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Abstract: Damage is an inevitable occurrence in metallic structures and when unchecked could result
in a catastrophic breakdown of structural assets. Non-destructive evaluation (NDE) is adopted in
industries for assessment and health inspection of structural assets. Prominent among the NDE
techniques is guided wave ultrasonic testing (GWUT). This method is cost-effective and possesses
an enormous capability for long-range inspection of corroded structures, detection of sundries of
crack and other metallic damage structures at low frequency and energy attenuation. However, the
parametric features of the GWUT are affected by structural and environmental operating conditions
and result in masking damage signal. Most studies focused on identifying individual damage under
varying conditions while combined damage phenomena can coexist in structure and hasten its
deterioration. Hence, it is an impending task to study the effect of combined damage on a structure
under varying conditions and correlate it with GWUT parametric features. In this respect, this work
reviewed the literature on UGWs, damage inspection, severity, temperature influence on the guided
wave and parametric characteristics of the inspecting wave. The review is limited to the piezoelectric
transduction unit. It was keenly observed that no significant work had been done to correlate the
parametric feature of GWUT with combined damage effect under varying conditions. It is therefore
proposed to investigate this impending task.

Keywords: damage index (DI); ultrasonic guided wave (UGW); guided wave ultrasonic testing
(GWUT); lamb wave; damage detection

1. Introduction

Metallic structures are essential in our society as they are used to perform crucial
functions of economic importance. Some of these structures—such as oil pipelines, railway,
aircraft, bridges, etc.—support or convey products prone to hazard. Structures are abounded
to age and deteriorate due to changes in their material properties [1,2]. The properties could
be mechanical—such as elastic Young’s modulus E, Poisson ratio ν, velocity v, density
ρ—or geometrical properties—such as length, thickness, or shape [2]. Load stress and
environmental operation conditions effect on the structures contributes to its property
variation [3–8]. The accumulation of these changes over time results in a catastrophic
structural failure that may be detrimental to the economy, environment and human lives [9].
Hence, appraising structure health state is imperative and necessitates approaches and
techniques that could offer the needed information quickly, accurately, and reliably.

Conventionally, inspection for damage on a structure can be appraised visually and
manually but principally limited to its surface access. There is a need for damage inspection
beyond the surface, hence the non-destructive testing, NDT [10,11]. Researchers and indus-
tries adopt non-destructive testing to inspect the internal and external health condition of
structures without destroying it [9]. NDT provides the capability to monitor the structures’
health state and detect flaws, thereby impeding and averting possible hazardous failures.

Prominent among these techniques is the guided wave ultrasonic testing (GWUT)
method. It is an effective method for long-distance inspection of inaccessible and coated
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structures from a single point of testing. It propagates inspection wave all through the
structure without point-to-point scanning, hence, minimizes inspection drudgery and
enhances work throughput per day.

The conventional ultrasonic testing (UT) whose frequency is dependent on the thick-
ness of the inspecting structure is different from GWUT of frequency range 20 kHz through
15 MHz or more in rare cases [12,13]. The UT is a high-frequency pulse-echo inspection
technique for deep penetration into structural thickness [14]. It covers a limited area
of the structure, unlike the GWUT that propagates a long-distance structure, as shown
in Figure 1a,b.
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In GWUT or long-range ultrasonic testing, LRUT, transducer probes are networked in
an effective array manner to emit wave signals of predefined frequency [14]. The signal’s
low-frequency nature allows the elastic wave to be guided and propagated a long distance
at the expense of sensitivity. At the same time, inspection at high frequency is detrimental
to distance coverage and power. The high-frequency wave signals are mostly used to study
microscale changes in the material structure like corrosion. In contrast, low-frequency
signals are majorly used to inspect and detect macroscale defects in the material structures.
Most studies on the application of GWUT have focused on individual damage inspection
under varying conditions. However, the phenomenon of coexistence of combined damage
on structures and its effect on GWUT parametric features under varying conditions are yet
to be studied. Hence, the review on GWUT damage inspection, severity, and temperature
influences on the guided wave and parametric features of the inspecting wave.
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2. Ultrasonic Guided Wave, UGW

