 
mortality associated with influenza co-infections12. Further studies are required to investigate the relationship 
between SARS-CoV-2 co-infections with prognosis and mortality rate12,13.

Current diagnostic tests for respiratory infections are often limited in their capacity to detect co-infections. 
The current standard of viral detection for COVID-19 is based on polymerase chain reaction (PCR) assays 
directed towards SARS-CoV-214, which do not detect co-infecting viruses. Multiple virus identification in clini-
cal settings is typically performed by using multiplexed PCR assays with primers specifically designed to target 
known respiratory pathogens15. However, this approach can generally only detect pathogens that are expected a 
priori because the range of pathogen detection is limited by the probe design. Additionally, these protocols must 
be updated as new species or strains are identified as clinically relevant.

High-throughput RNA sequencing (RNA-seq) provides an unbiased measurement of the RNA molecules pre-
sent in a sample and can potentially enable the systematic detection of SARS-CoV-2 infections and co-infections. 
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Multiple species are effectively detected in sequence data in the context of metagenomics studies16. Programs 
such as Kraken17–19 use k-mers to taxonomically classify sequence reads into species from metagenomic sam-
ples. However, these tools require large reference databases of species sequences to compare against, resulting 
in considerable storage and computing requirements. By comparison, machine learning based tools can extract 
the required features and encapsulate the necessary information for sequence classification in a computationally 
efficient way. This approach has been successfully used in the past to address sequence classification problems20. 
For example, DeepMicrobes21 uses deep learning for genus and species level classification of metagenomic DNA 
sequence reads from human gut bacteria. Similarly, ViraMiner22 uses a deep learning binary classifier to identify 
DNA viruses from human microbiome metagenomic reads. Despite these advances, there is currently no equiva-
lent deep learning classifier suitable for the detection of SARS-CoV-2 and possible co-infections by RNA viruses.

To address this limitation, we have developed PACIFIC, a deep learning model to detect the presence of 
SARS-CoV-2 and other common respiratory RNA viruses in RNA-seq data from patient samples. PACIFIC 
discriminates reads into five distinct classes: SARS-CoV-2, influenza (representing H1N1, H2N2, H3N2, H5N1, 
H7N9, H9N2, and Influenza B), metapneumovirus, rhinoviruses (representing rhinovirus A, B and C) and other 
coronaviruses (representing alpha, beta, gamma, and other unclassified coronaviruses). PACIFIC achieves > 99% 
accuracy for virus detection, enabling the systematic identification of co-infections to improve clinical manage-
ment and surveillance during the current pandemic.

Results
PACIFIC model.  PACIFIC is a deep learning method designed to classify RNA-seq reads into five distinct 
respiratory virus classes and a human class (Fig. 1a). The model architecture for PACIFIC is composed of an 
embedding layer, a convolutional neural network (CNN), and a bi-directional long short-term memory (BiL-
STM) network that ends in a fully connected layer (Fig. 1b). One of the main advantages of deep neural networks 
compared to other machine learning models for sequence classification is the ability to extract relevant complex 
classification features from DNA or RNA sequences without having to explicitly define them a priori. However, 
the strategy to encode nucleotide sequences must be carefully considered, as it can dramatically affect the perfor-
mance of the classifier23. The embedding layer improves the performance of the model relative to other encoding 
approaches24. PACIFIC first converts nucleotide sequences into k-mers, assigns these to numerical tokens and 
converts the tokens into dense representations using a continuous vector space.

The use of a convolutional neural network adds several advantageous properties to the model. One advan-
tage is location invariance25, which allows the model to identify combinations of features with predictive value 
regardless of their relative position along the sequence. In addition, each filter used in the convolution layers can 
capture the predictive value of specific regions or combinations of k-mers.

After the convolution layers, PACIFIC uses a pooling layer to decrease the dimensionality of the feature 
space while maintaining essential information. PACIFIC uses a BiLSTM to model long-range dependencies 
in nucleotides, which provides the capacity to incorporate complex relationships in the input sequence that 
are sometimes ignored by single LSTMs26. PACIFIC then implements a dense layer to estimate posterior prob-
abilities for each of the five classes considered: Coronaviridae, Influenza, Metapneumovirus, Rhinovirus, and 
SARS-CoV-2. We included a sixth class in the model (Human) to classify RNA-seq reads derived from the human 
host. Finally, PACIFIC predicts the forward and reverse-complement of each read, and only assigns the read to 
a particular class if the posterior probability of the assigned class is maximal for that class for the forward and 
reverse-complement reads, and its value is ≥ 0.95.

Properties of PACIFIC training data.  PACIFIC was trained using 7.9 million 150nt long random 
fragments from 362 viral genome assemblies belonging to one of five viral classes (SARS-CoV-2, Influenza, 
Metapneumovirus, Rhinovirus and Coronaviridae) and the human transcriptome (Supplementary Table  S1) 
(“Methods”). In silico fragments from both strands were generated without errors to accommodate paired-end 
sequence reads and to retain the natural variation among genomes within each class. We used 90% of the data 
for training and 10% for tuning the hyperparameters and network architecture.

The choice of virus classes was based on the following considerations. First, we wanted PACIFIC to accurately 
detect SARS-CoV-2 as an independent class and to discriminate it from other coronaviruses. Second, we chose 
viruses that have been recently reported to co-infect patients with SARS-CoV-211. Third, we included only viruses 
for which humans are identified as a host species in the NCBI Taxonomy database27. Fourth, as the majority 
of reads in a sample are expected to be derived from human RNAs, we included an independent human class 
representing the human transcriptome to avoid misclassifying human reads into one of the viral classes.

