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Abstract: Indoor positioning has become a very promising research topic due to the growing demand
for accurate node location information for indoor environments. Nonetheless, current positioning
algorithms typically present the issue of inaccurate positioning due to communication noise and
interferences. In addition, most of the indoor positioning techniques require additional hardware
equipment and complex algorithms to achieve high positioning accuracy. This leads to higher
energy consumption and communication cost. Therefore, this paper proposes an enhanced indoor
positioning technique based on a novel received signal strength indication (RSSI) distance prediction
and correction model to improve the positioning accuracy of target nodes in indoor environments,
with contributions including a new distance correction formula based on RSSI log-distance model,
a correction factor (Beta) with a correction exponent (Sigma) for each distance between unknown
node and beacon (anchor nodes) which are driven from the correction formula, and by utilizing
the previous factors in the unknown node, enhanced centroid positioning algorithm is applied
to calculate the final node positioning coordinates. Moreover, in this study, we used Bluetooth
Low Energy (BLE) beacons to meet the principle of low energy consumption. The experimental
results of the proposed enhanced centroid positioning algorithm have a significantly lower average
localization error (ALE) than the currently existing algorithms. Also, the proposed technique
achieves higher positioning stability than conventional methods. The proposed technique was
experimentally tested for different received RSSI samples’ number to verify its feasibility in real-
time. The proposed technique’s positioning accuracy is promoted by 80.97% and 67.51% at the office
room and the corridor, respectively, compared with the conventional RSSI trilateration positioning
technique. The proposed technique also improves localization stability by 1.64 and 2.3-fold at the
office room and the corridor, respectively, compared to the traditional RSSI localization method.
Finally, the proposed correction model is totally possible in real-time when the RSSI sample number
is 50 or more.

Keywords: indoor positioning; RSSI; correction factor; Bluetooth Low Energy; beacon; enhanced
centroid positioning algorithm

1. Introduction

One of the essential elements of contextual information is the position of a user or de-
vice in a given space. The widespread use of sensors, smartphones and the mobile internet
has allowed precise positioning in real-time, and this approach is being extended slowly to
different situations [1]. A secure, user-friendly and precise navigation location information
method for mobile applications could open the door to many innovative applications and

Sensors 2021, 21, 719. https://doi.org/10.3390/s21030719 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7686-6466
https://orcid.org/0000-0002-2742-3180
https://doi.org/10.3390/s21030719
https://doi.org/10.3390/s21030719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030719
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/719?type=check_update&version=2


Sensors 2021, 21, 719 2 of 26

create opportunities for new businesses. Therefore, it is considered a milestone in the
realization of the Internet of Things (IoT). For example, location-based services, ambient
assisted living (AAL), health applications, robotics, and cellular network- based indoor
positioning are promising applications to achieve complete navigation systems [2].

This demand for indoor localization for universal mobile computing has led to im-
pressive amount of research in the past few years. Some of the fundamental research
involved specific sensors and emitters installed inside buildings to position people and
objects (infrastructure-based indoor positioning). Though very accurate, this method is
not scalable for business deployments and includes a specific overhead cost to install
and maintain the extra infrastructure. A different popular method employs the existing
infrastructure utilizing wireless access points to locate and triangulate using mobile devices.
This approach is very accurate, but it normally needs a comprehensive surveying and
training effort to establish a radio frequency (RF) map of the building. There are further
enhancements to this method, which decrease the efforts or discharge them entirely but at
the expense of accuracy. With mobile technology growing more powerful over the last few
years, it is presently embedded with more sensors, promoting the prediction’s accuracy
by merging them with certain earlier technologies without any support from the existing
infrastructures (infrastructure-less indoor positioning).

Different technologies such as ultra-wideband [3], Bluetooth [4], wireless local area
networks (WLANs) [5], radio frequency identification (RFID) [6], micro-electro-mechanical
(MEMS) [7], magnetic field [8], ultrasonic [9], computer vision [10], infrared signal [11] and
other techniques have been used for indoor localization. However, Bluetooth low-power
sources are preferred in indoor positioning due to their advantages, including fast installa-
tion, low power consumption and low cost. Apple introduced the Bluetooth low-energy
(BLE)-based iBeacon technology and this paved the way for BLE to be widely used in differ-
ent indoor environments [12]. In this work, the proposed positioning method depends on
BLE-based beacons as a stable signal source with low cost and energy consumption sources.

Measuring the distance between the unknown node and beacons is an essential part of
the positioning process within indoor environments. Most of the existing node localization
algorithms used nowadays can be divided into two categories depending on whether
distance measurements are required or not. One of these categories is the range-free mea-
surement localization algorithm and the other is the range-based measurement localization
algorithm [13,14]. The distance measurement algorithm calculates the distance between the
known beacon node and the unknown node connected to it, utilizing their communication
link parameters. The main categories of distance measurement algorithms are the angle of
arrival (AOA) based-algorithm [15,16], time of arrival (TOA) based-algorithm, time differ-
ence of arrival (TDOA) based-algorithm [17,18] and the received signal strength indication
(RSSI) based-algorithm [19–23]. In the previously mentioned algorithms, the TOA, TDOA,
and AOA need to correctly determine the distance between the unknown target node
and the specified beacon node by using a high-complexity algorithm that requires high
energy consumption and additional hardware. Each of these considerably increases the
communication cost of the positioning system. Therefore, the proposed indoor positioning
technique is based on RSSI distance measurement algorithm aiming at a cost-effective
indoor positioning solution without neglecting the positioning accuracy.

