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Genetic ancestry plays a central role in population
pharmacogenomics
Hsin-Chou Yang 1,2,3✉, Chia-Wei Chen1, Yu-Ting Lin1 & Shih-Kai Chu1

Recent studies have pointed out the essential role of genetic ancestry in population phar-

macogenetics. In this study, we analyzed the whole-genome sequencing data from The 1000

Genomes Project (Phase 3) and the pharmacogenetic information from Drug Bank,

PharmGKB, PharmaADME, and Biotransformation. Here we show that ancestry-informative

markers are enriched in pharmacogenetic loci, suggesting that trans-ancestry differentiation

must be carefully considered in population pharmacogenetics studies. Ancestry-informative

pharmacogenetic loci are located in both protein-coding and non-protein-coding regions,

illustrating that a whole-genome analysis is necessary for an unbiased examination over

pharmacogenetic loci. Finally, those ancestry-informative pharmacogenetic loci that target

multiple drugs are often a functional variant, which reflects their importance in biological

functions and pathways. In summary, we develop an efficient algorithm for an ultrahigh-

dimensional principal component analysis. We create genetic catalogs of ancestry-

informative markers and genes. We explore pharmacogenetic patterns and establish a

high-accuracy prediction panel of genetic ancestry. Moreover, we construct a genetic

ancestry pharmacogenomic database Genetic Ancestry PhD (http://hcyang.stat.sinica.edu.

tw/databases/genetic_ancestry_phd/).
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Genetic ancestry has been long recognized as a key topic in
population genetics. It has been proved an influential
factor that should be modeled or controlled for in -omics

studies, including genetic association studies1–3, epigenetic stu-
dies4–10, transcriptomic studies11–13, and proteomic studies14–17.
With the aid of a growing number of discovered genetic varia-
tions, more and more ancestry-informative markers (AIMs) are
identified to trace the origin of individuals with differential
genetic backgrounds18–31. AIMs have been applied in various
fields of studies, such as population genetics32–36, medical
genetics37–39, forensic sciences40–42, and animal sciences43,44.

Trans-ancestry pharmacological effects in population phar-
macogenetic45–54 and pharmacoepigenetic studies55–57 have
received considerable attention because of their value in precision
population health. This contributes to the reasons why AIMs play
central roles in both pharmacodynamics (PD) and pharmacoki-
netics (PK). In the context of PK, AIMs are relevant to differences
in drug absorption, distribution, metabolism, and excretion
(ADME); downstream outcomes of PK/PD—drug response or
pharmacogenomic effect (FX); adverse drug reactions (ADRs);
and a drug’s effective dose in different ancestry groups52. An
example of an ancestry-informative pharmacogenetic locus (AI-
PGx) is the single nucleotide polymorphism (SNP) rs1045642 on
the MDR1 gene, also known as the ABCB1 gene. The minor allele
frequency of rs1045642 differs significantly between continent
ancestry groups and is associated with ADR to amitriptyline and
nortriptyline and a specific drug response to morphine51. In the
data produced by The International HapMap Project58, the fre-
quency of allele A was 0.542 in the Center d’Etude du Poly-
morphism Humain Utah collection; 0.489 among Japanese in
Tokyo, Japan; 0.400 among Han Chinese in Beijing, China; 0.108
among Yoruba in Ibadan, Nigeria (P= 2.13 × 10–13 in Fisher’s
exact test). Because of potential applications of AI-PGx in pre-
cision population health, there is an unmet need to comprehen-
sively identify AI-PGx in the human genome and to establish
knowledge databases for differential populations and super-
populations (super-populations are also called as continents in
this paper).

Homozygosity disequilibrium (HD) is defined as a non-random
pattern of a sizable run of homozygosity that its homozygosity
intensity exceeds the equilibrium homozygosity intensity in the
human genome59. Homozygosity disequilibrium analysis (HDA)
has been used to study genetic ancestry, autozygosity, and natural
selection in general population60,61; chromosomal aberrations
responsible for complex disorders and cancers59,60,62; gene reg-
ulation of expression quantitative trait loci63; and pharmacoge-
nomic and pharmacoepigenomic effects64. In contrast to single
SNPs, the context of HD can serve as a multilocus AIM and AI-
PGx to provide genetic information supplemental to single-locus
AIMs and AI-PGx. In addition, HD that allows for a small pro-
portion of heterozygotes due to genotype errors, mutations, and
missing genotypes provides an analogous but more flexible
homozygosity enrichment set than the conventional run of
homozygosity that has been broadly applied to study genetic
ancestry, demographic history, and disorders/traits in population
genetics65–74 and medical genetics75–79.

The advent of parallel sequencing technologies80–83 has dras-
tically accelerated the discovery and application of single
nucleotide variations (SNVs), including SNPs and rare variants
(RVs). The 1000 Genomes Project84 generated a rich whole-
genome sequencing dataset consisting of more than 77 million
SNVs in 2,504 individuals from 26 global populations repre-
senting five major continents—Africa (AFR), Americas (AMR),
East-Asia (EAS), South-Asia (SAS), and Europe (EUR). Since
then, several studies have used this dataset to investigate popu-
lation genetics34,84–87. In this study, we examined the genomic

structure, inferred demographic history, identified AIMs and
ancestry-informative genes (AIGs), and established population
prediction panels for global continents and populations by
combining the valuable genomic resource of The 1000 Genomes
Project with additional public pharmacogenetic databases. Based
on these materials, we identified AI-PGx across the human
genome, explored their features in pharmacogenomics, and
established genetic ancestry pharmacogenomic databases.

Results
We analyzed the whole-genome sequencing data of 2504 inde-
pendent samples from 26 populations of five continental ancestry
groups in The 1000 Genomes Project—Final Phase84,88 (Fig. 1)
and the PGx information from four public PGx resources: Drug
Bank, PharmGKB, PharmaADME, and Biotransformation genes
(Fig. 2a). The analysis flow of this study is provided (Fig. 3).

Genomic structure in global continents and populations. The
ultrahigh-dimensional principal component analysis (PCA)
(Supplementary Note 1) showed that, except for a few outliers,
the African-ancestry, European-ancestry, East Asian-ancestry,
and South Asian-ancestry groups were clearly separated (Fig. 4a),
reflecting the differential genetic background of trans-ancestry
groups. American-ancestry individuals were located in two mid-
dle clines (CLM and PUR in one cline and MXL and PEL in
another cline), reflecting their disparate admixture proportions of
the African-ancestry, European-ancestry, and Native-American-
ancestry groups89. South Asian-ancestry individuals were located
in the other cline, reflecting their ancient admixed genetic back-
ground from the European-ancestry, East Asian-ancestry, and
Native Indian-ancestry groups85.