K‑mer length selection and sequence divergence.  As input reads are divided into k-mers within 
the model, we investigated appropriate virus and human k-mer properties. A k-mer length of 9 has previously 
been identified as optimal for the phylogenetic separation of viral genomes28. However, 9-mer profiles of SARS-
CoV-2 and the human transcriptome have not been previously explored. We computed all-vs-all Jensen-Shan-
non divergence (JSD) scores using 9-mers to confirm that k = 9 effectively distinguishes between the six PACIFIC 
classes. JSD, which is a symmetric measure of the (dis)similarity between k-mer probability distributions29, 
range between 0 for identical sequences and 1 for two sequences that do not share any k-mer. Overall, inter-class 
JSD values were higher compared to the intra-class JSD values for 9-mers, which confirm that 9-mers effectively 
separate sequences belonging to different viral classes and human transcripts (Supplementary Fig. S1). Specifi-
cally, the average JSD between the SARS-CoV-2 class and the Coronaviridae class was 0.79, which was greater 
than 0.7 intra-class JSD for the Coronaviridae and 0.001 for the SARS-CoV-2 class, thus indicating sufficient 
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divergence for their separation into distinct classes. Given these results, we decided to encode input sequences 
as 9-mers with a stride of 1.

PACIFIC testing shows high precision and recall for simulated data.  Performance metrics (false 
positive rates (FPRs), false negative rates (FNRs), precision, recall, and accuracy, Eqs.  (3–7)) were calculated 
using in silico generated reads that modelled sequencing-induced substitution and indel errors in sequence 
mixtures with known class labels. We generated 100 independent datasets of 150nt single end reads with Illu-
mina HiSeq 2500 errors using ART​30. Each dataset contained ~ 700,000 reads and was comprised of approxi-
mately 100,000 reads from each of the 6 classes in the PACIFIC model, plus ~ 100,000 reads from unrelated viral 
genomes (viral genomes that did not belong to the five classes that PACIFIC tests for; “Methods”). PACIFIC took 
an average of 108 s to process 100,000 reads on a machine with an AMD Ryzen Threadripper 2950 × 16-core 
processor, NVIDIA GeForce RTX2080Ti GPU, and 125.7 GiB RAM running Ubuntu 18.04.2 LTS.

Single vs double predictions.  First, we compared the performance metrics of predictions using only 
direct reads (single prediction) and predictions using both the direct reads and their reverse complements (double 
prediction) (Fig. 2). In single prediction, a read was assigned the class label with the highest posterior probability 

Figure 1.   Overview of PACIFIC and its model architecture (a) PACIFIC uses FASTQ or FASTA files as inputs 
to make read-level predictions and to estimate the relative number of reads belonging to each RNA virus or 
human class. (b) PACIFIC deep neuronal network architecture, which includes embedding of k-mer tokens, 
convolutional neural network filtering to BiLSTM layers. The model is trained using in silico generated 
sequences from RNA virus genomes and the human transcriptome. CNN—convolutional neural network; 
BiLSTM—bi-directional long short-term memory.
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for the direct read if the posterior probability for a class was ≥ 0.95. For double prediction, a read was predicted to 
belong to a given class if the posterior probability of both the direct read and its reverse-complement was ≥ 0.95 
and predictions agreed on the same class. Across 100 datasets average FNR for double prediction increased rela-
tive to single prediction by 1.45 × for Coronaviridae, 1.49 × for Influenza, 1.41 × for Metapneumovirus, 1.40 × 
for Rhinovirus and 1.62 × for SARS-CoV-2 (Fig. 2). In contrast, we observed lower FPR for double prediction. 
The average FPR in the 100 datasets decreased by 4.60 × for Coronaviridae, 11.02 × for Influenza, 16.55 × for 
Metapneumovirus, 3.92 × for Rhinovirus and 16.47 × for SARS-CoV-2 class in double prediction relative to single 
prediction (Fig. 2). We therefore observe that the average precision for all viral classes increased substantially, 
outweighing the small decrease in average recall. Based on these observations, double prediction was imple-
mented as the standard classification approach in PACIFIC as it reduced FPR by a higher margin.

Overall, PACIFIC achieved high precision (average ≥ 0.9995), recall (average ≥ 0.9966) and accuracy (aver-
age ≥ 0.9995) for each of the virus classes (Table 1). For the human class, the average precision was lower at 
0.50140 compared to the viral classes. This lower precision is explained by a large number of reads (> 99%) from 
unrelated viral genomes being assigned to the human class. As a result, sequences that do not belong to any of 
the viruses in the model are unlikely to be mislabelled as one of the virus classes.

Effect of mismatches and natural variation on predictions.  Using the same in silico datasets, we 
then assessed the effect of mismatches on FNR and FPR. All 100 controlled datasets contained ~ 22% of reads 
with substitutions and indel errors relative to the reference genomes. FNRs were higher for mismatch-contain-
ing reads relative to exact reads for all viral classes. For the Coronaviridae class, all false negative reads con-
tained mismatches. Similarly, FNRs increased 5 to 64-fold in the other four viral classes (Fig. 3). FPRs increased 
0.98 to twofold for mismatch-containing reads for all classes. These results suggest that FPRs are relatively less 
affected by the presence of mismatches compared to FNRs for viral classes. Despite relative differences of FPR 
and FNR in mismatch-containing reads compared to exact reads, PACIFIC achieved high precision (0.999), high 
recall (0.998) and high accuracy (0.998) for mismatch-containing reads for all five viral classes (Supplementary 
Table S2).

