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Abstract: Congenital Generalized Lipodystrophy type 2 (CGL2) is the most severe form of lipodys-
trophy and is caused by mutations in the BSCL2 gene. Affected patients exhibit a near complete
lack of adipose tissue and suffer severe metabolic disease. A recent study identified infection as a
major cause of death in CGL2 patients, leading us to examine whether Bscl2 loss could directly affect
the innate immune response. We generated a novel mouse model selectively lacking Bscl2 in the
myeloid lineage (LysM-B2KO) and also examined the function of bone-marrow-derived macrophages
(BMDM) isolated from global Bscl2 knockout (SKO) mice. LysM-B2KO mice failed to develop lipodys-
trophy and metabolic disease, providing a model to study the direct role of Bscl2 in myeloid lineage
cells. Lipopolysaccharide-mediated stimulation of inflammatory cytokines was not impaired in
LysM-B2KO mice or in BMDM isolated from either LysM-B2KO or SKO mice. Additionally, intra-
cellular fate and clearance of bacteria in SKO BMDM challenged with Staphylococcus aureus was
indistinguishable from that in BMDM isolated from littermate controls. Overall, our findings reveal
that selective Bscl2 deficiency in macrophages does not critically impact the innate immune response
to infection. Instead, an increased susceptibility to infection in CGL2 patients is likely to result from
severe metabolic disease.

Keywords: BSCL2; seipin; congenital generalized lipodystrophy; immunity; macrophages

1. Introduction

Congenital Generalized Lipodystrophy (CGL) is a rare genetic disorder, where patients
display a near complete lack of adipose tissue, resulting in insulin resistance, hepatic
steatosis and hypertriglyceridemia [1]. The most severe form of CGL, CGL type 2 (CGL2),
is caused by mutations affecting the protein seipin (encoded by BSCL2) [2]. Seipin is known
to be a critical regulator of adipogenesis, as its loss prevents adipocyte differentiation
in vitro [3,4] and adipose tissue development in vivo [5–8]. More recently, it has been
revealed that seipin plays an important role as a scaffold protein, capable of binding
numerous proteins that play critical functions in lipid droplet organization and triglyceride
synthesis [9–12].
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Rio Grande do Norte in Brazil has one of the highest rates of CGL2 prevalence. A recent
study of CGL2 patients from this region revealed that this condition reduced lifespan by
more than thirty years [13]. The authors found that one third of patients died as a result of
liver disease, consistent with the severe metabolic dysfunction in these patients. Curiously,
however, one third of patients died of infectious diseases. This led us to examine the role
of seipin in the innate immune response, which has not previously been investigated and
could contribute to the high incidence of deaths caused by infection.

Pathogen phagocytosis by macrophages and the progression and maturation of
pathogen-containing phagosomes, a crucial event for the destruction of the pathogen,
occurs in parallel with the formation of lipid droplets. Seipin has been shown to play
important, evolutionarily conserved roles in lipid droplet biogenesis and dynamics in
multiple cell types and species from yeast to man [14]. Within immune cells, lipid droplets
synthesize and store inflammatory mediators and are considered structural markers of
inflammation [15]. Interaction of lipid droplets with pathogen-containing phagosomes has
been increasingly reported in response to infections and may contribute to destruction or
contribute to the survival of the microorganism within host cells [16]. Thus, via altering the
lipid droplet function, seipin could play an important role in the capacity of macrophages
to respond appropriately to infections. To test this hypothesis, we ablated Bscl2 specifically
within the myeloid cell lineage of mice and characterized the innate immune response in
this model and in bone-marrow-derived macrophages (BMDM) from global Bscl2 knockout
(SKO) mice.