The dendrogram of a hierarchical clustering analysis (HCA)
further displays genetic distances among the studied ancestry
continents and populations (Fig. 4b). The African-ancestry group
had the largest genetic distance from other ancestry groups. This
result, combined with molecular genetics and archeological
evidence, confirmed that the African-ancestry group was the
most ancient ancestry group. YRI and ESN in Nigeria in West
Africa were joined first, connected to ACB (whose ancestors were
traded from West Africa to the Caribbean in the early 16th
Century), and then connected to GWD and MSL, which are
located in other regions of West Africa. This lineage group was
further connected to LWK in East Africa and finally combined
with ASW. African diaspora ACB in the Caribbean and ASW in
the southwestern US clustered in overlapping clines with long
tails and some outliers, reflecting a large within-population
genetic heterogeneity due to an admixture of African- and
American-ancestry lineages. In the East Asian-ancestry group,
CDX and KHV in Southeast Asia joined first, connected to CHB
(North China) and CHS (South China) in East Asia, and finally
combined with JPT in Northeast Asia. Although the South Asian-
ancestry group was clearly separated from the East Asian-ancestry
group, BEB from the eastern part of the Indian subcontinent were
closer to the East Asian-ancestry lineage and closely linked to ITU
and STU located in the south of the Indian subcontinent. These
three populations separated from the European-ancestry-prone
cline of PJL and GIH located in the northwest of the Indian
subcontinent85. In the European-ancestry group, GBR and CEU
in northern and western Europe were tightly connected, reflecting
a shared genetic background. TSI and IBS in southern Europe
were in nearby geographic regions and shared more genetic
components but still separated in the principal component plot.
FIN in northern Europe joined the European lineage at a late
stage, showing a genetic discrepancy from other European
populations. In the American-ancestry group, the first cline
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consisting of populations PUR and CLM was closer to the lineage
of the European-ancestry group, and the second cline consisting
of populations MXL and PEL were closer to the lineage of the
Native American-ancestry group89. These analyses revealed trans-
continental genetic differentiation and cross-population genetic
similarity and variability.

Homozygosity disequilibrium in global continents and popu-
lations. Genomic profiling of homozygosity intensity (Fig. 5) and
population structure of HD in global continents and populations
(Supplementary Fig. 1) are shown. According to the distributions
of the number and width of genomic regions under HD in global
continents (Fig. 6a) and populations (Fig. 6b), the African-
ancestry group had the lowest number and shortest regions of
HD. By contrast, the East Asian-ancestry group had the largest
number and widest regions of HD. The American-ancestry group
exhibited the largest spread in the number and length of regions
of HD. All continents contained a certain proportion of indivi-
duals who carried extremely long regions under HD.

In general, the pattern of HD differed across the continental
ancestry groups; 84.358% of regions of HD showed a significant
difference in medians of homozygosity intensity among different
continental ancestry groups. Moreover, compared with other
continents, the American-ancestry group exhibited the largest
within-continent variation in HD. Among the populations within
the American-ancestry group, 0.740% (N= 575,750) of regions of
HD exhibited significantly different medians of homozygosity
intensity. In the non-American-ancestry groups, the proportions
were much lower: 0.006% (N= 4951), 0.037% (N= 16,960),
0.037% (N= 28,417), and 0.006% (N= 4731) in AFR, EAS, EUR,
and SAS, respectively. The HDA revealed differential genomic
structures and demographic histories of the studied ancestry
groups.

Ancestry-informative markers. Venn diagrams show that the
distributions of AIMs based on different types of variation SNP,
RV, SNP/RV, and Total SNV differed in various ancestry groups
(Fig. 7a–d). The numbers and proportions of AIMs (i.e., PAIM)
are provided (Table 1). Across the human genome, 36.78% of
SNVs were continental AIMs that could tell the between-
continent differences in allele frequency. According to different
types of SNVs, 99.52% of SNPs, 12.45% of RVs, and 99.94% of
SNPs and/or RVs (i.e., the variant was an SNP in some continents
but becomes an RV in other continents) were continental AIMs.
In addition, as expected, the number of AIMs that could distin-
guish the within-continental differences in allele frequency were
much fewer. Within the African-, American-, East Asian-, Eur-
opean-, and South Asian-ancestry groups, only 9.84%, 13.90%,
6.89%, 3.77%, and 0.70% of SNVs could distinguish the within-
continent differences in allele frequency, respectively; in details,
24.51%, 52.60%, 23.24%, 11.93%, and 3.00% of SNPs were within-
continental AIMs; 0% of RVs were within-continental AIMs; and
21.52%, 7.35%, 19.52%, 10.39%, and 4.10% of SNPs and/or RVs
were within-continental AIMs. The Venn diagrams of the within-
continental AIMs of each of the five study ancestry groups are
displayed in Fig. 7 for whole-genome SNVs (Fig. 7a), SNPs
(Fig. 7b), RVs (Fig. 7c), and SNPs and/or RVs (Fig. 7d). This
demonstrated that 1186 SNVs, 2572 SNPs, 0 RVs, and 10 SNPs
and/or RVs could serve as within-continental AIMs for all five
studied continental ancestry groups. These results summarized
the genetic ancestry informativeness contained in different types
of genetic variation and provided a catalog of AIMs for global
continents and populations.