One of the essential procedures to accomplish the positioning process is the positioning
algorithm. As previously mentioned, the measurement distance algorithm estimates the
actual distance between the unknown node and the beacon. The positioning algorithm
is responsible for calculating the final coordinates of the unknown node by using the
distance measurements between the beacon and the unknown node. The positioning
algorithm can be constructed by using several methods. A centroid localization algorithm
based on the distance or angle information between the unknown node and the beacon is
presented in [24–27]. However, this algorithm produces a large positioning error as the node
distribution issue is not fully considered in addition to the presence of severe fluctuation
in distance measurements. Another algorithm based on the centroid algorithm called
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the weighted centroid algorithm is developed in [28–31]. In this algorithm, a weighting
factor is introduced to compensate for the error in estimated distance from measurements.
Nevertheless, the positioning error is still relatively high, especially in modern indoor
architectures. In [32], a fingerprint-based positioning algorithm is proposed by collecting
RSSI samples in the fingerprint database. In [33], the authors have executed and analyzed
several positioning algorithms (centroid localization, proximity localization, weighted
centroid localization, weight-compensated weighted centroid localization based on RSSI,
fingerprinting, and trilateration localization). The authors also suggested and performed
a fuzzy logic-based system to choose the most suitable algorithm depending upon the
room’s area, the beacon’s number available, and the signal strength. They concluded
that the fingerprinting positioning algorithm is the most fitting one. In [34], the authors
implemented a fingerprinting algorithm with fuzzy logic type-2 suitable for employment
as an indoor positioning method with BLE beacons with ALE of 0.43 m, but as fingerprint
positioning technology methods need several additional algorithms to support them,
thus the computational resource consumption and algorithmic program complexity are
comparatively high. Also, this methodology needs a large amount of a priori information
support which adds a high-cost issue. Besides, the RF signal may suffer from multipath
effects and electromagnetic interference in complex indoor environments.

To address the low positioning accuracy problem, many researchers have introduced
the hybrid positioning solutions. A hybrid positioning technique using hybrid metrics
including time-of-flight (ToF) and angle-of-arrival (AoA) which are combined with the
RSS fingerprinting system is presented in [35]. Another hybrid positioning method based
on Bluetooth beacons, geomagnetic field, inertial measurement unit (IMU) sensors, and
smartphone cameras is presented in [36]. These methods enhance the localization accuracy,
but hybrid positioning techniques require additional hardware equipment which increases
the communication cost. For low cost and high positioning accuracy, an iterative centroid
positioning algorithm based on an RSSI distance model is presented in [37]. In this algo-
rithm, a distance deviation coefficient was driven to correct the distance iteratively based
on the noise impact factor which is considered a better theoretical approach to improving
positioning accuracy. Nonetheless, the positioning results based on the assumption that
the noise impact factor is the same among all beacons is an impractical assumption as the
RSSI has time-varying characteristics.

Aiming at addressing the previously mentioned issues, this paper presents an im-
proved indoor positioning technique based on a new RSSI distance prediction and cor-
rection model. The proposed technique’ correction factors are based on a novel method
for collecting and obtaining the correction factors, which improves both the localization
accuracy and stability. Moreover, the proposed technique does not require any additional
hardware; hence it can be considered a cost-effective, low energy consumption solution for
indoor localization. Our proposed method is experimentally tested and verified in an in-
door office environment and a corridor using BLE beacons. In this paper, our contributions
may be summarized in the following parts:

• A new distance prediction and correction formula is introduced. The correction factors
are based on RSSI log-distance distribution model. A large number of RSSI samples
are collected and each RSSI sample is converted into its equivalent distance based
on the logarithmic relationship between received signal strength and distance. The
correction factors are driven from the RSSI-distances samples rather than the RSSI
samples themselves. We proved that this approach has more measurement stability,
which leads to higher positioning stability results with improved accuracy.

• A correction factor and a correction exponent for different distances are driven from
the correction formula at each beacon. First, the correction factor for a certain distance
is determined by calculating the mean and the median of RSSI samples equivalent
distances. Then, the correction exponent is driven for each distance from the correction
formula. Each beacon has its correction factors for certain distances according to the
indoor environment area.
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• At the unknown terminal, the calculated correction factors for each beacon are stored
in a lookup table. By utilizing those factors on the unknown node, an enhanced
centroid positioning algorithm is applied by correcting the estimated distance from
the real-time RSSI samples and finally calculate the real coordinates of the unknown
node. The algorithm does not consume much time to find the position of the unknown
terminal. Thus, complexity is relatively lower. The experimental results of our method
show improvement in both positioning accuracy and stability compared to other
existed algorithms.

The remainder of this paper is organized as follows: Section 2 describes our positioning
technique. In Section 3, we illustrate the implementation of our experiment and the software
and hardware devices used in experiments. In Section 4, we present our positioning results
compared to other algorithms and conventional methods. Finally, Section 5 presents the
conclusions of the paper and suggestions for future work.

2. Methods

This section presents the RSSI log-distance model and the positioning methods used
in this work. Section 4 discusses the positioning results of the proposed technique.

2.1. RSSI Distance Model

The main concept of RSSI ranging method is to measure the distance between the
receiving signal node and the transmitting signal node by measuring the received signal
strength as the propagation loss affects the transmitted wireless signal. The Bluetooth signal
propagation model follows the log-distance distribution model [38–40], which described by:

PL(d) = PL(d0) + 10n log
(

d
d0

)
+ Xδ (1)

where PL(d) is the RSSI at the receiving node separated from the transmitting source by
distance d; PL(d0) is the RSSI at the receiving node separated from the source by a reference
distance d0; n is the path-loss propagation exponent which takes different values depending
on the surrounding wireless transmission environment; Xδ is a Gaussian random variable
with zero mean and σ2 variance. It worth mentioning that the measurement error in RSSI
does not regularly produce a Gaussian distribution. However, by using approximation
(curve fitting), the RSSI measurement error is treated as a gaussian random variable for
simplicity. consequently, the reference distance is usually taken as one meter, and the
equation is simplified as follows:

RSSI = A− 10nlog(d) (2)

where RSSI is the signal strength at a distance d from the transmitting source, and A refers
to signal strength at 1 m distance from the signal source. The distance can be expressed
from Equation (2) as follows:

d = 10
A−RSSI

10n (3)

2.2. RSSI Distance Prediction and Correction Model

The emitted RSS from the BLE beacons is affected by several factors such as multi-
path effects (reflection, refraction) and absorption from water bodies. Moreover, channel
hopping influencing the RSS values since the advertisement packages are sent in three
different channels. Therefore, it is challenging to calculate the actual distance using the
RSSI log-distance distribution model because severe RSSI fluctuation may occur especially
in complex indoor environments. To minimize the localization error introduced by RSSI
fluctuation, a new RSSI distance prediction and correction model is proposed in this paper.
To predict the real distance, 5000 RSSI samples are collected (95% confidence interval) at
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1 m, 2 m, 3 m, 4 m, 5 m and 6 m distances from each Bluetooth beacon. A series of signal
strength values can be given as follows:

RSSI = {rssii} (i = 1, 2, 3, . . . , 5000), (4)

Each RSSI sample is converted to its equivalent distance using RSSI log-distance
relationship in Equation (3). A series of distance values can be given as follows:

D = {di} (i = 1, 2, 3, . . . , 5000), (5)

RSSI fluctuation is an indispensable concern for wireless signals. Therefore reducing
the variance range for measurements is vital for improving the stability and accuracy of
the positioning. To achieve this, we calculated the standard deviation of the 5000 collected
RSSI samples and their 5000 equivalent distances, as shown in Table 1.

Table 1. The standard deviation of the collected RSSI samples and their equivalent distances.

Real Distance (m)
Standard Deviation

RSSI Samples (dBm) Distance Samples (m)

1 3.32 0.547
2 2.642 0.792
3 2.658 1.258
4 2.571 1.171
5 2.576 1.802
6 3.017 2.281

As presented in Table 1, the standard deviation of distance samples is smaller than that
of RSSI samples. Hence, the correction model is based on the equivalent distances rather
than RSSI samples itself as it is considered a more stable measurement value. It is necessary
to define a characteristic quantity to represent the overall node distance measurement. The
two statistical parameters, the mean value and the median of distance measurements, can
be closely used to denote the overall distance measurement. The mean and the median
values of the distances are calculated as shown in Equations (6) and (7):

Dmean =
1
n

n

∑
i=1

di(n = 5000), (6)

Dmedian =
1
2

(
Dsb(n+1)/2c + Dsd(n+1)/2e

)
(n = 5000), (7)

where Ds is an ordered list of the i distance values in Equation (5), and b.c and d.e are the
floor and ceiling functions, respectively. After calculating the previous values, the training
stage of data is finished. Now we introduce the prediction formula as follows:

Dpredicted =

{
Dmean·βσ, |Dmean ≤ Dmedian

Dmedian·βσ, |Dmean > Dmedian
(8)

where Dpredicted is the predicted distance based on 5000 RSSI samples; β is the correction
factor which should have a specific value for 1, 2, 3, 4, 5 and 6 m distances, and its value
is defined in Equation (9); σ is the correction exponent of the correction factor which
also should have a specific value for the chosen distances. The 5000 RSSI samples are
collected for each beacon independently at 1, 2, 3, 4, 5 and 6 m distances, which means
30,000 RSSI samples are collected from each beacon. The experiments are carried out on
two experimental sites, and each site has four beacons, which result in a total of 240,000
collected RSSI samples. Based on extensive experimental measurements of 240,000 RSSI
samples, the values of Dmean and Dmedian are found to be always larger than the real
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distance value. However, Dmean and Dmedian inequality is not certain for all the distances.
Figure 1 shows the distribution of RSSI distance samples fitted to the normal density
function at 1 m (Dmean > Dmedian) and 2 m (Dmean < Dmedian) distances.
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Therefore, the smaller value between Dmean and Dmedian is taken as a primary distance
to be corrected as mentioned in Equation (8):

β =

{ Dmean
Dmedian

, Dmean ≤ Dmedian
Dmedian
Dmean

, Dmean > Dmedian
(9)

As indicated in Equation (9), the value of the correction factor β is chosen based
on the values of Dmean and Dmedian to be less than unity to fit the fact that the measured
RSSI distance is always larger than the real distance. The distance correction factor β
is considered as a deviation factor between Dmean and Dmedian, which can be used to
correct one of them iteratively as in [37]. However, the iterations criteria require additional
RSSI real-time processing and more complexity. Therefore, the correction exponent σ is
introduced in Equation (8) to compensate for the number of iterations required to correct
Dmean and Dmedian. Accordingly, the correction computations are done once for each
distance. In order to derive the appropriate value of the correction exponent, Dpredicted
is replaced with the real distance values which are 1, 2, 3, 4, 5 and 6 m, respectively,
so Equation (8) can be written as:

Dreal =

{
Dmean·βσ, |Dmean ≤ Dmedian

Dmedian·βσ, |Dmean > Dmedian
(10)

βσ =


Dreal

Dmean
,
∣∣∣Dmean ≤ Dmedian

Dreal
Dmedian

,
∣∣∣Dmean > Dmedian

(11)

σ log β =

 log
(

Dreal
Dmean

)
,
∣∣∣Dmean ≤ Dmedian

log
(

Dreal
Dmedian

)
,
∣∣∣Dmean > Dmedian

(12)

σ =

 log
(

Dreal
Dmean

)
/ log β,

∣∣∣Dmean ≤ Dmedian

log
(

Dreal
Dmedian

)
/ log β,

∣∣∣Dmean > Dmedian

(13)

Equation (13) represents an expression of the correction exponent for different dis-
tances. In this work, we found the correction factor and correction exponent at 1, 2, 3,
4, 5 and 6 m distances for each beacon to fit the experimental areas’ size. The proposed
relationship for the correction factor and correction exponent may be considered as an
asymptotic correction formula based on our experiments and measurements that extended
to 240,000 RSSI samples. We found that this approximation is some sort of reasonable
fitness to the correction of the indoor localization problem. We justify these values based
on the proposed relation, and we predict its accuracy in the proposed experimental areas.
In addition, the proposed equations are trying to correlate between the expectation of the
measured values versus the accumulation of the readings so that we can predict (approx-
imately) the real distance. In other words, by using the proposed relationship, we may
approach a good estimation of the concurrent real distance between the unknown node
and the beacon in the indoor application and we can claim that this approximation is suited
enough for indoor application and localization scenario. Figure 2 summarizes the process
of our RSSI distance prediction and correction algorithm.