Figure 2.   Comparison of false positive and false negative rates between single and double predictions. Single 
prediction (red) results in relatively higher false positives and lower false negatives compared to double prediction 
(green) where predictions are made on both the positive strand of a sequence read and its reverse complement.

Table 1.   Average of performance metrics for each class in 100 independent simulated datasets. CI confidence 
interval, FPR False positive rate, FNR False negative rate.

Class FNR (± 95% CI) FPR (± 95% CI) Precision (± 95% CI) Recall (± 95% CI) Accuracy (± 95% CI)

Coronaviridae 0.116% (2.14e−05) 0.008% (2.38e−06) > 0.999 (1.41e−05) 0.999 (2.14e−05) > 0.999 (3.67e−06)

Influenza 0.153% (2.65e−05) < 0.001% (3.18e−07) > 0.999 (1.95e−06) 0.999 (2.65e−05) > 0.999 (3.80e−06)

Metapneumovirus 0.340% (3.62e−05) < 0.001% (1.04e−07) > 0.999 (6.23e−07) 0.997 (3.62e−05) > 0.999 (5.20e−06)

Rhinovirus 0.121% (1.90e−05) 0.004% (1.41e−06) > 0.999 (8.44e−06) 0.999 (1.90e−05) > 0.999 (2.79e−06)

SARS-CoV-2 0.222% (3.27e−05) < 0.001% (1.43e−07) > 0.999 (8.63e−07) 0.998 (3.27e−05) > 0.999 (4.64e−06)

Human 0.037% (1.32e−05) 0.166% (1.03e−05) 0.501 (1.45e−05)  > 0.999 (1.32e−05) 0.858 (8.94e−06)
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To assess the impact of natural variation observed during the current pandemic on the sensitivity of predict-
ing SARS-CoV-2, we performed 200 simulated experiments using more than 20,000 SARS-CoV-2 sequences 
separated into a low and a high divergence set (“Methods”). The low-divergence set on average contained 7.3 
mismatches (standard error: 0.07) per SARS-CoV-2 assembly relative to the reference genome. In contrast, the 
high-divergence set contained on average 16.4 mismatches (standard error: 0.05) relative to the reference genome. 
An average of 0.05 reads out of 100,000 SARS-CoV-2 reads were falsely assigned to the Coronaviridae class in 
the low-divergence set. These false-negative assignments to the Coronaviridae class for SARS-CoV-2 increases 
negligibly to an average of 0.26 reads per 100,000 reads for the high-divergence set. There were no false-negative 
assignments to any other viral class in either set. In addition, true positive SARS-CoV-2 assignments were similar 
between both sets (0.994 and 0.995 for low-divergence and high-divergence sets respectively). These results show 
that PACIFIC is robust to the natural sequence variation observed in the SARS-CoV-2 strains across the world.

Investigating predicted and actual labels.  Reads derived from unrelated virus genomes contributed 
most of the false positives for all predicted classes (Fig. 4). Of note, there was negligible cross contamination 
between viral class labels. The largest inter-viral class misclassification was from SARS-CoV-2 to Coronaviridae, 
where out of 100,000 SARS-CoV-2 reads, ~ 2.9 were misclassified as Coronaviridae. This was expected as SARS-

Figure 3.   False positive (left panel) and false negative (right panel) rates for reads identical to the 
corresponding reference genome (Exact, red), and for reads with mismatches with respect to their reference 
genome (Mismatch, green).

Figure 4.   False positive and false negative assignments for 100 independently simulated datasets. Left panel—
Average number of false positives (y axis). True labels are indicated by colour for each class and predicted labels 
are given in the x-axis. Right panel—Average number of false negatives (y axis). Predicted labels are indicated 
by colour for each class and true labels as indicated in the x-axis. pDiscarded—reads that do not reach the 0.95 
posterior probability cut-off; rc_discarded—reads that were discordantly predicted using double prediction.
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CoV-2 is a species within Coronaviridae genus. Between other viral classes, only 0–0.2 per 100,000 reads were 
misclassified. Reads were discarded because of the class mismatch for the read and its reverse complement in 
double prediction (rc_discarded in Fig. 4), or because they did not meet the minimum 0.95 posterior probability 
criteria (pDiscarded in Fig. 4) contributed maximally to false negatives. Taken together, our results demonstrate 
that PACIFIC is highly specific and sensitive for all five viral classes, with negligible false positive and false nega-
tive rates.

Establishing virus detection thresholds.  In the previous section, we showed that PACIFIC displayed 
low FPR in balanced datasets with similar proportions of reads from each class. However, incorrect predictions 
about the presence or absence of a virus in a sample could lead to misguided follow-ups and the unnecessary use 
of valuable clinical resources. To better assess the real-world performance of PACIFIC, we estimated the mini-
mum proportion of sequence reads from a specific viral class that is required to confidently predict the presence 
of that virus in a sample.

In practice, RNA-seq data will be unbalanced, with only a small, variable proportion of viral reads combined 
with a majority of reads that originate from the human transcriptome. To assess the effect of this imbalance on 
false positive rates, we simulated 500 independent datasets (100 for each class), each containing 500,000 150nt 
reads, using ART​30 with Illumina HiSeq 2500 error profiles. Each dataset contained variable proportions of simu-
lated reads for 4 of the 5 viral classes, plus the Human class, which includes human and unrelated viral genomes. 
One of the five viral classes was intentionally excluded, and the excluded class was considered to be the test class. 
All reads assigned to this test class were counted as false positives for the remaining 4 classes. PACIFIC achieved 
similar average FPRs to the benchmarking experiments using balanced datasets (Table 2).