Ancestry-informative PGx and enrichment of AIMs in PGx.
Among 3259 autosomal PGx in this study, the top three major
drug categories of PGx belonged to PD (N= 2303), PK (N= 503),
and CYP endogenous substrates (N= 334) (Fig. 2b). The top three

Fig. 1 Twenty-six studied global populations from five continents. The samples consisted of 661, 347, 504, 489, and 503 African-, American-, East
Asian-, South Asian- and European-ancestry individuals, respectively. The 661 African-ancestry individuals consisted of 61 individuals of African ancestry in
the Southwestern United States (ASW), 96 African Caribbean in Barbados (ACB), 113 Gambian in the Western Division, Mandinka (GWD), 99 Esan in
Nigeria (ESN), 85 Mende in Sierra Leone (MSL), 108 Yoruba in Ibadan, Nigeria (YRI), and 99 Luhya in Webuye, Kenya (LWK). The 347 American-ancestry
individuals consisted of 64 individuals of Mexican ancestry in Los Angeles, California, USA (MXL), 104 Puerto Ricans in Puerto Rico (PUR), 94 Colombians
in Medellin, Colombia (CLM), and 85 Peruvians in Lima, Peru (PEL). The 504 East Asian-ancestry individuals consisted of 104 Japanese in Tokyo, Japan
(JPT), 103 Han Chinese in Beijing, China (CHB), 105 Southern Han Chinese, China (CHS), 93 Chinese Dai in Xishuangbanna, China (CDX), and 99 Kinh in
Ho Chi Minh City, Vietnam (KHV). The 489 South Asian-ancestry individuals consisted of 96 Punjabi in Lahore, Pakistan (PJL), 86 Bengali in Bangladesh
(BEB), 103 Gujarati Indians in Houston, Texas, USA (GIH), 102 Indian Telugu in the UK (ITU), and 102 Sri Lankan Tamil in the UK (STU). The 503
European-ancestry individuals consisted of 99 Utah residents (CEPH) with northern and western European ancestry (CEU), 107 individuals from Iberian
populations in Spain (IBS), 91 British in England and Scotland (GBR), 99 Finnish in Finland (FIN), and 107 Toscani in Italia (TSI).
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major categories of functional annotation of PGx were intron
(N= 1583), missense (N= 514), and gene upstream (N= 355)
(Fig. 2b). For ancestry-informative PGx, the top three major drug
categories and functional annotation categories of PGx remained
the same. The results provided a complete catalog of ancestry-
informative PGx characterized by different drug categories and
functional annotation. Both protein-coding variants (e.g., a mis-
sense mutation) and non-protein-coding variants (e.g., an intronic
SNV) represented important mechanisms for PGx.

Based on all autosomal SNVs, we calculated the proportion of
AIMs (in notation, PAIM) and the proportion of AIMs only based on
PGx (in notation, PAIM | PGx) in each of the six analysis groups
(Table 2). The results showed that (PAIM, PAIM | PGx) = (27.97%,

98.04%), (8.96%, 26.97%), (12.40%, 39.89%), (6.45%, 16.66%),
(3.63%, 9.30%), and (0.70%, 2.06%) in the whole-continental,
African-, American-, East Asian-, European-, and South Asian-
ancestry groups, respectively. One-sided Fisher’s exact tests showed
that PAIM | PGx was significantly higher than PAIM with a P value of
0, 2.88 × 10–195, 0, 7.93 × 10–90, 5.25 × 10–48, and 2.71 × 10–14 in
the whole-continental, African-, American-, East Asian-, European-,
and South Asian-ancestry groups, respectively. The results revealed
that AIMs are highly enriched in PGx loci, especially in ancestry
groups with a high genetic differentiation.

Ancestry informative genes. Manhattan plots from a genome-
wide homozygosity association study are displayed (Fig. 8). Among

Fig. 2 Distribution of PGx in four public resources. a This study collected PGx from four PGx resources: Drug Bank, PharmGKB, PharmaADME, and
Biotransformation. b Relationship between drug category and functional annotation of PGx. Red lines indicate a relationship between drug category and
functional annotation. Green lines indicate a relationship between multiple drug categories. Blue lines indicate a relationship between multiple functional
annotations. Histograms of PGx for drug category (green bar) and functional annotation (blue bar) are displayed on the left-hand side. Histograms of PGx
for all relationships are displayed at the top; only the relationships with a frequency of >10 are shown.
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37,049 gene regions, we found 99.360% of AIGs (N= 36,812) under
HD among continents. In specific continent, we found 2.904%
(N= 1076), 34.562% (N= 12,805), 4.802% (N= 1779), 2.440%
(N= 904), and 0.432% (N= 160) AIGs under HD in AFR, AMR,
EAS, EUR, and SAS, respectively. The results suggested a pattern of
differential autozygosity in global continents and populations and
provided a catalog of AIGs under HD.

Genetic ancestry prediction panels. Based on 3002 autosomal
SNVs, which were the within-continental AIMs for all of the five
study ancestry groups (Fig. 7a–d) and three genes which were the
within-continental AIGs under HD for all five study ancestry
groups (Fig. 7e), a flexible discriminant analysis of 10-fold cross
validation established the best discriminant model for classifying
individuals to the five studied continental ancestry groups (Sup-
plementary Fig. 2). The classification model obtained a training
accuracy of 96.6% and a testing accuracy of 95.6% in correctly
assigning individuals to their continental ancestry group (Sup-
plementary Fig. 3). Genotype distributions of the 31 AIMs and 1
AIG (LOC100132249) are summarized in a staked-bar/box-
whisker plot (Supplementary Fig. 4). The impact of individual
predictive AIMs is shown in a marker impact plot (Supplemen-
tary Fig. 5)—The top three AIMs, consistently chosen in a 10-fold
cross-validation analysis, were rs1578060 on CCDC14, rs5017562
on CENPW, and rs2682248 on KIF26B. All three genes were AIG
genes. The result of sample clustering is displayed in a multi-
dimensional scaling plot (Supplementary Fig. 6). The analysis
established a prediction panel that can be used to determine the
continent for an individual based on an inference of genetic
ancestry.

Pharmacogenomic database. We established genetic ancestry
pharmacogenomic database Genetic Ancestry PhD according to
the study ancestry groups (AFR, AMR, EAS, EUR, SAS, and
whole-continents) and four genetic variation categories (All
SNVs, SNPs, RVs, and SNPs and/or RVs) at the website http://
hcyang.stat.sinica.edu.tw/databases/genetic_ancestry_phd/. An
instruction on how to use the Genetic Ancestry PhD is provided
(Supplementary Note 2).