It is very important to mention that the process of collection of RSSI samples at cer-
tain distances per beacon was performed in the same experimental environment where
we test our enhanced positioning centroid algorithm. In other words, the effects of elec-
tromagnetic interference in the indoor environment are considered when the correction
factor and correction exponent are derived. Hence, the positioning process is performed
more accurately.
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2.3. The Triangle Centroid Positioning Algorithm

The main concept of the triangle centroid localization algorithm is described as follows:
three beacons are placed where their coordinates represent the centers of three circles and
the distance between each beacon and the unknown node is treated as a radius of each
circle. The three circles are intersecting in six points where a triangle is formed from the
inner intersection points. Then, the unknown node coordinates can be found by calculating
the centroid of the triangle. Figure 3 shows a schematic diagram of the triangle centroid
localization algorithm.
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As depicted in Figure 3, C1, C2, and C3 are defined as the three beacons positions with
coordinates of (xc1, yc1), (xc2, yc2) and (xc3, yc3) as centers of circles and their corresponding
radiuses are d1, d2, and d3, respectively. The points I1(x1, y1), I2(x2, y2) and I3(x3, y3) are
the three inner intersection points of the three circles which are considered as the vertexes
of the triangle centroid localization algorithm.

The coordinates of the intersection point between the circles C2 and C3 can be obtained
by solving Equation (14): {

(x− xc2)
2 + (y− yc2)

2 = d2
2

(x− xc3)
2 + (y− yc3)

2 = d2
3

(14)

By solving the two sets of coordinates in Equation (14), the coordinates of the inner
intersection point I1(x1, y1) can be obtained. The remaining inner intersection points
I2(x2, y2) and I3(x3, y3) is calculated similarly as the point I1(x1, y1).

Finally, the coordinates of the unknown node U(xu, yu) can be calculated using
Equation (15): 

xu = 1
k

k
∑

i=1
xi

yu = 1
k

k
∑

i=1
yi

(k = 3), (15)

2.4. The Weighted Centroid Positioning Algorithm

As mentioned earlier in this paper, the centroid localization algorithm does not fully
consider the node distribution issue, which leads to high positioning errors. By taking
the geometric distribution of the beacon nodes into consideration, the weighted centroid
localization algorithm is developed in [28–31]. A new weighting factor is introduced to
reflect the impact of each beacon node on the centroid position. In this paper, we used
the weighting factors as in [25] where the weighting factor of the inner intersection point
equals the reciprocal of the radiuses of the intersecting circles at that point. Referring to
Figure 3, the weighting factors can be expressed as follows:

w1 = 1
d2+d3

w2 = 1
d1+d3

w3 = 1
d1+d2

, (16)
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where w1, w2 and w3 are the weighting factors of the three inner intersection points
I1(x1, y1), I2(x2, y2) and I3(x3, y3), respectively. The final coordinates of the unknown
node U(xu, yu) can be obtained using Equation (17):

xu = 1
k

k
∑

i=1

wixi
wi

yu = 1
k

k
∑

i=1

wiyi
wi

(k = 3), (17)

2.5. The Iterative Centroid Positioning Algorithm

The iterative centroid localization algorithm is presented in [37] and it is based on
RSSI log-distance distribution model. As we use the iterative centroid algorithm in the
comparison between our enhanced centroid algorithm and the other localization algorithms,
we will briefly summarize the main principle of it in the following steps:

1. After receiving RSSI samples from the beacons, The blind (unknown node) chooses
the highest three RSSI values and calculate their distances from log-distance model
using Equation (3), recall them dp1,2,3; where dp1 is the calculated distance between
the unknown node and one of the closest beacons to it using the log-distance
distribution model.

2. The distances between the three beacons and the unknown node are used in the
triangle centroid positioning algorithm to calculate the initial coordinates of the
unknown node. Then the calculated coordinates of the unknown node are used to
find the distance between it and the three beacon nodes, recall them dc1,2,3; where dc1
is the calculated distance between the unknown node and one of the closest beacons
to it using the triangle centroid positioning algorithm.

3. To measure the deviation between the RSSI log-distance model calculated distances
and the triangle centroid localization algorithm calculated distances, a distance devia-
tion coefficient is introduced using Equation (18);

Cdev =
dp1,2,3

dc1,2,3
, (18)

4. The distance deviation coefficients are sorted to find the median value of them, recall
it Cm−dev; where Cm−dev is the median distance deviation coefficient, which is used to
correct the log-distance model calculated distances.

5. The corrected distances can be obtained by using Equation (19):

dn1,2,3 =
dp1,2,3

cm−dev
, (19)

6. The corrected distances are inserted into the triangle centroid localization algorithm
iteratively starting from step 2 until a termination condition is satisfied. Since the
iteration error no longer varies after 10 iterations, we set the number of iterations to
be 10 in our comparative analysis.

2.6. The Proposed Enhanced Centroid Positioning Algorithm

In this subsection, we present our enhanced centroid positioning algorithm based on
the proposed RSSI distance correction and prediction method. Depending on the correction
factor, the correction exponent and the mean distance of the selected distances in each
beacon node, the enhanced centroid positioning algorithm is capable of correcting the
real-time RSSI based distances and using those corrected distances as an input to the
centroid localization algorithm to calculate the final coordinates of the unknown node.
Since each beacon node has a universally unique identifier (UUID), the enhanced centroid
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localization algorithm can identify the stored correction factors and the mean distances of
each beacon uniquely.

