Skip to main content
. 2021 Jan 22;22(3):1075. doi: 10.3390/ijms22031075

Table 1.

Models performances in cross-validation (mean with confidence intervals) and on the testset. ACC: accuracy; MCC: Matthews Correlation Coefficient; CI: 95% studentized bootstrap confidence interval.

Workflow Features Selection N° Features Hyperparameters Train Metrics Test Metrics
MCC (CI) Kappa (CI) ACC (CI) MCC Kappa ACC
ALL + RF None 323,564 max.depth = 10 num.trees = 50 mtry = 569 min.node.size = 20 0.127 (0.09–0.163) 0.113 (0.081–0.145) 0.679 (0.668–0.690) 0.157 0.120 0.695
IVF + RF IVF 161,782 max.depth = 15 num.trees = 100 mtry = 402 min.node.size = 20 0.162 (0.128–0.197) 0.146 (0.115–0.178) 0.679 (0.665–0.694) 0.138 0.115 0.686
RFE + RF IVF + RFE 415 max.depth = 10 num.trees = 500 mtry = 24 min.node.size = 20 0.467 (0.431–0.503) 0.455 (0.419–0.491) 0.784 (0.771–0.798) 0.428 0.371 0.773
Boruta + RF IVF + Boruta 200 max.depth = 15 num.trees = 200 mtry = 17 min.node.size = 20 0.485 (0.453–0.518) 0.473 (0.440–0.506) 0.790 (0.777–0.803) 0.415 0.394 0.767
RFE∩Boruta + RF IVF + Intersect (RFE-Boruta) 34 max.depth = 15 num.trees = 500 mtry = 5 min.node.size = 20 0.533 (0.502–0.563) 0.523 (0.493–0.553) 0.806 (0.794–0.818) 0.510 0.484 0.802
RFE∩Boruta + RF (randomized output) IVF + Intersect (RFE Boruta) 34 max.depth = 15 num.trees = 500 mtry = 5 min.node.size = 20 0.018 (−0.016–0.053) 0.014 (−0.010–0.037) 0.671 (0.663–0.680) −0.065 −0.042 0.648