Discussion
Our population genomics analyses, including PCA, HCA, and
HDA, revealed differential genetic and demographic backgrounds
of the studied global continents and populations. For the African-
ancestry group, PCA and HCA showed this group had the largest
genetic distance from other continental ancestry groups and
HDA showed this group had the lowest number and shortest
regions of HD, which was also found in previous studies with
smaller numbers of samples, ethnic populations, and genetic
markers60,74. Combined with molecular genetics and arche-
ological evidence, these results revealed that this group had a
larger effective population size and was more ancient than other
continental ancestry groups. In contrast to the indigenous resi-
dents in Africa, the African-ancestry diaspora populations
exhibited a much more diverse genetic admixture. For the
American-ancestry group, PCA and HCA showed two clearly
separate clines (PUR–CLM and MXL–PEL) and HDA showed
that this group exhibited the largest spread in the number and
length of regions of HD among the studied ancestry groups. This
revealed a large genetic differentiation and complex admixture in
the Americas in this data set. For the South Asian-ancestry group,
PCA showed that individuals from each population had been

Fig. 3 Analysis flow of this study. Genomic structures of 26 populations in five continents were explored using principal component analysis, hierarchical
clustering analysis, and homozygosity disequilibrium analysis. Within each of the six study ancestry groups (whole-continents, AFR, AMR, EAS, EUR, and
SAS), AIMs were identified based on each of four genetic variation categories using two-sided Fisher exact tests. Ancestry-informative PGx were identified
and an enrichment of AIMs in PGx loci was evaluated using one-sided Fisher exact tests. Finally, a genetic ancestry PGx database was constructed.
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divided into two subgroups. This special substructure was also
observed in previous research and was explained by a social
hierarchy of individuals in the Indian subcontinent85. More
investigations are warranted to clarify the intrinsic reasons for
this special pattern. HDA found a number of outlier individuals
who carried many more or larger regions of HD in this group. For
the East Asian-ancestry group, PCA showed the Northeast Asian
population JPT was separated from others, starting from East
Asian populations (CHB and CHS) to Southeast Asian popula-
tions (CDX and KHV) along the latitudinal cline. HDA showed
that they carried the largest number and widest regions of HD
among the studied ancestry groups. This may be partially

explained by a recent bottleneck in East Asia90. For the European-
ancestry group, PCA and HCA exhibited a latitudinal cline of
Northern Europe (FIN) to Western Europe (GBR and CEU) to
Southern Europe (IBS and TSI). HDA showed the distributions of
the number and length of regions of HD were in between those of
the East Asian-ancestry and South Asian-ancestry groups. In each
continental ancestry group, we found a number of individuals
who exhibited an extremely long genomic segment or multiple
genomic segments under HD. For example, a 410-Mb region
under HD was observed in individual HG04070 (ITU) (Supple-
mentary Fig. 7a). Forty-seven regions under HD with a length of
>2Mb were found in individual HG02684 (CEU) (Supplementary

Fig. 4 Global distribution of the whole-genome allele frequency. a Principal component plots of whole-genome allele frequency. b Hierarchical clustering
dendrogram of whole-genome allele frequency. Sample size n= 2504 individuals.
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Fig. 7b). These patterns revealed that autozygosity was not a rare
event in global continents and populations.

In this study, we found that East Asians carried the largest
number and widest regions of HD in The 1000 Genomes Project.
This finding is not in conflict with the previous finding71,74 that
Native Americans had the most recent and severe bottlenecks,
which made the overall lengths and numbers of runs of homo-
zygosity much higher in Americans than other populations. The
American-ancestry populations in The 1000 Genomes Project
studied in this paper differ from the populations in the Human
Genome Diversity Panel91,92 data. In the Human Genome
Diversity Panel, the American-ancestry populations (Maya, Pima,
Colombian, Karitiana, and Surul) are Native Americans. These
Native Americans population had undergone recent and severe
bottlenecks and exhibited much higher lengths of runs of
homozygosity than other populations (Refer to Fig. 3 in Pem-
berton et al.71). In The 1000 Genomes Project, the American-
ancestry populations (MXL, PUR, CLM, and PEL) are admixed
Americans. This ancestry admixture reflects in the large varia-
bility of the lengths and numbers of HD (Refer to Fig. 6 in this
paper). MXL was included in both of The 1000 Genomes Project
and the International Haplotype Map Project III93. This admixed
Americans population did not show higher lengths of runs of
homozygosity compared to East Asians (Refer to Fig. 3 in Pem-
berton et al.71), and this result is consistent to our finding. The
CLM participants in The 1000 Genomes Project were Colombians
with admixed ancestry recruited from the second-largest city in
Colombia and they differed from the Colombian participants
with the Native Americans ancestry in the Human Genome
Diversity Panel. As expected, the Colombian participants in the
Human Genome Diversity Panel exhibited much higher lengths
of runs of homozygosity compared to the CLM in The 1000
Genomes Project (Refer to Fig. 3 in Pemberton et al.71).

This study generated catalogs of AIMs and AIGs that provide
genetic ancestry information for global continents and popula-
tions and established a prediction panel for global continents. We
found more than 28 million among-continental AIMs and
0.17–3.83 million within-continental AIMs with the African-

ancestry group having the most AIMs and the South Asian-
ancestry group having the least AIMs. This reflected the genetic
diversity in these continents. In addition, we found 36,812 AIGs
under HD among continents and 160–12,805 AIGs under HD
within continents, with the American-ancestry group having the
most AIGs under HD within continents in reflection of the
spread of genetic admixture in this continent. Furthermore, we
established a marker panel that can be used to predict continental
ancestry groups with a high accuracy according to the informa-
tion of genetic ancestry from 31 AIMs and 1 AIG. Compared with
previous prediction panels, we combine both of AIMs and AIGs
under HD from whole-genome sequencing data to establish
prediction panels for global continents.

Compared to the three available commercial panels94, our
postulated genetic ancestry prediction panel is either more
accurate or parsimonious. Our panel that contains 31 AIMs and 1
AIG obtained a training accuracy of 96.6% and a testing accuracy
of 95.6% in correctly assigning individuals to their continental
ancestry group. The QIAGEN140-SNP Identification Multiplex
panel94 required a larger number of SNPs (140 SNPs) and had a
lower training accuracy of 95.87% and a testing accuracy of
92.03% than ours. The Ion AmpliSeq HID Phenotyping Panel95

used the 24 SNP HIrisplex System and had a notably reduced
training accuracy of 81.1% and testing accuracy of 85.2% than
ours. The 165 SNP Precision ID Ancestry Panel constituted by
123 SNPs from the group of M. Seldin24 and 55 SNPs from the
group of K. Kidd96 with 13 overlapping SNPs, had a higher
training accuracy of 99.29% and testing accuracy of 100%, but
this panel required more SNPs than ours.