2. Experimental Section
2.1. Animal Studies

Myeloid-specific Bscl2 knockout (LysM-B2KO) mice were generated by crossing
Bscl2(fl/fl) mice [8] with Bscl2(fl/wt) mice expressing Cre recombinase controlled by the
Lyz2 promoter. Bscl2 knockout (SKO) mice were generated using a previously described
method [17]. Briefly, fertilized Bscl2(fl/wt) one-cell embryos were incubated ex vivo with
TAT-Cre recombinase (#SCR508, Sigma, Gillingham, UK), then reimplanted into surrogate
female dams. The resulting pups were screened by PCR to detect the deletion, and experi-
mental colonies of SKO mice were then generated. All animal procedures were approved
by the University of Aberdeen Ethics Review Board and performed under project license
P94B395E0, approved by the UK Home Office under the Animals Scientific Procedures Act
1986. Unless stated otherwise, mice had ad libitum access to water and a standard chow
diet (CRM (P) 801722, Special Diets Services).

2.2. Metabolic Studies

Fat and lean mass were measured using the EchoMRITM-500 body composition
analyzer (Zinsser Analytic GmbH, Eschborn, Germany). Mice were injected with 1 mg/Kg
of lipopolysaccharides (LPS, Sigma) by intraperitoneal injection. For glucose tolerance
tests, 5-h fasted mice received intraperitoneal injections of 2 mg/g D-glucose (Sigma).
Blood glucose was monitored between 0 and 120 min by glucometer readings (AlphaTrak®

II, Zoetisus, Parsippany-Troy Hills, NJ, USA) from tail punctures. Body temperatures
were measured using a lubricated rectal probe inserted in mice maintained at standard
housing temperatures both prior to and 3 h after LPS injections. Serum glucose levels were
determined using the Glucose Colorimetric Assay Kit (Cayman Chemical, Ann Arbor, MI,
USA); The insulin, Tnfa and Il-10 analysis was performed at the Core Biochemical Assay
Laboratory (Cambridge, UK). The quantitative insulin sensitivity check index (QUICKI)
was calculated as previously described [18]. QUICKI = 1/[log(I0) + log(G0)], where I0 is
fasting insulin (µU/mL) and G0 is fasting glucose (mg/dL). QUICKI is a dimensionless
index without units.
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2.3. Gene Expression

RNA was extracted from tissues or cells using the RNeasy mini kit (Qiagen, Hilden,
Germany), treated with DNase I (Sigma), then reverse-transcribed with M-MLV reverse
transcriptase (Promega, Foster, CA, USA). Quantitative PCR was performed on the CFX384
TouchTM Real-Time PCR Detection System (BioRad, Watford, Herts, UK). The gene ex-
pression was normalized using the geometric mean of three stable reference genes (Nono,
Ywhaz and Hprt) or 18s. Sequences and details of all qPCR primers and assay probe sets are
given in the Supplementary Table S1.

2.4. Bone-Marrow-Derived Macrophages (BMDM)

BMDM were isolated as described previously [19]. Cells were cultured and matured
for seven days in DMEM supplemented with 10% Foetal Bovine Serum (FBS, ThermoFisher
Scientific, Perth, UK), 20% L929 conditioned media, 100 U/mL penicillin, 100 mg/mL
Streptomycin (ThermoFisher Scientific, UK), 1 mM sodium Pyruvate (Gibco, Grand Island,
NY, USA), 1x MEM Non-essential Amino Acid (Sigma) and 0.25 mM β-mercaptoethanol
(Sigma) in untreated Petri dishes. For the LPS treatment, BMDM were seeded in six-well
tissue-culture plates and challenged with 100 ng/mL LPS for 4 h.

2.5. Bacterial Infection

Staphylococcus aureus SH1000 mCherry was kindly provided by Professor Simon Fos-
ter, Krebs Institute, University of Sheffield, UK. Bacteria were added to macrophages in
Hank’s Balanced Salt Solution (Gibco) at a multiplicity of infection (MOI) of 5. At one hour
post-infection, the cells were washed with PBS (Sigma-Aldrich, St. Louis, MO, USA) and
incubated for 30 min in BMDM growth media supplemented with 100 µg/mL gentamicin
(ThermoFisher Scientific, UK). The infected BMDM were maintained in 5 µg/mL gentam-
icin. At indicated times, cells were lysed in 0.1% Triton X-100 (Sigma-Aldrich), and serial
dilutions were plated onto BHI agar to determine colony-forming units (CFU).