The process of the enhanced centroid localization algorithm is described as follows:
the unknown terminal collects RSSI samples from each beacon node. The RSSI samples
are converted to equivalent distances using the RSSI log-distance distribution relationship
expressed in Equation (3). The mean value of the equivalent distances is obtained from
Equation (6) and the smallest three mean distance values are chosen to represent the nearest
three beacons to the unknown node. As the source of the three mean distance values is
identified by a unique UUID for each beacon, the correction factor and the correction
exponent is found by approximating each mean distance value of the three values to the
nearest Dmean value in the corresponding correction table. The prediction and correction
formula used in the unknown node is expressed in Equation (20):

Dcorrected = Dmean·βσ (20)

where Dmean is the mean value of the equivalent distances from each beacon node; βσ is
the correction factor with its correction exponent based on the approximation of the mean
distance value to the nearest Dmean value in the corresponding correction table for each
beacon UUID; Dcorrected is the corrected distance between each beacon and the unknown
node. Finally, the corrected three distances are treated as an input to the centroid positioning
algorithm, where the final unknown node coordinates are obtained. Figure 4 depicts the
proposed positioning technique.
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Figure 4. Overall schematic of the proposed positioning technique.

By implementing the previous procedures, the positioning error caused by random-
ness in RSSI values can be dramatically minimized. Besides, the errors caused by complex
indoor environment geometric distribution are minified since the correction factors are
driven in the same indoor environment to be positioned. The process of the enhanced
centroid positioning algorithm from the perspective of an unknown node is summarized
in Figure 5.
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Figure 5. A Flow chart of the proposed enhanced centroid positioning algorithm.

3. Experiments

In this section, we will display our experiment implementation, including the used
software, hardware devices, and the experimental site details.
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3.1. Device and Software

Our experiment is constructed using five Android terminals, one of them is treated as
the unknown node and the other four terminals are acting as BLE iBeacons. Using Beacon
Simulator software [41], the Android terminal can be transformed into a virtual BLE beacon
transmitter and advertiser. This software offers different beacon configurations to emulate
a physical beacon. In this experiment, we used iBeacon platform in all Android terminals
to broadcast and advertise iBeacon frames.

Figure 6 illustrates the application user interface and the iBeacon configuration used
in the experiment. The RSSI is continuously measured for one minute at a distance of 1 m
from each beacon, and the mean value of the measured RSSI is taken as the value of A
in Equation (3). The path loss exponent value was approximated to 3 as a typical value
in office indoor environments at 2.4 GHz operating frequency [42]. As can be seen from
Figure 6, frequency mode is set to 10 Hz which means that the transmission interval is 0.1 s
and hence facilitate our 5000 RSSI samples collection process for the selected distances on
each beacon node.
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main configuration used in the experiment [41].

3.2. Experimental Sites

We carried out our experiment in an 7 m × 7 m office room with multiple desks and
chairs, and a 6.5 m × 1.5 m corridor with a printer and a single chair. The BLE beacons are
placed at the four corners of the office room with coordinates B1(0, 0), B2(0, 7), B3(7, 0) and
B4(7, 7) as illustrated in Figure 7a, and with coordinates B1(0, 0), B2(6.5, 0), B3(0, 1.5) and
B4(6.5, 1.5) for the corridor as depicted in Figure 7b. At the data training stage, 5000 RSSI
samples are collected and recorded at 1, 2, 3, 4, 5 and 6 m distances from each beacon node.
The RSSI values collection takes place at the experimental sites themselves to consider the
multipath and geometric distribution effects on the signal intensity when the correction
factors per distance are driven.

The 1, 2, 3, 4 5 and 6 m distances are taken at a 45-degree angle from each corner
beacon node. All beacon nodes are placed at the same height at 1.3 m above the ground.
Moreover, some people walk randomly during the data training stage and the positioning
stage to emulate a real case scenario.
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4. Results and Discussion

This section presents our experimental results of the proposed positioning technique
compared to other positioning algorithms from the localization accuracy and positioning
stability point of view. Moreover, the proposed enhanced centroid algorithm performance
is evaluated when a different number of RSSI samples are collected in real-time to ensure
the proposed technique’s feasibility.

4.1. The Correction Factors of the Proposed RSSI Distance Prediction and Correction Model

We used a Bluetooth scanner application, namely Beacon Scanner [43], with no delay
between each scan, and the logging frequency is adjusted to be every scan. Then a logging
endpoint is recording the received RSSI values for the correction factors’ derivation. We
collect the RSSI Values for each distance independently at each beacon, and the values
are recorded and sent to a weblogger (logging endpoint). The process of receiving and
collecting the RSSI Values takes around 12 min average time at each distance. It worth
noting that at 10 Hz mode, two consecutive readings would have precisely the same RSSI
values as they could come from the same sensor readings. This means the 5000 samples
could come from a much lower quantity of sensor readings (Beacons). This duplication
in RSSI values does not affect the proposed technique correction factors’ accuracy as the
number of RSSI samples is relatively large. The outcomes of our proposed RSSI distance
prediction and correction method at the two experimental sites are shown in Tables 2 and 3.
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Table 2. The output factors of the RSSI distance prediction and correction model from one beacon at
the office room.

Real Distance
(m)

Correction Exponent
(σ)

Correction Factor
(β)

Mean Distance in Meters
(Dmean)

1 7.114 0.917 2.014
2 21.993 0.97 3.863
3 19.561 0.964 6.085
4 15.285 0.993 5.519
5 11.109 0.959 8.281
6 130.354 0.996 10.039

Table 3. The output factors of the RSSI distance prediction and correction model from one beacon at
the corridor.