Assessment of the distribution of FPRs for each viral class and skewness-kurtosis plots indicated that the 
percentage of false positives observed in unbalanced datasets followed a Beta distribution. Therefore, we used 
moment matching to estimate the shape parameters for the quantile function of the Beta distribution and deter-
mined the numeric threshold above which 99% of false positive samples were excluded. Table 2 shows detection 
thresholds for each viral class above which samples are classified as positive for the viral class. For example, a 
sample is classified as positive for Coronaviridae if > 0.0405% reads are labelled as Coronaviridae using PACIFIC 
(Table 2).

PACIFIC accurately detects viruses in human RNA‑seq samples.  Next, we assessed PACIFIC’s per-
formance in classifying viral reads in RNA-seq data derived from human biological samples and compared its 
output with alignment-based (BWA-MEM) and k-mer based (Kraken2) approaches. To reduce bias in the com-
parisons, we built the BWA-MEM index and Kraken2 database using the same virus genome assemblies and the 
human transcriptome that were used for PACIFIC training (Supplementary Table S1). For all three methods, we 
used the thresholds established in the previous section (Table 2) to determine the presence of a virus in a sample. 
All three methods were applied to 63 human RNA-seq datasets from independent research studies, five of which 
are known to contain SARS-CoV-231,32. Four datasets were derived from primary human lung epithelium cells 
(NHBE) infected with SARS-CoV-2 in vitro (NCBI SRA accession: SRX7990869)31. The other infected dataset 
was obtained from a patient bronchoalveolar lavage fluid sample (NCBI SRA accession: SRR10971381) that was 
positive for SARS-CoV-232. In addition, we analysed RNA-seq datasets for 48 airway epithelial cell samples from 
the GALA II cohort study, of which 22 were reported to contain respiratory infection viruses33,34, and 10 were 
reportedly devoid of infections by viruses in the virus classes used here, as indicated by the sample metadata and 
the corresponding publications (Supplementary Table S3).

For the five samples that were positive for SARS-CoV-2, PACIFIC assigned 0.047%-0.048% of all reads to the 
SARS-CoV-2 class for the in vitro infected cells and 0.19% of all reads in the patient sample. For all five samples 
the proportion of assigned reads is above the detection threshold for SARS-CoV-2 class (> 0.000213%) (Fig. 5). 
BWA-MEM and Kraken2 also successfully identified SARS-CoV-2 reads above the detection threshold in these 
five samples (Fig. 5a). Thus, all three methods accurately predicted the presence of SARS-CoV-2. In addition, 
all methods assigned fewer reads to the other virus classes than their respective detection thresholds, indicating 
the absence of other virus classes in these samples.

We subsequently tested the 48 samples from the GALA II cohort33,34. Of these, 22 were reported to contain 
between 4 and 164,870 reads from respiratory viruses (human rhinovirus, respiratory syncytial virus, human 
metapneumovirus or human parainfluenza viruses I, II and III). PACIFIC, BWA-MEM and Kraken2 identified 

Table 2.   Average false positive reads across 100 experiments for each viral class. FP = False positive, 1 M = 1 
million, Balanced = 100 experiments with equal proportion of reads from each class, Unbalanced = Variable 
proportion of reads from all classes and no reads from the test class. a These thresholds represent 0.99 quantile 
for FP% for that class.

Class FP/1 M reads (Balanced) FP/1 M reads (Unbalanced) FP% thresholda

Coronaviridae 81.6 66.6 0.0405

Influenza 1.9 6 0.000807

Metapneumovirus 2 1 0.000154

Rhinovirus 35.5 53.9 0.0418

SARS-CoV-2 2 1 0.000213
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Figure 5.   PACIFIC, BWA-MEM and Kraken2 virus predictions in RNA-seq data. Transparent grey filled circles represent 
detection thresholds for each class, overlaid with black filled circles representing the percentage of predicted reads using 
PACIFIC (left panel), BWA-MEM (centre panel) and Kraken2 (right panel). Circles are filled blue when the percentage of 
reads for a class are above detection thresholds described in Table 2. RNA-seq samples (y-axis) are labelled with NCBI SRA 
run accessions and abbreviations for sample type. (a) RNA-seq samples predicted to be positive for at least one viral class by 
PACIFIC, BWA-MEM, or Kraken2. Samples include a SARS-CoV-2-infected human patient bronchoalveolar lavage fluid 
sample (.pat), four in vitro SARS-CoV-2-infected NHBE cell lines (.scc) and 9 samples from the GALA II cohort (.gala). (b) 
Human RNA-seq samples without expected viral infections (.neg; n = 10). Samples were selected from the NCBI SRA database 
with no recorded evidence of infection.
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9 samples as positive for one of the five virus classes considered, and 39 samples as negative for the same viral 
classes (Fig. 5a, Supplementary Fig. S2, Supplementary Table S3). The discrepancy between these results and the 
original study34 could be partly explained by the exclusion of the Respiratory Syncytial Virus class in our analyses. 
However, further verifications could not be performed because sample labels provided in the manuscript were 
mismatched with the submitted sequence data (see correction35).