2.6. Immunofluorescence

Infected BMDM plated on glass coverslips were fixed with 4% paraformaldehyde (PFA,
Agar Scientific, Stansted, UK) and permeabilized in 0.2% Triton X-100 (Sigma-Aldrich),
0.2% bovine serum albumin (BSA, Sigma-Aldrich) and 50 mM NH4Cl (Sigma-Aldrich).
Cells were incubated with anti-LAMP-1 antibody (#1D4B, Developmental Studies Hy-
bridoma Bank) and then Alexa Fluor® 488 secondary antibody (Invitrogen, Carlsbad, CA,
USA). Images were acquired on a PerkinElmer Spinning Disk confocal microscope linked
to a Hamamatsu CMOS ORCA Flash 4.0 camera. An image analysis was performed using
Volocity software.

2.7. Data Analysis

All data are presented as mean ± SEM and were analyzed by an unpaired two-tailed
Student’s t test or two-way analysis of variance with a Bonferroni post-hoc test, as appropri-
ate, using GraphPad Prism. A p-value < 0.05 was considered statistically significant.

3. Results

In order to examine the role of seipin deficiency in the macrophage function, we crossed
Bscl2(fl/fl) mice [8] with Bscl2(fl/wt) mice expressing Cre recombinase controlled by the Lyz2
promoter (LysM-Cre) to generate myeloid-specific Bscl2 knockout (LysM-B2KO) mice
(Figure 1A). The analysis of multiple tissues and bone-marrow-derived macrophages
(BMDM) revealed that Bscl2 mRNA levels were readily detectable in BMDM from con-
trol mice and similar to the levels in gonadal white adipose tissue (gWAT, Figure 1B).
Bscl2 mRNA expression was significantly reduced in BMDM from LysM-B2KO mice but
was unaltered in other tested tissues, including liver, spleen and brown adipose tissue
(BAT). A significant increase in the Bscl2 mRNA expression was however observed in
gWAT (Figure 1B). The characterization of male and female myeloid-specific Bscl2 knock-
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out (LysM-B2KO) mice revealed no significant differences in body weight (Figure 1C,D),
fat mass (Figure 1E,F) or lean mass (Figure S1A,B) when compared to littermate controls
(CTRL). The glucose tolerance tests indicated that neither male nor female LysM-B2KO
mice were glucose intolerant at 24 weeks of age (Figure 1G,H). To assess whether Bscl2
deficiency plays a role in the inflammatory response to Toll-like receptor 4 (TLR4) activa-
tion, LysM-B2KO mice were injected with a sub-lethal dose of lipopolysaccharide (LPS,
1 mg/Kg). This led to a significant reduction in the body temperature in male but not
female mice, with no genotype effect (Figure 1I,J). This sexually dimorphic response in
body temperature in male versus female mice has been previously observed by others in
other mouse models in adulthood [20]. As expected from previous studies [21], the LPS
treatment caused a significant decrease in the blood glucose levels in male and female
control mice (Figure 1K,L). This response was not altered by myeloid Bscl2 deficiency. Sim-
ilarly, the glucose tolerance was not significantly changed in male or female LysM-B2KO
mice when compared to the controls three hours following LPS injections (Figure S1C,D).
The serum triglyceride levels were unaltered by LPS injection in both males and females
and were equivalent in the control and LysM-B2KO mice (Figure S1E,F).