Real Distance
(m)

Correction Exponent
(σ)

Correction Factor
(β)

Mean Distance in Meters
(Dmean)

1 6.568 0.91 1.847
2 26.654 0.975 3.883
3 28.65 0.979 5.411
4 11.913 0.993 0.965
5 12.282 0.963 7.943
6 78.746 0.993 9.999

As can be seen from Tables 2 and 3, the mean distance, correction factor, and correction
exponent are calculated and driven at 1, 2, 3, 4, 5 and 6 m distances using Equations (6), (7),
(9) and (13), respectively. Each beacon is used to calculate its correction factors based on
the previously mentioned technique. Those tables are saved on the unknown terminal as it
is used later in the enhanced centroid positioning algorithm to correct the real-time RSSI
equivalent distances.

4.2. Predicted Distances Accuracy

Our proposed RSSI distance prediction and correction model improves the accuracy
of the RSSI estimated distances. To verify this, the unknown node is placed at predefined
distances from each BLE beacon to test the correction formula and the correction factors.
The unknown Android terminal uses the Android Beacon Library [44] to interact with bea-
cons. This library uses RSSI average values to calculate the unknown distances. Therefore,
the average RSSI filter is used as a conventional method to calculate the distance between
the unknown node and other beacons before applying the positioning algorithm and hence
used in our comparison.

Figure 8 shows the error in the measured distances using the RSSI averaging method
and the predicted distances using the correction factor and the correction exponent based
on Equation (20). We took 18 different distances from each beacon to test the proposed
correction formula compared with the mean RSSI filter estimated distances. In addition,
the root-mean-square error (RMSE) of the measured distances is calculated to compare the
proposed prediction method and the conventional average method.

As shown in Figure 8, using the correction factors and correction exponents to correct
the measured distance based on our RSSI distance prediction model decreases the error
significantly. The RMSE values obtained from the RSSI average filter at the predefined
distances are 2.559, 2.585, 2.528 and 2.444 m while the RMSE values obtained from the
proposed correction method are 0.163, 0.175, 0.219 and 0.241 m at beacons B1, B2, B3, and
B4, respectively. Hence our proposed technique can extremely decrease the errors resulting
from RSSI values uncertainty and thus the positioning error can be reduced.
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4.3. Localization Accuracy

Next, a quantitative analysis of the positioning errors of different positioning algo-
rithms is constructed. We compared our enhanced centroid positioning algorithm based on
the proposed RSSI distance prediction and correction model with other positioning algo-
rithms, namely, the triangle centroid algorithm, the weighted triangle centroid algorithm,
and the iterative centroid positioning algorithm which were previously discussed.

In the positioning stage, the unknown node (Android terminal) was placed in 30 dif-
ferent locations inside the office room and 15 different locations in the corridor to calculate
its final positioning coordinates. Figure 9 shows the positioning errors in meters and
the cumulative distribution function (CDF) of the positioning error as recommended by
the ISO18305:2016 standard for real-time locating systems [45] for the 30 locations (office
room) and the 15 locations (corridor) using different localization algorithms, including our
enhanced centroid algorithm.
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It is evident from the figure that almost all the errors obtained by using the enhanced
centroid positioning algorithm based on the proposed RSSI distance correction model
were less than the other positioning algorithms. It is important to mention that the other
positioning algorithms use the measured distances between the unknown terminal and
other beacon nodes based on averaging the received RSSI samples at the Android terminal.

In Figure 10, the average localization error (ALE) and the percentage of accuracy are
shown with respect to total unknown locations ranging from 5 to 30 unknown location
(office) and from 3 to 15 unknown location (corridor).

As shown on the left in Figure 10a,b, the average localization error values of the
proposed enhanced centroid algorithm at both the office room and the corridor are con-
siderably less than the centroid, weighted centroid, and iterative centroid algorithms. The
average localization error is obtained at the office room for 5, 10, 15, 20, 25, and 30 un-
known nodes and the corridor for 3, 6, 9, 12, and 15 unknown nodes. As also can be seen
in Figure 10a,b on the right, the accuracy percentage of the proposed enhanced centroid
algorithm at the office room ranges from 94.19% to 95.707%, while its range changes from
77.465% to 81.358%, 81.042% to 83.74%, and 87.859% to 89.14% for the centroid, weighted
centroid and iterative centroid algorithms, respectively. The accuracy percentage of the
proposed enhanced centroid algorithm at the corridor ranges from 94.57% to 95.776%,
while its range changes from 82.7% to 87.15%, 85.95% to 92.44%, and 90.367% to 93.777%
for the centroid, weighted centroid and iterative centroid algorithms, respectively.



Sensors 2021, 21, 719 18 of 26

Sensors 2021, 21, x FOR PEER REVIEW 18 of 26 
 

 

  
(a) 

(b) 

Figure 10. The number of unknown locations and its corresponding Average positioning error and Accuracy percentage: 
(a) The office room; (b) The corridor. 

As shown on the left in Figure 10a,b, the average localization error values of the pro-
posed enhanced centroid algorithm at both the office room and the corridor are consider-
ably less than the centroid, weighted centroid, and iterative centroid algorithms. The av-
erage localization error is obtained at the office room for 5, 10, 15, 20, 25, and 30 unknown 
nodes and the corridor for 3, 6, 9, 12, and 15 unknown nodes. As also can be seen in Figure 
10a,b on the right, the accuracy percentage of the proposed enhanced centroid algorithm 
at the office room ranges from 94.19% to 95.707%, while its range changes from 77.465% 
to 81.358%, 81.042% to 83.74%, and 87.859% to 89.14% for the centroid, weighted centroid 
and iterative centroid algorithms, respectively. The accuracy percentage of the proposed 
enhanced centroid algorithm at the corridor ranges from 94.57% to 95.776%, while its 
range changes from 82.7% to 87.15%, 85.95% to 92.44%, and 90.367% to 93.777% for the 
centroid, weighted centroid and iterative centroid algorithms, respectively. 