From the 9 positive samples, six were labelled positive for the same virus class by all three methods: three 
samples were positive for Rhinovirus, and one for Coronaviridae, Influenza, and Metapneumovirus, respectively 
(Fig. 5a). In contrast, the other three samples were discordantly labelled by one of the three methods. SRR4427279 
was classified as positive for Metapneumovirus by BWA-MEM and Kraken2 but not by PACIFIC. BWA-MEM 
and Kraken2 collectively assigned 28 reads to the Metapneumovirus class as compared with 0 reads by PACIFIC. 
To investigate the origin of these 28 reads, we used BLASTN searches against the NCBI nucleotide (nt) database 
encompassing sequences from all domains of life and extracted the best hit for each read (“Methods”). All 28 
reads had their best hits to human respiratory syncytial virus A sequences (E-values ≤ 4.07e-68; bit-scores ≥ 267). 
Furthermore, metapneumovirus was not identified in any of the top 10 significant hits (Supplementary Informa-
tion: Extension of BLAST analysis). Another discordant sample (SRR4427270) was classified as positive for the 
Rhinovirus class by PACIFIC (1,065 reads) and BWA-MEM (2,338 reads) but not by Kraken2 (3 reads). BLASTN 
searches showed that best hits (3,145/3,150 total BLAST alignments) were sequences from one of: Enterovirus 
C105; Enterovirus C; or Human enterovirus C105 (E-values ≤ 9.46e-41, bit-scores ≥ 178). Rhinoviruses and other 
enteroviruses are taxonomically part of the Enterovirus genus36,37. The final discordant sample (SRR4427280) was 
labelled positive for the Rhinovirus class by PACIFIC (355 reads) and Kraken2 (387 reads) but not by BWA-MEM 
(29 reads) using our thresholds (Fig. 5a). BLASTN searches revealed that the majority of reads (385/390) labelled 
by either PACIFIC or Kraken2 had their best hits to Rhinovirus C (E-values ≤ 4.47e−53; bit-scores ≥ 219). BWA-
MEM therefore failed to assign most Rhinovirus reads correctly classified by the other two methods.

In addition to the 53 samples tested above, we analysed 10 publicly available human RNA-seq datasets with 
no record of viral infection. The samples are unlikely to be infected with SARS-CoV-2 as they were registered 
in the NCBI SRA database on or before 17 October 2019 (Supplementary Table S3). Although two samples 
(SRR8927151 and SRR8928257) were published in February 2020 (Supplementary Table S3)38, the NCBI Bio-
Projects for these samples were registered on 18 April 2019.

PACIFIC accurately predicted all 10 samples as negative for viral infections using our detection thresholds. 
In contrast, Kraken2 assigned one sample (SRR5515378) as positive for SARS-CoV-2 with 256 reads assigned 
(Fig. 5b). Further verification with BLASTN searches confirmed that 242 out of the 256 reads mislabelled by 
Kraken2 aligned to the Mycoplasma bacterial genus (E-values ≤ 2.76e−23, bit-scores ≥ 121), indicating false posi-
tive assignments by Kraken2 for these reads.

BWA-MEM performed relatively worse for these 10 datasets, with 8 samples classified as positive for SARS-
CoV-2 (Fig. 5b). In these 8 samples, between 86 and 6,901 reads (total = 15,395 reads) were classified as SARS-
CoV-2. BLASTN searches identified Homo sapiens as the best hit (E-values ≤ 5.78e−07, bit-scores ≥ 65.8) for 4352 
(28%) of these reads. Further examination revealed that 53% of all 9-mers in these reads were poly-A or poly-T 
derived, suggesting low-complexity sequences. In addition, SRR4895842 was assigned as co-positive for both 
the Rhinovirus and SARS-CoV-2 classes by BWA-MEM (Fig. 5b). BLASTN searches of 406 reads assigned to 
Rhinovirus within this sample revealed that 303 reads had best hits to Homo sapiens, and 48 reads had their best 
hits to Pan paniscus (E-value ≤ 6.06e−10; bit-scores ≥ 76.8). These reads had 19% of their 9-mers derived from 
poly-A or poly-T sequences, suggesting low-complexity sequences.

Overall, these results show that PACIFIC accurately identifies viral reads and that our detection thresholds 
identify the presence or absence of viral classes in RNA-seq data from biological samples with fewer false posi-
tives and false negatives than other methods currently in use.

Discussion
We have developed PACIFIC, a deep learning-based tool for the detection of SARS-CoV-2 and other common 
respiratory viruses from RNA-seq data. To the best of our knowledge, PACIFIC is the first deep learning model 
that detects SARS-CoV-2 and other RNA virus groups from short-read sequence data with > 0.99 precision, recall 
and accuracy. A recent analysis of 4,909 scientific articles identified 47 models for detecting COVID-19, 34 of 
which were based on medical images39. This study concluded that these predictive models were, in general, poorly 
described and contained multiple biases, likely resulting in unreliable predictions when applied in practice. We 
addressed these limitations by validating the performance of PACIFIC using diverse, independently simulated 
datasets that reflect realistic scenarios. We also show that PACIFIC performs well when applied to 63 RNA-seq 
datasets derived from infected cell cultures and patient samples, indicating its utility in clinical settings.

In 2013, the World Health Organisation launched the Battle against Respiratory Viruses (BRaVe) initiative, 
which identified six research strategies to tackle and mitigate risks of death due to respiratory tract infections. 
One of the proposed strategies was to “improve severe acute respiratory infection diagnosis and diagnostic 
tests amongst others”40. High-throughput sequencing has great potential in this context. The SARS-CoV-2 pan-
demic provides new impetus to evaluating its diagnostic application, thereby contributing to the BRaVe initia-
tive’s goals41,42.