We observed a substantially high enrichment of AIMs in PGx.
This study finds this informative phenomenon through a formal
analysis of whole-genome sequencing data and pharmacoge-
nomic data, and it illustrates that differential drug responses,
ADRs, and drug’s effective doses among ancestry groups are
related to genetic ancestry. This explains the necessity to differ-
entiate medical treatments according to not only population
ancestry but also the individual’s genetic ancestry and genotype
information. Genetic ancestry plays a critical role in precision

Fig. 5 Genomic profiles of homozygosity intensity in global continents and populations. Sample size n= 2504 individuals.
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population health and the development of gene therapies and
cancer testing and should include more population groups with
different genetic backgrounds to benefit more people around
the world.

Our pharmacogenomic database revealed that an AI-PGx with
multiple drug targets and differential allele frequencies among
global continents was often located in protein-coding regions
(e.g., missense and synonymous variants) and related to impor-
tant biological function(s). For example, rs1801133 (i.e., C677T
and Ala222Val) is a C > T missense SNP on the methylenete-
trahydrofolate reductase (MTHFR) gene at 1p36.22. MTHFR is
known to be associated with catalysis of the conversion from
5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and
folate metabolism. Allele T leads to a valine substitution at amino
acid 222 and encodes a thermolabile MTHFR enzyme with
reduced activity. Methylenetetrahydrofolate reductase deficiency
decreases concentrations of folate and red blood cells and alters
susceptibility to multiple diseases, such as hyperhomocysteine-
mia, occlusive vascular disease, neural tube defects, colon cancer,
and acute leukemia. Drugs targeted by this AI-PGx include
methotrexate, vitamin B-complex, and so on. Supplementation
with folate for individuals who carry homozygote TT can improve
methylenetetrahydrofolate reductase deficiency.

This study showed that rs1801133 had a significant difference
in allele frequency among global continents (adjusted P= 3.568 ×
10–4 in Fisher’s exact test) and the maximum allele frequency
difference among the five studied continents was Δ = 0.384; the
allele frequencies of allele T were 0.090, 0.119, 0.296, 0.365, and
0.474 in AFR, SAS, EAS, EUR, and AMR, respectively (Supple-
mentary Fig. 8). The frequency reflects the prevalence of
methylenetetrahydrofolate reductase deficiency in different
ancestry groups. In addition to rs1801133, other examples of AI-
PGx with multiple drug targets included but were not limited to
missense rs1801131 on MTHFR (adjusted P= 3.568 × 10–4 in
Fisher’s exact test, Δ = 0.266), synonymous rs6305 on HTR2A
(adjusted P= 4.24 × 10–12 in Fisher’s exact test, Δ = 0.0259),
missense rs6025 on F5 (adjusted P= 3.14 × 10–6 in Fisher’s exact
test, Δ = 0.0119), and missense rs149157808 (merged to
rs28371733) on CYP2D6 (adjusted P= 5.46 × 10–6 in Fisher’s
exact test, Δ = 0.0121). Drug targets and allele frequency dis-
tributions of the aforementioned AI-PGx are provided in our
pharmacogenomic database.

In addition to a significant difference in allele frequency among
global continents, AI-PGx with target multiple drugs may also
exhibit significantly differential allele frequencies within specific
continent(s). For example, missense rs1801133 also had
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Fig. 6 Genome-wide distributions of the number and length of regions of HD. a Distributions of HD in the five continental ancestry groups.
b Distributions of HD in all populations in the five continental ancestry groups. For each continental ancestry group or population, the number of regions
of HD, i.e., #(HD), is displayed on the left-hand side of a violin plot with respect to the left y-axis. The length of regions of HD, i.e., L(HD), is displayed
on the right-hand side of a violin plot with respect to the right y-axis. Sample size n= 2504 individuals.
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significantly different allele frequencies within the East Asian-
ancestry group (adjusted P= 4.157 × 10–3 in Fisher’s exact test,
Δ = 0.332) and significantly different allele frequencies within the
European-ancestry group (adjusted P= 7.479 × 10–3 in Fisher’s
exact test, Δ = 0.195). In the East Asian-ancestry group, the allele
frequencies of T were 0.134, 0.192, 0.286, 0.380, and 0.466 in
CDX, KHV, CHS, JPT, and CHB, respectively; the maximum
difference was Δ = 0.332. In the European-ancestry group, the
allele frequencies of T were 0.727, 0.702, 0.676, 0.556, and 0.533 in

FIN, CEU, GBR, IBS, and TSI, respectively; the maximum dif-
ference was Δ = 0.195. These examples illustrate again that, if the
information of genetic ancestry and individual genotype is
available, they should be considered in the use of medication.
Other examples include: (1) in AFR—rs2231142 on ABCG2
(adjusted P= 8.592 × 10–4 in Fisher’s exact test, Δ = 0.0738),
rs1799971 on OPRM1 (adjusted P= 1.949 × 10–3 in Fisher’s exact
test, Δ = 0.0492), and rs4149056 on SLCO1B1 (adjusted P=
3.748 × 10–3 in Fisher’s exact test, Δ = 0.0656); (2) in AMR—

Fig. 7 Distribution of ancestry informative markers (AIMs) and ancestry informative genes (AIGs). a SNV-based AIMs. b SNP-based AIMs. c RV-based
AIMs. d SNP/RV-based AIMs. e AIGs under homozygosity disequilibrium (HD).
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rs738409 on PNPLA3 (adjusted P= 1.94 × 10–12 in Fisher’s exact
test, Δ = 0.163), and rs11854484 on SLC28A2 (adjusted P= 6.95
× 10–11 in Fisher’s exact test, Δ = 0.306); (3) in EAS—rs4961 on
ADD1 (adjusted P= 4.157 × 10–3 in Fisher’s exact test, Δ =
0.144); (4) in EUR—rs1137101 on LEPR (adjusted P= 7.479 ×
10–3 in Fisher’s exact test, Δ = 0.152), rs1801394 on MTRR
(adjusted P= 7.479 × 10–3 in Fisher’s exact test, Δ = 0.111), and
rs4149117 and rs7311358 on SLCO1B3 (adjusted P= 7.479 ×
10–3 in Fisher’s exact test, Δ = 0.163); (5) in SAS—rs6280 on
DRD3 (adjusted P= 2.64 × 10–2 in Fisher’s exact test, Δ = 0.219)
and rs2229774 on RARG (adjusted P= 2.64 × 10–2 in Fisher’s
exact test, Δ = 0.185).