Table 4 summarizes the localization accuracy of the four positioning algorithms at 
the two experimental sites. Hence the enhanced centroid algorithm based on the proposed 
RSSI distance prediction and correction model outperforms the other positioning algo-
rithms in terms of localization accuracy. 

Table 4. The localization accuracy percentage range of the four positioning algorithms at the two experimental sites. 

Experimental Site 

Localization Accuracy Percentage Range  

Centroid Weighted Centroid Iterative Centroid 
Proposed 
Enhanced 
Centroid 
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Table 4 summarizes the localization accuracy of the four positioning algorithms at the
two experimental sites. Hence the enhanced centroid algorithm based on the proposed RSSI
distance prediction and correction model outperforms the other positioning algorithms in
terms of localization accuracy.

Table 4. The localization accuracy percentage range of the four positioning algorithms at the two experimental sites.

Experimental Site

Localization Accuracy Percentage Range

Centroid Weighted Centroid Iterative Centroid
Proposed
Enhanced
Centroid

Office Room 77.46–81.36% 81.042–83.74% 87.86–89.14% 94.19–95.707%
Corridor 82.7–87.15% 85.95–92.44% 90.36–93.78% 94.57–95.776%

The positioning error parameters of the proposed enhanced centroid algorithm and
the other positioning algorithms, including the average localization error (ALE), maximum
error, minimum error, and the RSME at both experimental sites, are presented in Figure 11.



Sensors 2021, 21, 719 19 of 26

Sensors 2021, 21, x FOR PEER REVIEW 19 of 26 
 

 

Office Room 77.46–81.36% 81.042–83.74% 87.86–89.14% 94.19–95.707% 
Corridor 82.7–87.15% 85.95–92.44% 90.36–93.78% 94.57–95.776% 

The positioning error parameters of the proposed enhanced centroid algorithm and 
the other positioning algorithms, including the average localization error (ALE), maxi-
mum error, minimum error, and the RSME at both experimental sites, are presented in 
Figure 11. 

 
(a) 

 
(b) 

Figure 11. Positioning error parameters of different positioning algorithms: (a) The office room; (b) The corridor. 

As depicted in Figure 11a, the RMSE, maximum error, and minimum error values of 
the positioning results obtained by the enhanced centroid positioning algorithm based on 
the proposed RSSI distance prediction and correction model at the office room are lower 
than the other positioning algorithms. Moreover, the average localization errors of the 
four algorithms are 0.3, 0.76, 1.327 and 1.577 m, respectively, and the localization accuracy 
of the proposed enhanced centroid algorithm is improved by 80.97%, 77.39% and 60.526% 

0

0.5

1

1.5

2

2.5

ALE (m) Max. Error (m) Min. Error (m) RMSE (m)

Er
ro

r (
m

)

Positioning Error Parameters

Centroid

Weighted Centroid

Iterative Centroid

Proposed Enhanced
Centroid

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ALE (m) Max. Error (m) Min. Error (m) RMSE (m)

Er
ro

r (
m

)

Positioning Error Parameters

Centroid

Weighted Centroid

Iterative Centroid

Proposed Enhanced
Centroid

Figure 11. Positioning error parameters of different positioning algorithms: (a) The office room; (b) The corridor.

As depicted in Figure 11a, the RMSE, maximum error, and minimum error values
of the positioning results obtained by the enhanced centroid positioning algorithm based
on the proposed RSSI distance prediction and correction model at the office room are
lower than the other positioning algorithms. Moreover, the average localization errors
of the four algorithms are 0.3, 0.76, 1.327 and 1.577 m, respectively, and the localization
accuracy of the proposed enhanced centroid algorithm is improved by 80.97%, 77.39% and
60.526% compared with the centroid algorithm, the weighted centroid algorithm and the
iterative centroid algorithm, respectively. As depicted in Figure 11b, the four algorithms’
average localization errors at the corridor are 0.278, 0.404, 0.491 and 0.855 m, respectively.
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The proposed enhanced centroid algorithm’s localization accuracy is improved by 67.51%,
43.42%, and 31.3% compared with the centroid algorithm, the weighted centroid algorithm,
and the iterative centroid algorithm, respectively. Finally, Figure 12 presents a comparison
between the actual test points position and the predicted position using the proposed
enhanced centroid algorithm at the two experimental sites.
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Thus, it can be clarified that the enhanced centroid localization algorithm based on
the proposed RSSI distance prediction and correction method dramatically improves the
positioning accuracy in indoor environments. Our proposed method can be used in small
and medium indoor environments, especially at room level. However, the limitation of
the proposed method enlarges in wide indoor environments since more beacon nodes are
required to cover the localized area; accordingly, more pre-trained distances are needed to
obtain correction factors at the expense of time factor.
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4.4. Positioning Stability

Figure 13 presents the calculated positioning errors in sequence. The positioning error
is calculated 10 times at random five test points in both the office and the corridor. Based
on each test point’s accuracy fluctuations, the proposed positioning technique’s errors vary
little, while the errors by the other positioning algorithms using average RSSI filter change
significantly. Fortunately, the proposed technique also almost gains the best accuracy in
every positioning trial’s overall improvement.
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The overall positioning stability is measured using the sample standard deviation
(SSD); the SSD can be obtained using the following formula:

SSD =
STD(E)

MEAN(E)
(21)
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where STD(_) is the standard deviation, MEAN(_) is the average value; E is the position-
ing error for 10 times at each test-point.

Tables 5 and 6 show that the proposed positioning technique achieves smaller sam-
ple variance and closer average positions for each test point than the other positioning
algorithms deploying average filter.

Table 5. The sample standard deviation (SSD) of the four positioning algorithms at five test points in the office room.