A comprehensive study using multiplex RT-PCR and a sequencing-based metagenomic approach revealed 
that RNA-seq has sufficient sensitivity and specificity to be applicable in the clinic for respiratory viruses42. How-
ever, the need for complex analytical workflows can limit the use of RNA-seq in diagnostic settings34,42. A typical 
workflow for virus detection in high-throughput sequencing data involves quality assessment and filtering of 
raw data, removal of host sequences, de novo assembly of remaining reads, and alignment and annotation of the 
assembled contigs43. Implementation of these workflows require expert knowledge of bioinformatics software 
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and databases and dedicated computing facilities. PACIFIC overcomes these limitations by modelling the dif-
ferences in k-mer content of respiratory viruses and human sequences in a model that is efficient in compute 
and storage requirements, easy to use, and therefore applicable in contexts with limited resources. Specifically, 
we have designed PACIFIC to be run as a single command using raw RNA-seq data as the only required input 
to obtain quantitative predictions about viral classes within a sample.

The higher costs of sequencing compared to PCR-based experiments can be reduced by multiplexing, block-
testing or pooling strategies44, to enable unbiased cost-effective testing. For example, sequencing with Illumina 
platforms can be done with 96 samples per lane using multiplexing, reducing the sequencing cost per sample. 
In this scenario, the number of reads obtained per sample could be approximately 200,000 or higher. We have 
demonstrated the accuracy of PACIFIC in a variety of sample sizes, which suggests the potential value of this 
approach.

Identification of virus classes from sequence data is complicated by the high rate of natural sequence variation 
for RNA viruses45,46, experimental errors and artefacts in sequence data, and the presence of low-complexity 
A-rich sequences common to the host transcriptome. We showed that 22% of reads containing mismatches and 
indel errors were correctly assigned to a virus class by PACIFIC with negligible loss in sensitivity at a sample 
level (Fig. 3). In addition, PACIFIC accurately classifies SARS-CoV-2-derived reads despite natural sequence 
variation observed in publicly available data, without significant loss in sensitivity. We show that PACIFIC can 
be easily extended using the transfer learning approach to incorporate new classes and sequence diversity as new 
viral mutations emerge (“Methods”; Supplementary File 2).

PACIFIC has been developed specifically to identify viral classes reported to be co-infecting patients with 
SARS-CoV-212. Samples containing other viruses and bacterial infections may require additional analysis. Future 
versions of PACIFIC could include the classification of a broader range of virus and bacterial classes at a spe-
cies level, accommodate variable input read lengths to increase its utility in other contexts and have improved 
runtime performance.

Conclusions
PACIFIC is a powerful end-to-end and easy to use tool that predicts the presence of SARS-CoV-2, Influenza, 
Metapneumovirus, Rhinovirus and other Coronavirus class-derived sequences directly from RNA-seq data with 
high sensitivity and specificity. PACIFIC will enable effective monitoring and tracking of viral infections and 
co-infections in the population in the context of the COVID-19 global pandemic and allow for the development 
of new strategies in molecular epidemiology of co-infections to understand variable host responses and improve 
the management of infectious diseases caused by viruses.

Methods
PACIFIC and other associated software written for this manuscript is available at https​://githu​b.com/pacif​ic-2020/
pacif​ic. We have used Python (version 3), scipy (v1.4.1), numpy (v1.18.1), scikit (v0.23.1), pandas (v1.0.1), ten-
sorflow (v2.2.0), keras (v2.3.1), R (v3.6), tidyverse (v1.3.0), Biobase (v2.46.0) and Perl (v5.26) in our analysis.

Training data.  We downloaded 362 virus genomes from the NCBI assembly database corresponding to 
five classes of single stranded RNA viruses (Table 3, Supplementary Table S1). GenBank assembly identifiers 
and assembly versions with other metadata are listed in Supplementary Table S1. Since our focus was to detect 
co-infections with SARS-CoV-2, we made a separate class for SARS-CoV-2 containing 87 different assemblies 
(Table 3). The Coronaviridae class contained 12 genomes of alpha, beta, gamma and unclassified coronaviruses. 
The Influenza class contained assemblies of influenza A (H1N1, H2N2, H3N2, H5N1, H7N9, and H9N2 strains) 
and influenza B viruses. For the Rhinovirus class, assemblies of rhinovirus A (including A1 strain), B, C (includ-
ing C1, C2, and C10 strains), and unlabelled enterovirus were grouped together. There were five distinct assem-
blies for metapneumovirus which were grouped into a single class. We included Human GENCODE47 canonical 
transcript sequences (downloaded from Ensembl v99 database48) as an additional class to distinguish sequenc-

Table 3.   Summary of training classes used for PACIFIC. a GENCODE canonical transcripts were used to 
represent human reads in RNA-seq data.

Class Total reads Number of genome assemblies Number of taxonomic units Included species/genus groups

Coronaviridae
[ssRNA( +)] 644,483 12 12 Alpha, beta, gamma and unclassi-

fied coronaviruses

Influenza
[ssRNA(−)] 1,073,237 128 125 Influenza A (H1N1, H2N2, H3N2, 

H5N1, H7N9, H9N2), Influenza B

Metapneumovirus
[ssRNA(−)] 443,974 5 1 Metapneumovirus

Rhinovirus
[ssRNA(+)] 1,339,435 130 107 Rhinovirus A and A1, B, C (C1, C2, 

C10), other enterovirus

SARS-CoV-2
[ssRNA(+)] 865,303 87 1 SARS-CoV-2

Human 3,531,425 1a 1 Human transcriptome

Total 7,897,857 363 247

https://github.com/pacific-2020/pacific
https://github.com/pacific-2020/pacific
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ing reads derived from the human transcriptome. We generated between 0.44 and 3.5 million 150nt-long frag-
ments in silico for each class using a custom Perl script available at https​://githu​b.com/pacif​ic-2020/pacif​ic (gen-
eratetestdata.pl, Table 3). These training sequences were randomly sampled without any base substitutions and 
were derived from both strands of the genome assemblies.