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 4 of 10 
 

 

gWAT (Figure 1B). The characterization of male and female myeloid-specific Bscl2 knock-
out (LysM-B2KO) mice revealed no significant differences in body weight (Figure 1C,D), 
fat mass (Figure 1E,F) or lean mass (Figure S1A,B) when compared to littermate controls 
(CTRL). The glucose tolerance tests indicated that neither male nor female LysM-B2KO 
mice were glucose intolerant at 24 weeks of age (Figure 1G,H). To assess whether Bscl2 
deficiency plays a role in the inflammatory response to Toll-like receptor 4 (TLR4) activa-
tion, LysM-B2KO mice were injected with a sub-lethal dose of lipopolysaccharide (LPS, 1 
mg/Kg). This led to a significant reduction in the body temperature in male but not female 
mice, with no genotype effect (Figure 1I,J). This sexually dimorphic response in body tem-
perature in male versus female mice has been previously observed by others in other 
mouse models in adulthood [20]. As expected from previous studies [21], the LPS treat-
ment caused a significant decrease in the blood glucose levels in male and female control 
mice (Figure 1K,L). This response was not altered by myeloid Bscl2 deficiency. Similarly, 
the glucose tolerance was not significantly changed in male or female LysM-B2KO mice 
when compared to the controls three hours following LPS injections (Figure S1C,D). The 
serum triglyceride levels were unaltered by LPS injection in both males and females and 
were equivalent in the control and LysM-B2KO mice (Figure S1E,F). 

 
Figure 1. Physiological characteristics and lipopolysaccharide (LPS)-mediated inflammatory response in LysM-B2KO 
mice. (A) Targeting strategy for the conditional disruption of the Bscl2 gene in the myeloid lineage. (B) Bscl2 mRNA ex-
pression across different tissues and bone-marrow-derived macrophages (BMDM) of LysM-B2KO mice relative to the 18s 
gene. (C,D) Male and female body weight, (E,F) male and female fat mass, and (G,H) male and female glucose tolerance 

Figure 1. Physiological characteristics and lipopolysaccharide (LPS)-mediated inflammatory response in LysM-B2KO mice.
(A) Targeting strategy for the conditional disruption of the Bscl2 gene in the myeloid lineage. (B) Bscl2 mRNA expression
across different tissues and bone-marrow-derived macrophages (BMDM) of LysM-B2KO mice relative to the 18s gene. (C,D)
Male and female body weight, (E,F) male and female fat mass, and (G,H) male and female glucose tolerance of LysM-B2KO
mice at 24 weeks of age. Effect of LPS on the (I,J) body temperature and (K,L) serum glucose in male and female LysM-B2KO
mice at 32 weeks of age (female n = 5–7, male n = 7–10). Data are represented as mean ± SEM, * p < 0.05, ** p < 0.01.
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Next, we performed a serum analysis to determine any effects of seipin loss on the
inflammatory response in LysM-B2KO mice. Serum insulin levels were not significantly
altered in male or female LysM-B2KO mice when compared to control mice before or after
LPS injection, and the quantitative insulin sensitivity check index (QUICKI) revealed that
LysM-B2 mice were not insulin-resistant when compared to controls following the in vivo
LPS challenge (Table 1). TLRs present on the surface of macrophages can sense LPS and
trigger the synthesis of proinflammatory cytokines in order to eliminate the pathogen [22].
LysM-B2KO mice displayed decreased levels of serum TNF-α when compared to controls,
although this was not significant (Table 1). IL-10 levels showed greater fluctuations among
males and females following LPS injection, without being significant (Table 1). Taken to-
gether, our data indicate that LysM-B2KO mice responded to the in vivo LPS challenge in a
similar manner as their littermate counterparts.

Table 1. Insulin, quantitative insulin sensitivity check index (QUICKI) and cytokine multiplex analysis of serum in LysM-
B2KO mice fasted for 5 h and subjected to 1 mg/kg LPS for 3 h (female n = 5–7, male n = 7–10). Data are represented as
mean ± SEM.

