Table 3.
C-Statistics | Kappa | Acc and 95% CI | Sen | Spe | PPV | NPV | |
---|---|---|---|---|---|---|---|
LRM | 0.765 (0.728–0.801) | 0.350 | 70.71 (67.08–74.16) | 49.60 | 83.78 | 65.45 | 72.86 |
CART | 0.690 (0.652–0.728) | 0.375 | 71.32 (67.70~74.75) | 55.16 | 81.33 | 64.65 | 74.55 |
CARTcat | 0.638 (0.603–0.672) | 0.298 | 69.35 (65.67–72.85) | 40.08 | 87.47 | 66.45 | 70.22 |
CIT | 0.751 (0.714–0.788) | 0.379 | 71.32 (67.70–74.75) | 56.75 | 80.34 | 64.13 | 75.00 |
CITcat | 0.759 (0.722–0.796) | 0.334 | 69.95 (66.29–73.43) | 48.81 | 83.05 | 64.06 | 72.38 |
RF | 0.753 (0.715–0.791) | 0.355 | 71.02 (67.39–74.46) | 49.21 | 84.52 | 66.31 | 72.88 |
Note: No information rate (NIR), 61.76. All models showed better accuracies than NIR. Abbreviations: LRM, logistic regression model; CART, classification and regression tree; CARTcat, classification and regression tree using categorically transformed variables; CIT, conditional inference tree; CITcat, conditional inference tree using categorically transformed variables; RF, random forest; Kappa, Cohen’s kappa; Acc, accuracy; CI, confidence intervals; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.