Skip to main content
. 2021 Jan 26;22(3):1197. doi: 10.3390/ijms22031197

Table 2.

Summary of studies investigating the role of microbiome-derived metabolites in HSCT setting in human.

Metabolites Study Design Results References
Fiber-Derived Metabolites—Short-Chain Fatty Acids
Butyrate 1325 allo-HSCT adult patients Post-transplant enterococcal domination and loss of Clostridiales were associated with a reduction in butyrate in patients developing GvHD. [12]
Butyrate, propionate, acetate 35 allo-HSCT adult aGvHD patients Butyrate, propionate and acetate levels were lower in patients experiencing GvHD 2–3 compared to the control. Butyrate was low even in patents with GvHD 1. [18]
Butyrate, propionate, acetate, formate 42 allo-HSCT pediatric patients Butyrate, propionate, acetate decrease within the first 14 days after HSCT and are lower in patients developing GvHD. Formate is a possible marker for the Enterobacteriaceae family. Expression of butyrate transporters in GvHD is altered. Greater number of days of antibiotic was associated with lower levels of butyrate and propionate. [19]
Butyrate, propionate, hexanoate, isobutyrate 10 allo-HSCT adult cGvHD patients Plasma concentration of SCFAs reflects fecal content. Patents developing cGvHD present lower plasma concentration of butyrate, propionate, hexanoate, isobutyrate. [20]
Butyrate 44 allo-HSCT adult patients Butyrate levels were correlated with Shannon index and were low in patients experiencing bloodstream infections within 30 days after HSCT. [21]
Butyrate, propionate, acetate, desaminotyrosine 360 allo-HSCT adult patients Butyrate-producing bacteria and fecal SCFAs were associated with a protection from viral lower respiratory tract infections [22]
Butyrate 99 allo-HSCT adult patients Oral supplementation with resistant starch and commercially available prebiotic mixture, GFO, resulted in higher post-HSCT butyrate-producing bacteria and a maintained or increased fecal butyrate concentration. [23]
Butyrate, propionate, acetate 20 allo-HSCT pediatric patients Enteral nutrition resulted in higher fecal concentration of butyrate, propionate and acetate. [24]
Amino Acid-Derived Metabolites
Tryptophan-derived AhR ligand
3-IS 131 allo-HSCT adult patients Lower 3-IS urinary levels are associated with higher transplant-related mortality and worse outcome. 3-IS urinary levels are correlated with GM diversity and with a higher presence of Eubacterium rectale and Ruminococcaceae. [25]
3-IS 13 allo-HSCT adult patients receiving FMT FMT results in higher 3-IS urinary levels. [26]
Indoxyl sulfate Two cohort of 43 and 56 allo-HSCT adult patients Tryptophan-derived AhR ligand 3-indoxyl sulfate was involved in the GvHD-related metabolic alterations. [27]
Tyrosine-derived metabolites
Tyrosine 86 allo-HSCT adult patients In patients who develop aGvHD tyrosine metabolism was found to be altered. Other microbiome-derived metabolites (tryptophan, lysine, phenylalanine and secondary bile acids) were altered. [28]
Riboflavin (Vitamin B2)-Derived Metabolites
Riboflavin 121 allo-HSCT adult patients receiving CBT Patients with post-HSCT MAIT cells reconstitution had a GM with higher expression of genes involved in the riboflavin synthesis pathway. [29]
Polyamines and Breath Metabolites
N-acetylputrescine, agmatine 184 allo-HSCT adult patients Salivary metabolic profile of HSCT patients with and without severe oral mucositis (grade 0–1 vs. 3–4) was found to be different. Metabolites such as urea, 5-aminovalerate, N-acetylputrescine and agmatine, also show differences between the pre-transplant and the time of mucositis onset. [30]
2-propanol, acetaldehyde, dimethyl sulfide, isoprene, and 1-decene 19 allo-HSCT adult patients Comparing patients with and without GI GvHD, the former show modification in the levels of volatile organic compounds, namely 2-propanol, acetaldehyde, dimethyl sulfide, isoprene, and 1-decene. [31]