Male Female

Genotype Pre-LPS
Treatment

Post-LPS
Treatment

Pre-LPS
Treatment

Post-LPS
Treatment

Insulin (µg/L) CTRL 0.28 ± 0.15 1.75 ± 1.51 0.16 ± 0.03 0.21 ± 0.07
LysM-B2KO 0.34 ± 0.13 0.99 ± 0.46 0.18 ± 0.11 0.39 ± 0.08

QUICKI CTRL 0.34 ± 0.03 0.30 ± 0.04 0.36 ± 0.02 0.39 ± 0.04
LysM-B2KO 0.33 ± 0.02 0.33 ± 0.02 0.37 ± 0.03 0.38 ± 0.02

IL-10 (pg/mL) CTRL - 453.91 ± 104.65 - 561.13 ± 113.92
LysM-B2KO - 404.87 ± 114.11 - 865.17 ± 408.16

TNF-α (pg/mL) CTRL - 390.78 ± 68.26 - 394.17 ± 387.63
LysM-B2KO - 313.94 ± 97.05 - 200.21 ± 107.88

To investigate further, BMDM were isolated from the male and female control and
LysM-B2KO mice. As expected, male and female LysM-B2KO mice exhibited a significantly
reduced Bscl2 expression, but no change in the expression of anti-inflammatory (Il-10)
or proinflammatory cytokines (Tnfa, Il-6, Il-1b) was observed in the seipin-deficient cells
(Figure 2A,B). BMDM from female control and LysM-B2KO mice were also examined in the
absence or presence of stimulation with 100 ng/mL LPS for four hours. The induction of
Il-10, Tnfa, Il-6, Il-1β, iNos, Mcp1 was unchanged by the loss of seipin in LysM-B2KO BMDM,
although the induction of Il-1α was modestly but significantly greater (Figure 2C–I).

BMDM isolated from LysM-B2KO mice show significantly reduced but still clearly
detectable levels of Bscl2 expression (Figure 2A,B). It is possible that this arose from an
incomplete LysMCre-mediated recombination, and we were unable obtain western blots to
accurately determine the resulting seipin protein levels. Therefore, to examine the effect of
a complete Bscl2 deletion in this cell type, we next examined the innate immune response
in macrophages isolated from global Bscl2 knockout (SKO) mice. These mice were gen-
erated by incubating fertilized Bscl2(fl/wt) one-cell embryos with cell-permeable TAT-Cre
recombinase in culture before reimplantation into surrogate dams (shown schematically in
Figure 3A). These mice had the same gene deletion as the SKO mice we described previ-
ously [8] but were generated by this alternative method. Like other SKO mice, they had a
similar body weight but a significantly reduced fat mass and increased lean mass compared
to control mice (Figure S2A–E) along with elevated glycaemia in the fed state and fasting
hyperinsulinaemia with a QUICKI analysis indicative of insulin resistance (Figure S2F–H).
The Bscl2 expression was decreased by more than 98% in SKO macrophages when com-
pared to control samples (Figure 3B). However, similar to observations in LysM-B2KO
BMDM, the basal and LPS-stimulated expression of anti- and proinflammatory cytokines
was not significantly different between the control and SKO BMDM (Figure 3C–I).
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Figure 2. Lipopolysaccharides-mediated inflammatory responses in bone-marrow-derived
macrophages. Basal mRNA levels of cytokines in BMDM isolated from (A) male and (B) female
LysM-B2KO mice (female n = 6–7, male n = 6–9). (C–I) The treatment of female BMDM with LPS
(n = 6) showed no significant difference in the expression of a panel of cytokines. Gene expression is
normalized to three reference genes (NoNo, Ywhaz and Hprt). Data are represented as mean ± SEM,
* p < 0.05, *** p < 0.001, n.d., not detectable.