Model architecture.  PACIFIC was implemented using the Keras API with a TensorFlow backend. Input 
reads were converted into 9-mers with a stride of 1, forming a vocabulary size of 49 = 262,144 k-mers. Each of 
these k-mers is assigned a number using the Tokenize API from Keras49 from 1 to 262,144. The first index posi-
tion of 0 is reserved to denote zero-padding for variable length sequences. Tokens are  fed into the first hid-
den layer of the neural network and transformed into continuous vectors of length 100. After the embedding, a 
convolutional layer takes the previous numerical vectors and uses 128 convolution filters with a kernel size of 3. 
A pooling layer is used after the convolution, using max pooling with a kernel size of 3. A BiLSTM layer then fol-
lows, which uses two regular LSTMs; one starts ‘reading’ the input sequence from one of the two flanks, and the 
other from the opposite end. The output of the two LSTMs is then combined and passed to the next layer. Finally, 
PACIFIC has a fully connected layer using a softmax  function to calculate posterior probabilities for each of 
the six classes. To reduce overfitting, we used 20% dropout at each hidden layer.

Cross-entropy was used as the loss function and ADAM50 was used as the optimizer. The final configuration 
of the network, hyperparameter tuning and the number and configurations of layers was obtained after sev-
eral iterations between training and validation data. The final model is implemented as double prediction on 
both strands of the input sequence, whereby the forward and reverse-complement of the input sequence are 
predicted for class assignment. Classes for both predictions were required to match. The threshold of posterior 
probability for the assigned class was ≥ 0.95.

PACIFIC training.  NVIDIA GeForce RTX2080Ti was used  to accelerate training. We trained two LSTM 
implementations, one using the fast LSTM implementation backed by CuDNN, supported only with NVIDIA 
Graphical Processing Unit (GPU). The other model was built using the regular implementation of LSTM. Both 
models achieved the same results. We started the training by shuffling the training sequences, using chunks of 
200,000 reads to avoid loading all reads into memory. 90% of the data was used for training and 10% for optimi-
zation of parameters. After 15 chunks, the model converged on the validation set and training was halted. Dur-
ing training, we used categorical accuracy (1), binary accuracy (2) and cross-entropy loss from the optimization 
set to monitor the training.

Training was completed when the model converged, obtaining final categorical and binary accuracy values 
of 0.99, and 0.003 for optimization loss. PACIFIC model training was completed in 2.23 h on a machine with an 
AMD Ryzen Threadripper 2950 × 16-core processor, NVIDIA GeForce RTX2080Ti GPU, and 125.7 GiB RAM 
running Ubuntu 18.04.2 LTS.

To accommodate the inclusion of new classes and/or incorporate natural variation, we have designed a trans-
fer learning strategy, which allows users to update the model with new data at reduced computational cost51,52. 
The transfer learning approach uses existing model parameters instead of random weights from a Gaussian dis-
tribution to train the model. We show applicability of this technique in extending the PACIFIC model to predict 
respiratory syncytial virus (RSV) sequences. Details of this extension are provided in Supplementary File 2.

PACIFIC test datasets.  We generated 100 independent test datasets using the ART sequence simulation 
software (version 2.5.830) with default error models for substitutions, insertions and deletions using the Illumina 
HiSeq 2500 sequencing platform. For each dataset, we set seeds starting from 2021 to 2120 using a random num-
ber generator for reproducibility. Synthetic data contained 150nt single end reads derived from seven classes; 
the five model virus classes, a human class, and an “unrelated” class composed of 32,550 distinct virus genomes 
downloaded from the NCBI Assembly database. We sampled ~ 100,000 reads per class using a class-specific fold-
coverage parameter to generate ~ 700,000 reads per test data (Table 4). Approximately 22% of reads contained 
mismatches, insertions or deletions relative to their respective reference sequences, reflecting error profiles of 
the Illumina sequencing platform. This process was automated using a custom script (generatebenchmarkdata.
pl).

PACIFIC performance tests.  PACIFIC was used to assign class labels to reads in the test data, and perfor-
mance metrics were calculated by comparing known and predicted labels for each read. A read was assigned a 
class if the maximum posterior probability score for a class was ≥ 0.95. A true positive (TP) was defined when 
the true label and the predicted label were the same for a read. A true negative (TN) was defined when a read 
that did not belong to the true class was correctly predicted as a class different from the true class. False positives 
(FP) were reads which were predicted to be as the true class, although they originated from a different class. 
False negatives (FN) were all reads belonging to the true class but were predicted as a different class. An example 

(1)Categorical accuracy =
#correct predictions

#total predictions

(2)Binary accuracy =
#correct predictions

#total predictions
if highest output probability > 0.5

https://github.com/pacific-2020/pacific
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confusion matrix for SARS-CoV-2 is described in Table 5. Precision, recall, accuracy, false positive rate and false 
negative rate were calculated [Eqs. (3–7)].

where TP = True positive, FP = False positive, TN = True negative, FN = False negative, FPR = False positive 
rate, FNR = False negative rate.