Test Point Number

Sample Standard Deviation (SSD) in Meters

Centroid Weighted Centroid Iterative Centroid
Proposed
Enhanced
Centroid

1 0.12 0.088 0.058 0.031
2 0.176 0.046 0.042 0.05
3 0.157 0.229 0.181 0.153
4 0.137 0.143 0.066 0.044
5 0.113 0.115 0.066 0.041

Average SSD 0.141 0.178 0.184 0.086

Table 6. The sample standard deviation (SSD) of the four positioning algorithms at five test points in the corridor.

Test Point Number

Sample Standard Deviation (SSD) in Meters

Centroid Weighted Centroid Iterative Centroid
Proposed
Enhanced
Centroid

1 0.117 0.088 0.058 0.032
2 0.043 0.046 0.042 0.05
3 0.365 0.229 0.181 0.153
4 0.147 0.143 0.066 0.044
5 0.064 0.115 0.066 0.041

Average SSD 0.147 0.124 0.083 0.064

The office room’s overall positioning stability is 1.64, 2.077, and 2.14-fold better for the
proposed enhanced centroid than the centroid, weighted centroid, and iterative centroid,
respectively. The corridor’s overall positioning stability is 2.3, 1.94, and 1.29-fold better
for the proposed enhanced centroid than the centroid, weighted centroid, and iterative
centroid, respectively. Thus, we can claim that our enhanced centroid algorithm based
on the proposed RSSI distance correction model improves indoor environments’ overall
positioning stability. The reason for that is due to the low deviation characteristics of
proposed RSSI distance correction measurements as early discussed in Section 2.2 in Table 1.

4.5. The Effect of Different RSSI Samples’ Number on the Localization Accuracy

In this experiment, the proposed enhanced centroid algorithm was performed at 5
random test points in both experimental sites. The proposed enhanced centroid algorithm
was performed at each point when a different number of RSSI samples is collected. The
proposed algorithm was conducted 100 times for each number of collected RSSI samples,
and the average error of the 100 trials was computed. Tables 7 and 8 presents the proposed
technique’s localization error at the office room and the corridor when a different number
of RSSI samples is collected.

The proposed enhanced centroid algorithms’ overall average localization error at the
five test points varies from 0.313 to 0.337 m and from 0.326 to 0.354 m at the office room and
corridor, respectively, when the number of received RSSI samples varies from 100 to 50 RSSI
sample. It can be inferred that the received RSSI samples’ number has no great impact on
the localization accuracy of the proposed technique. However, if the RSSI samples’ number
becomes lower than the 50 RSSI sample, 40 RSSI samples, such as or below, the proposed
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enhanced centroid algorithm sometimes becomes infeasible. That is it, the RSSI samples’
number is not enough to correctly calculate the proposed model correction factors, and
the corrected estimated distance becomes smaller than the real distance. Therefore, it is
recommended to collect at least 50 RSSI samples or more at the unknown node to ensure
the feasibility of the proposed correction model.

Table 7. The localization errors of the proposed technique at five test points for different RSSI samples’ number in the
office room.

RSSI Samples’ Number
Localization Error (m)

Test-Point 1 Test-Point 2 Test-Point 3 Test-Point 4 Test-Point 5 Overall
ALE

100 RSSI 0.311 0.286 0.223 0.432 0.312 0.313
90 RSSI 0.331 0.29 0.203 0.425 0.322 0.314
80 RSSI 0.305 0.303 0.217 0.434 0.326 0.317
70 RSSI 0.312 0.307 0.22 0.438 0.316 0.319
60 RSSI 0.329 0.32 0.235 0.422 0.33 0.327
50 RSSI 0.352 0.32 0.233 0.442 0.341 0.337

Table 8. The localization errors of the proposed technique at five test points for different RSSI samples’ number in the corridor.

RSSI Samples’ Number
Localization Error (m)

Test-Point 1 Test-Point 2 Test-Point 3 Test-Point 4 Test-Point 5 Overall
ALE

100 RSSI 0.411 0.445 0.144 0.354 0.278 0.326
90 RSSI 0.411 0.455 0.156 0.361 0.286 0.334
80 RSSI 0.417 0.455 0.159 0.368 0.291 0.338
70 RSSI 0.418 0.467 0.165 0.381 0.288 0.344
60 RSSI 0.415 0.465 0.176 0.382 0.293 0.346
50 RSSI 0.423 0.468 0.193 0.386 0.3 0.354

5. Conclusions

Due to the rapid development of wireless communication technology, the position
information of nodes has become a critical feature in different applications. Indoor local-
ization techniques face common issues, including poor localization accuracy, expensive
communication costs and high energy consumption. A new cost-effective and high accuracy
and stability localization solution is presented in this paper to overcome these problems.
The proposed RSSI distance prediction and correction model introduced new correction
factors to accurately predict the real distance between the unknown terminal and the anchor
(beacon) nodes. Importantly, our practical results provide evidence for the correctness of
the estimated distances based on the proposed RSSI distance correction model.

Moreover, the experimental results of the enhanced centroid localization algorithm
based on the proposed RSSI distance prediction and correction model shows a significant
improvement in the positioning accuracy of the unknown nodes. The proposed enhanced
centroid algorithm’s localization accuracy is improved by 80.97% and 67.51% in an office
room and a corridor, respectively, compared with the traditional RSSI positioning algorithm.
The proposed technique also promotes positioning stability by 1.64 and 2.3-fold at the
office room and the corridor, respectively, compared to the conventional RSSI positioning
method. The proposed correction model is entirely feasible in real-time when the RSSI
sample number is 50 or more. However, if the received RSSI samples are less than 50, the
proposed technique is partially feasible. Finally, the proposed technique is intended for
small to medium indoor environments, especially at the room level. In the future, we can
utilize the proposed method in trajectory planning and navigation of objects moving at
high speed in larger indoor environments.
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