Top AIMs with the maximum difference in allele frequencies
across the studied continental ancestry groups and within a
specific continental ancestry group are also provided in our
pharmacogenomic database (Supplementary Note 3). Previous
studies on AIMs have mainly focused on single-locus AIMs. We
further explored the topic by examining AIGs under HD and
developing a catalog of AIGs under HD for global continents and
populations. It is not surprising that the whole-continental gen-
ome-wide homozygosity association analysis identified an enor-
mous number of AIGs under HD across the human genome
(N= 36,812). The American-ancestry group exhibited a sub-
stantial number of AIGs under HD (N= 12,805), which reflects
the heterogeneous genetic background of this continental ances-
try group in this data set.

We found that the distributions of HD in PGx regions coin-
cided with the patterns of HD in the whole genome, but the
discrepancies of homozygosity intensities shrunk among the
studied continental and population ancestry groups. In addition,
our HDA identified AIGs with reported evidence of natural
selection such as the CYP3A family97,98, LCT99,100, and
MCM6100,101. For example, the CYP3A family contains four main
genes: CYP3A4, CYP3A43, CYP3A5, and CYP3A7. The encoded
isozyme plays a critical role in the metabolism of therapeutics,
endogenous metabolites (e.g., hormones and antibiotics), exo-
genous chemicals (e.g., environmental contaminants and food
additives), and salt homeostasis97. Our database showed that all
CYP3A family members exhibited significantly different levels of
homozygosity intensity across the five studied continental
ancestry groups; CYP3A4 (adjusted P= 4.471 × 10–48 in the
Kruskal–Wallis test; median homozygosity intensity ranges from
0.757 to 0.909), CYP3A43 (adjusted P= 1.828 × 10–65 in the
Kruskal–Wallis test; median homozygosity intensity ranges from
0.718 to 0.879), CYP3A5 (adjusted P= 4.971 × 10–40 in the
Kruskal–Wallis test; median homozygosity intensity ranges from
0.811 to 0.965), and CYP3A7 (adjusted P= 5.061 × 10–49 in the
Kruskal–Wallis test; median homozygosity intensity ranges from
0.793 to 0.975).

Some examples demonstrated a high selective pressure in
continental ancestry groups and specific population ancestry
groups. For example, Lactase (LCT) on 2q21.3 encodes an
enzyme that aids in lactose digestion. A lactase deficiency results
in a lactose intolerance that has an autosomal recessive mode of
inheritance and is associated with homozygosity of the gene. The
prevalence of lactose intolerance has a wide global spectrum and
Caucasians have a lower prevalence than that of other
populations102,103. LCT was also identified as an AI-PGx
responsible for decitabine. Our results showed a significant dif-
ference in homozygosity intensities across the continental
ancestry populations (adjusted P= 9.057 × 10–34 in the
Kruskal–Wallis test) and a significant difference in homozygosity
intensities in the European-ancestry group (range of homo-
zygosity intensities Δ = 0.422, adjusted P= 2.707 × 10–4 in the

Table 1 Global distributions of AIMs.

Ancestry
groups

VarType # of SNVs # of AIMs based on allele-
based 2-sided Fisher exact
test (the proportion of
AIMs, PAIM)

False discovery rate

ALL MAF= 0 245,462 -
SNP 5,533,074 5,506,536 (99.520%)
RV 58,354,524 7,264,275 (12.449%)
SNP/RV 13,685,123 13,677,393 (99.944%)
Total SNV* 77,572,721 28,531,199 (36.780%)

AFR MAF= 0 38,873,037 -
SNP 10,326,460 2,530,827 (24.508%)
RV 16,020,578 0 (0%)
SNP/RV 12,598,108 2,711,122 (21.520%)
Total SNV* 38,945,146 3,831,696 (9.839%)

AMR MAF= 0 51,903,729 -
SNP 7,032,091 3,698,704 (52.597%)
RV 12,632,724 0 (0%)
SNP/RV 6,249,639 459,185 (7.347%)
Total SNV* 25,914,454 3,602,015 (13.900%)

EAS MAF= 0 56,021,288 -
SNP 6,271,954 1,457,317 (23.235%)
RV 11,680,819 0 (0%)
SNP/RV 3,844,122 750,456 (19.522%)
Total SNV* 21,796,895 1,501,008 (6.886%)

EUR MAF= 0 55,685,350 -
SNP 7,161,303 854,478 (11.932%)
RV 10,956,920 0 (0%)
SNP/RV 4,014,610 417,108 (10.390%)
Total SNV* 22,132,833 834,331 (3.770%)

SAS MAF= 0 53,228,676 -
SNP 7,239,212 217,333 (3.002%)
RV 12,766,736 4 (0.000031%)
SNP/RV 4,583,559 187,916 (4.100%)
Total SNV* 24,589,507 172,096 (0.700%)

*Total SNV indicates all polymorphic variants with a nonzero minor allele frequency (MAF),
including common variant (SNP), rare variant (RV), and SNP/RV, where 162 variants with
duplicated positions were excluded.

Table 2 Global distributions of AIM and distributions of AIM in pharmacogenomic loci.

Continent PGx ∩ AIM PGxc ∩ AIM PGx ∩ AIMc PGxc ∩ AIMc PAIM PAIM | PGx p

ALL 3195 28,528,004 64 73,462,356 0.2797 0.9804 0
AFR 879 3,830,817 2380 38,934,065 0.0896 0.2697 2.88 × 10–195

AMR 1300 3,600,715 1959 25,454,504 0.1240 0.3989 0
EAS 543 1,500,465 2716 21,779,390 0.0645 0.1666 7.93 × 10−90

EUR 303 834,028 2956 22,118,305 0.0363 0.0930 5.25 × 10−48

SAS 67 172,029 3192 24,585,458 0.0070 0.0206 2.71 × 10−14

*PGxc indicates non-PGx loci; AIMc indicates non-AIM loci; symbol ∩ indicates an intersection. PAIM indicates the proportion of AIMs; PAIM | PGx indicates the proportion of ancestry-informative loci
in PGx.
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Kruskal–Wallis test). CEU and GBR had strikingly high median
homozygosity intensities (0.991 in CEU and 0.995 in GBR),
which were also much higher than the values in other European-
ancestry populations (0.573 in FIN, 0.634 in IBS, and 0.578 in
TSI) and in other continental ancestry groups (0.753 in AFR,
0.637 in AMR, 0.641 in EAS, and 0.630 in SAS). The patterns of
prevalence of lactose intolerance and homozygosity intensity
therefore coincide.