Establishing false positive rate thresholds for each class.  This experiment was performed to quan-
tify the impact of variable proportions of reads from each class on the percentage of false positives and to estab-
lish the detection threshold for each virus class in RNA-seq data. For each viral class in PACIFIC, we generated 
100 datasets containing 500,000 reads derived from 4 out of the 5 viral classes, the human transcriptome and 
unrelated viral genomes in variable proportions. Reads were simulated using the ART software 30 with Illumina 
HiSeq 2500 error profiles that were 150nt long and modelled single end experiments. One of the five viral classes 
that was excluded was considered as the test class. This process was automated using a custom script (generatef-
prdata.pl). Subsequently, PACIFIC was run in double prediction to assign classes to each read. To calculate the 
percentage of false positives in each experiment, we counted the number of reads predicted as the absent test 
class and divided by the total number of reads.

PACIFIC predictions in divergent SARS‑CoV‑2 sequences.  To test PACIFIC’s ability to predict 
SARS-CoV-2 sequences with natural sequence variation, we downloaded 9,852 SARS-CoV-2 sequences from 
the GISAID database53,54, deposited between 1st October 2019 and 14th March 2020. We labelled this set with 
relatively lower natural variation as ‘low-divergence’. We also downloaded 12,667 SARS-CoV-2 sequences 
deposited between 1st October 2020 and 4th November 2020 and labelled them as ‘high-divergence’. All assem-
blies were aligned to the current SARS-CoV-2 reference genome (RefSeq ID: NC_045512.2) using BLASTN 
with default parameters to identify number of mismatches compared to the reference genome. To generate in 
silico reads for testing from these assemblies, we used a custom Perl script (generatetrainingdata.pl) to randomly 

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)FPR =
FP

FP + TN

(7)FNR =
FN

FN + TP

Table 4.   Summary of benchmark datasets.

Sequence class Total bases Fold coverage Number of reads Reads with mismatches or indels

Coronaviridae 323,274 47.5 102,076 22,295–22,865

Human 75,434,059 0.227 100,208–100,209 21,768–22,425

Influenza 1,684,539 9.65 100,038–100,290 21,825–22,570

Metapneumovirus 66,596 228 100,548 21,890–22,559

Rhinovirus 925,412 16.7 101,940–101,953 22,196–22,919

SARS-CoV-2 2,599,395 5.8 100,337–100,349 21,831–22,507

Unrelated viruses 1,038,794,620 0.01738 100,175–100,196 21,890–22,479

Table 5.   Confusion matrix using SARS-CoV-2 as an example of a positive class.

True/actual condition

Positive
SARS-CoV-2+

Negative
All other classes

Predicted condition
SARS-CoV-2+ True positive (TP) False positive (FP)

All other classes False negative (FN) True negative (TN)
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sample ~ 100,000 in silico 150 bp reads 100 times from both low- and high divergence sets. PACIFIC was then 
independently run on all 200 datasets to assess prediction performance.

Detecting viruses in human datasets and comparison with other tools.  We downloaded 63 RNA-
seq experiments from NCBI SRA database. Run accessions and other metadata details are supplied in Sup-
plementary Table S2. All data were downloaded from the NCBI database using the SRA Toolkit prefetch and 
fastq-dump commands and applying the –gzip and –fasta options55. For the GALA II cohort study with 48 RNA-
seq datasets and read lengths 18-390nt, we discarded reads < 150nt long. We then used PACIFIC to assign the 
presence/absence of each virus class in all 63 samples using the detection thresholds established in the previous 
section. We compared PACIFIC’s predictions with two alternative methods for virus detection: an alignment-
based approach using BWA-MEM56, and a k-mer based approach using Kraken219, described below.

For BWA-MEM56, all reads were mapped using default parameters to a combined reference containing assem-
bly sequences for the five viral classes and the human transcriptome used for training PACIFIC (Table 3). Reads 
were assigned to a virus class based on the class membership of the genome assembly as described in Table 3 and 
Supplementary Table S1. For Kraken2, we first downloaded the Kraken taxonomy database and built a k-mer 
database using the same genomes used to train PACIFIC (Table 3). Kraken2 was then run using the –use-names 
flag, and output reads were parsed using species scientific names and reads were assigned a class based on the 
class membership of the genome assembly (Supplementary Table S1, Table 3). To fairly compare all three meth-
ods, we applied class detection thresholds as determined for and used in PACIFIC (Table 2) for the presence or 
absence of a virus class within a sample.

To investigate the origin of reads for all reads in samples that were discordantly predicted for the presence of 
a virus class by PACIFIC, BWA-MEM or Kraken2, we used the BLAST suite (v2.10.1+)57,58 to align reads to the 
NCBI nucleotide (nt) database, which includes sequences from all domains of life. We took the best hit from the 
pairwise alignment for each read, filtering for alignments with an E-value < 1e−6. BLASTN was used with the 
following parameters: -task ‘megablast’ -max_target_seqs 1 -max_hsps 1 -evalue 1e-6 to query discordant viral 
class assignments between PACIFIC, BWA-MEM and Kraken2.

Data availability
Source code is available in the PACIFIC Github repository [https​://githu​b.com/pacif​ic-2020/pacif​ic/] under 
the MIT License. Publicly available data generated or analysed during this study are included in the follow-
ing published articles31,32,34, accession numbers and other metadata are described in [https​://githu​b.com/pacif​
ic-2020/pacif​ic/tree/maste​r/metad​ata]. Other supplementary information and test data are available and can be 
downloaded from [https​://cloud​stor.aarne​t.edu.au/plus/s/sRLwF​3IJQ1​2pNGQ​].
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