Next, we examined the intracellular fate and the ability of SKO macrophages to
phagocytose a common bacterial pathogen. Control and SKO BMDM were infected with
Staphylococcus aureus SH1000 expressing mCherry. After 1.5 h post-infection, bacteria were
internalized into macrophages and found in lysosome-associated membrane protein-1
(LAMP-1) positive vacuoles (Figure 3J). Sixty to seventy percent of intracellular S. aureus
were found to colocalize with LAMP-1 vacuoles in both control and SKO macrophages
(Figure 3K). To determine whether SKO macrophages could effectively kill S. aureus once
internalized, bacterial survival was assessed using a gentamicin protection assay. We found
that S. aureus clearance was similar in control and SKO BMDM, with less than 6% of viable
bacteria remaining 24 h after infection (Figure 3L,M).
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4. Discussion

BSCL2 gene mutations cause severe lipodystrophy, in which liver disease and infection
are the main causes of death [13]. Liver disease can be linked to the severe hepatic steatosis
in these patients [1]. It is less clear why infections are linked to BSCL2 deficiency, but a direct
effect in macrophages is credible. Seipin plays an important, evolutionarily conserved
role in the biogenesis of lipid droplets [23], organelles that have been shown to regulate
macrophage function and infection resolution, as has lipid metabolism [16,24]. In addition,
BSCL2/seipin deficiency has been shown to induce ER stress [23], a process that has also
been implicated in altered innate immunity and myeloid cell dysfunction in type 2 diabetes
and atherosclerosis.

The findings presented here for the first time directly examined the consequence of
Bscl2 deficiency in myeloid cells. We found no impairment of the innate immune response
in LysM-B2KO mice challenged with endotoxin. Moreover, macrophages isolated from
LysM-B2KO or fully seipin-deficient SKO mice displayed no alteration in LPS-induced anti-
or proinflammatory cytokine responses. Additionally, SKO macrophages were capable
of pathogen recognition, engulfment, phagolysosome maturation and clearance when in-
fected with Staphylococcus aureus. Whilst we observed no dramatic changes in macrophage
function in this study, we examined only LPS-induced immune responses. This is a rather
artificial surrogate for bacterial infection in vivo, and it remains possible that a differ-
ent result may be observed with more clinically relevant and accurate models of sepsis.
Nonetheless, we believe that our findings provide substantial evidence that Bscl2 deficiency
within macrophages does not directly impair the innate immune response. Therefore, it is
unlikely that BSCL2 deficiency in the myeloid lineage per se significantly contributes to an
increased risk of infection in CGL2 patients.

In light of our findings, it would appear that any increased risk of death from infection
in CGL2 is likely to result as being secondary to adipose tissue deficiency and the severe
metabolic disease observed in this condition. For example, it has been observed that
patients with congenital leptin deficiency have impaired immunity and increased rates of
death from infections [25]. Leptin is now known to be a key regulator of the innate and
adaptive immune responses, with leptin deficiency or resistance leading to the dysregula-
tion of inflammatory responses and increased susceptibility of infectious disease (Reviewed
in [26]). Patients with CGL2 have a near complete loss of metabolic and mechanical adipose
tissues. Consequently, this results in significant decreases in the circulating levels of the
adipose-secreted hormone leptin. Additionally, both hyperglycaemia and dyslipidaemia
have been implicated in the impairment of the normal innate immune response and in
macrophage dysfunction in type 2 diabetes [27]. Of note, SKO mice are hyperglycaemic
but do not display the hypertriglyceridemia observed in BSCL2-deficient patients [28].
However, this can be modeled more accurately in SKO mice crossed to a dyslipidemic
ApoE-null background [29]. Thus, a comparison of the response to infection in SKO versus
SKO/ApoE-null mice may permit a dissection of the effects driven by hyperglycaemia
and hyperlipidemia. It is possible to speculate about other reasons that may place CGL2
patients at an increased risk of infection. Seipin is highly expressed in the central nervous
system, and there could be centrally driven effects on the immune function that suppress
the immune function of these patients. Overall, a better understanding of the mechanisms
involved in this phenomenon may establish suitable conditions to examine therapeutic
interventions that could decrease the susceptibility to infection and the mortality rate
amongst patients with CGL2.
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