The Minichromosome maintenance complex component 6
(MCM6) gene on 2q21.3 is another key gene associated with
lactose intolerance in early adulthood104. This AI-PGx is
responsible for the PK/PD of multiple medications, including
tropine, estradiol, and so on. Our results showed that similar to
LCT, MCM6 also exhibited strikingly high median homozygosity
intensities that were considerably higher than the values in other
European- and non-European-ancestry groups with 0.993 in CEU
and 0.994 in GBR. Different lengths of homozygosity regions may
reflect different population histories. A short segment of homo-
zygosity in tens of KB may be formed by a pair of ancient hap-
lotypes that contribute to local LD patterns71,74; however, it is not
always the case. CEU and GBR did not exhibit a striking differ-
ence in LD patterns compared to other European- and non-
European-ancestry groups in LCT and MCM6. A previous study
demonstrated that LCT and MCM6 acted as a selective pressure
in the European-ancestry group100. This study further showed the
detailed patterns of differential signatures of selective pressure in
ancestry populations within this continent.

Both protein-coding and non-protein-coding regions are neces-
sary for a complete population pharmacogenomics study. Accord-
ing to the four popular pharmacogenetic resources used in this
study, the largest and second largest functional groups of PGx were
intron (48.052% of all PGx; N= 1566) and missense (15.496% of all
PGx; N= 505). However, the majority of previous population

pharmacogenetic studies focused only on PGx in protein-coding
regions53,105 or differentially expressed regions106. The studies
provided biological interpretations to protein-coding PGx but failed
to provide a whole picture of the PK/PD mechanisms. The current
study provides the unbiased investigation of PGx by analyzing a
whole-genome sequencing data set of global populations. In addi-
tion to protein-coding PGx, the identification of AI-PGx in non-
protein-coding regions provides information supplemental to pre-
vious studies.

The current study focused on DNA sequencing data containing
rich information in genetic ancestry, population genomics, and
pharmacogenomics. Future research can integrate additional
–omics data, including but not limited to transcriptomics,
epigenomics, and proteomics, to further decipher the relationship
between genetic ancestry and drug PK/PD and move forward
toward a comprehensive understanding of precision population
health.

Methods
Samples. In this study, we analyzed the whole-genome sequencing data of 2504
independent samples from 26 populations of five continental ancestry groups as
presented by The 1000 Genomes Project—Final Phase84,88 (Fig. 1). The analysis
considered the six analysis groups: (1) African-ancestry group containing popu-
lations ASW, ACB, GWD, ESN, MSL, YRI, and LWK; (2) American-ancestry
group containing populations MXL, PUR, CLM, and PEL; (3) East Asian-ancestry
group containing populations JPT, CHB, CHS, CDX, and KHV; (4) South Asian-
ancestry group contained populations PJL, BEB, GIH, ITU, and STU; (5)
European-ancestry group containing populations CEU, IBS, GBR, FIN, and TSI;
and (6) whole-continental group containing African-, American-, East Asian-,
South Asian-, and European-ancestry groups.

Quality control and filtering. All 2504 samples were sequenced across the whole
genome using either Illumina HiSeq 2000 or Illumina HiSeq 2500 by The 1000
Genomes Project88. The sequencing experiments provided genotype data for
81,271,745 genetic variants on 22 pairs of human autosomes. The sequencing data

Fig. 8 Genome-wide homozygosity association study. The results of genome-wide homozygosity association tests for each of the five studied continental
ancestry groups (AFR, AMR, EAS, EUR, and SAS) and for a comparison of the five continental ancestry groups in the whole-continental group (whole-
continents) are shown in Manhattan plots. The vertical axis represents the P values (–log10 scale) of the homozygosity association tests based on a two-
sided Kruskal–Wallis test. The horizontal axis represents the physical positions of the anchor SNPs of sliding windows by chromosome. A red reference line
indicates a P value threshold of a Bonferroni multiple-testing correction. Quantile–quantile plots (Q–Q plot) are provided on the right-hand side. Sample
size n= 2504 individuals.
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are publicly available on The 1000 Genomes Project website (http://
www.1000genomes.org/data). The genetic variants were annotated based on the
Genome Reference Consortium Human genome build 37 (GRCh37). After
removing duplicate variants, multi-allelic variants, insertions, and deletions,
77,818,183 SNVs remained. We further removed SNVs with a minor allele fre-
quency of 0; in total, 245,462, 38,873,037, 51,903,729, 56,021,288, 53,228,676, and
55,685,350 SNVs were removed in the whole-continental, African-ancestry,
American-ancestry, East Asian-ancestry, South Asian-ancestry, and European-
ancestry groups, respectively. In the subsequent analysis, SNVs were classified into
four genetic variation categories: (1) All SNVs for SNVs with a nonzero minor
allele frequency (covering all three other categories of SNVs together); (2) SNPs for
SNVs with a minor allele frequency of >0.01; (3) RVs for SNVs with a nonzero
minor allele frequency of ≤0.01; and (4) SNPs and/or RVs for SNVs with a nonzero
minor allele frequency of ≤0.01 in some continental or population ancestry groups
and of >0.01 in others.

Public PGx resources and functional annotation. This study used the PGx
information from four public PGx resources (Fig. 2a): (1) Drug Bank (http://www.
drugbank.ca/), which consisted of 106 PGx SNPs categorized as ADR only, FX only,
or FX & ADR and 16,885 PGx genes categorized as downregulated, upregulated, or
both (update: 02/04/2018); (2) PharmGKB (https://www.pharmgkb.org/), which
consisted of 2597 PGx SNPs and 1226 PGx genes categorized as PK only, PD only,
PK & PD, or non-PK & non-PD (update: 05/04/2018); (3) PharmaADME (http://
www.pharmaadme.org/joomla/), which consisted of 138 PGx core SNPs and 32 PGx
core genes categorized as Phase I, Phase II, or Transporter (update: 05/04/2018);
and (4) Biotransformation genes, which consisted of 1001 PGx SNPs grouped into
eight subcategories45,49. The combination of all PGx records in the four public PGx
resources consisted of 3,259 and 16,221 distinct autosomal PGx loci and genes,
respectively. Functional annotation of PGx from The 1000 Genomes Project was as
follows: NMD transcript, noncoding transcript, noncoding transcript exon, reg-
ulatory region, intergenic, upstream gene, 5′ UTR, initiator codon, synonymous,
missense, stop gained, splice donor, splice acceptor, splice region, intron, stop lost,
3′ UTR, and downstream gene. The frequencies of the relationships between drug
category and functional annotation of PGx are provided (Fig. 2b). Here, the drug
category was defined according to the relation of PGx and drug biotransformation
and PK/PD.

Statistics and reproducibility
Principal component analysis and hierarchical cluster analysis. A global population
genomic structure of 2504 individuals from 26 populations was explored using an
ultrahigh-dimensional PCA. An efficient algorithm of the ultrahigh-dimensional
PCA for a whole-genome sequencing dataset of SNV genotypes was developed107

(Supplementary Note 1). All individuals in the whole-continental group or the
individuals from each continental ancestry group were projected onto the subspace
of the first two principal components based on a singular value decomposition of a
variance–covariance matrix of whole-genome individual-level allele frequency data.
An HCA using an average linkage was performed, and population structure was
displayed using a hierarchical clustering dendrogram.

Homozygosity disequilibrium analysis. HD, originally coined by Yang et al59, is
defined by a non-random pattern of sizable run of homozygosity where its
homozygosity intensity exceeds the value under equilibrium in the human genome.
Homozygosity intensity can be estimated based on SNV genotypes and the esti-
mate ranges between 0 and 1. A higher value of homozygosity intensity indicates a
higher homozygosity in a genomic region. The procedures of our HDA are
described as follows. First, the genome-wide profile of homozygosity intensity for
every individual was calculated based on genotype data under a double-weight local
polynomial model by using LOHAS version 2.360. The double weights were
composed of a cubic kernel weight for considering a local smoothing property and
a locus weight with a threshold of minor allele frequency of 0.05 for adjusting for
the low informativeness of RVs. The procedure was applied to each gene region to
estimate the homozygosity intensity of a gene for each individual. Second, to draw
genomic profiling of average homozygosity intensity over individuals in each gene,
the homozygosity intensities for each population or for all populations within each
of the six analysis groups (refer to the Samples subsection) were summarized by
taking an average (median and mean) homozygosity intensity of all individuals in
the population or analysis group, respectively. Third, for all gene regions and the
gene regions that contain PGx, the genomic distributions of the number and length
of the regions under HD (i.e., an average homozygosity intensity in a gene region is
of >0.9) in each population and continental ancestry group were summarized in
violin plots.

Identification of ancestry informative markers. This study identified AIMs
in each of the six analysis groups on the basis of the four genetic variation cate-
gories, resulting in 24 analyses in total. In each of the 24 analyses, an average
individual-level allele frequency of every SNV in each of the six analysis
groups was calculated. Two-sided Fisher’s exact test108 was performed to examine
whether SNVs had a significant difference in allele frequency among the
studied populations in a continent and among the five-continent ancestry groups.

A false discovery rate109 for multiple testing was performed to calculate the
adjusted P values. An SNV with an adjusted P value of <0.05 was assigned as an
AIM. The number of AIMs (NAIM) and the proportion of AIMs (PAIM) were
calculated.

Enrichment analysis of AIMs in PGx. We examined enrichment of AIMs in PGx.
Three statistics were calculated: (1) the number of PGx (NPGx) based on the four
studied PGx resources; (2) the number of ancestry-informative PGx (NAI-PGx); and
(3) the proportion of ancestry-informative loci in PGx (PAIM | PGx=NAI-PGx /
NPGx). The excess of PAIM | PGx compared with PAIM was examined using one-sided
Fisher’s exact test. Odds ratio and P value were also calculated. If PAIM < PAIM | PGx,
it indicated that AIMs were enriched in PGx. All of the aforementioned analyses
were performed using R packages.

Identification of ancestry informative genes under homozygosity disequilibrium.
Genome-wide profile of homozygosity intensity for every individual was
obtained from the HDA. The two-sided Kruskal–Wallis test110 was employed to
examine whether a median homozygosity intensity in a gene was significantly
different within each of the six analysis groups. Adjusted P values were
calculated by applying a false discovery rate109 for multiple testing, and then
Manhattan plots were drawn. A gene with an adjusted P value of <0.05 was
assigned as an AIG.

Genetic ancestry prediction analysis. Genetic ancestry prediction panel was devel-
oped by using BIASLESS version 1.030. The procedures used are described as
follows: First, the analysis was implemented using a 10-fold cross-validation pro-
cedure. All 2504 individuals from the five studied continents were randomly
partitioned into ten subsets. In all subsets, the proportions of individuals belonging
to the five studied continents were the same as the proportions in all 2504. Second,
based on the individuals in the first nine subsets (i.e., the first training dataset), a
flexible discriminant analysis was applied to build a classification model with the
highest training accuracy by sequentially selecting the AIMs or AIGs with the
maximum increment of training accuracy. The AIM or AIG with the minimum
ratio of the within-continent and between-continent sum of squares for genotypic
values was selected if more than one AIM or AIG had the same training accuracy.
The procedure continued until the training accuracy reached 1.0 or the increment
of training accuracy was less than 0.001. Third, the model with the highest training
accuracy was then used to classify individuals into continents in the remaining 10th
subset (i.e., the first testing dataset) and calculate a testing accuracy. Fourth, the
previous steps were repeated until each of the ten subsets of data had been analyzed
as a testing dataset, resulting in ten classification candidate models. Finally, among
the ten classification models, the model with the highest testing accuracy was
selected as the final classification model and the AIMs and AIGs formed a con-
tinental prediction panel.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data are publicly available on The 1000 Genomes Project website (http://
www.1000genomes.org/data). The PGx information in this study can be accessed from public
PGx resources: Drug Bank (http://www.drugbank.ca/); PharmGKB (https://www.pharmgkb.
org/); PharmaADME (http://www.pharmaadme.org/joomla/); Biotransformation45,49. All
analyzed data is available from the authors upon request. This study analyzed the public-
domain data and was approved by Institute Review Board on Biomedical Science Research,
Academia Sinica (approval number: AS-IRB01-17025).

Code availability
Code for our developed ultrahigh-dimensional PCA plot generator is deposited in
Zenodo (https://doi.org/10.5281/zenodo.4301096).
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