In nature, dolphins and bats use echolocation technique to survive in their immediate
habitats by processing an emitted and sensed signals [15–18]. They use the time of flight,
ToF, of the signal to infer the object’s location ahead, thereby manipulating their travelling
intention [19]. Their call echo signal’s parametric features have been extensively studied as
a tool through which they differentiate fishes and detect hidden prey in sediments [20–23].
This approach is similarly adopted and extensively researched to inspect and monitor
structures’ health state using parametric features of ultrasonic wave and the guided wave
geometry [24–26]. As sound wave propagation is stratified in different frequency ranges,
an ultrasonic wave of about 20 kHz–25 MHz is widely used for monitoring and screening
of structural assets [24,27–32]. The screening and monitoring at less than 100 KHz is re-
garded as low frequency [29,33], which is predominantly used in long-range screening of
about 80–100 km while above 100 kHz is considered as high-frequency screening [34,35].
The propagating ultrasonic wave interaction with the material boundaries and surround-
ing media affects its parametric features and wave modes, especially when encountered
discontinuity, flaws, notch, and corrosion [34]. The interaction of the propagating wave
with structural damage results in different effects such as wave absorption, scattering,
attenuation, and reflection [10,36,37]. These effects are often proportional to the severity
of the encountered defect in the structures [30]. The increase in the number of sensors
increases the chances of receiving all scattered damage signals for accurate location and
quantification of the damage but not cost effective [14].

A defect in structure is indispensable as it could occur at the manufacturing stage or
during service life through dynamic loading, ageing, environmental effects, and corrosion
activities [38,39]. All these factors affect the strength of structure through variation in its
flexural rigidity or mass that manifests in vibrational frequency [18,40–43] of the structure
as in Equation (1).

fi =
λ2

i
2πL2

(
EI
m

)1/2
(1)

where fi is the linear natural frequency, λi is modal constant, L is the beam length, EI is the
flexural rigidity of the beam while m is the mass. The deterioration of assets if not detected,
quantified, localized, and an appropriate maintenance measure administered on time could
result in catastrophic failure that might claim lives, harm the environment and cripple the
economy. Hence, predicting the inception of the damage existence early before it becomes
severe is eminent. However, at the initial stage of the flaw, its size could be microscale and
hard to detect, especially in a coated scenario.

In asset integrity assessment, damage identification is of four spectrums [41]:(i) dam-
age detection, (ii) damage localization, (iii) damage quantification, and (iv) damage progno-
sis. Some studies emphasized on one or any of the combinations. However, the limitation
could be attributed to the assessment technique employed as some could only provide
information for the awareness and location of the defect.

Integrity assessment techniques used in determining the health of structures could
be passive or active when referenced to the actuation nature of the structure [19,27,44–51].
The essence of actuation is to set the structure particles into mechanical vibration that
would result in momentary spatial displacement. In passive actuation method, ultrasonic
sensors are sparsely deployed to sense the structure health status when it is under dynamic
stress that results in modal shape deformation and vibrations, thereby emitting a sound of
different frequencies. Instances of this technique are the strategic placement of acoustic
emission (AE) [19] sensor and fiber Bragg grating (FBG) [52] for sensing the variations in
the structure sound frequency and strain caused by the existence of defect respectively.
FBG fundamentally operates in the principle of reflection and filtering light signature
wavelength whose variation is proportional to the structural strain [52] as in Equation (2).

∆λB
λB

=

{
1− η2

e
2
[p12 − ν(p12 + p12)]

}
(2)
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where λB is Bragg wavelength, ηe is the Bragg effective refractive index, pij are the silica-
photo-elastic tensor components, ν is the Poisson’s ratio, and ε is the strain.

Although passive actuation method overcame some of the challenges of the conven-
tional ultrasonic sensor in terms of increased sensitivity, shield to electrical noise and
durability, the sparse placement of transducers on structure creates the possibility of flaw
detection miss. This challenge could be adequately handled by increasing the number of
sensor per area but at the expense of cost.

On the other hand, the active actuation method works with at least two transducers
(lead zirconate titanate, PZT) to act as an actuator and as a sensor synchronously without
recourse load-induced sound wave occurred in the structure [19]. Hence, they are nonres-
onant sensors unlike passive actuation method and could be networked in phase array
or distributed network that offers full coverage of the inspecting structure with possible
wireless data communication interface [19,24]. The lightweight nature, small size, easy
integration of PZT on host structure coupled with cost-effectiveness made it an excellent
choice for structural health monitoring [26,53], especially for thin plate structures and
composite materials that are predominantly used in aircraft constructions. Prominent
industries of NDT have used it to develop PZT arrays of various inspection specifications
of 15–100 KHz frequency range and 60–150 m inspection distance [54–57].

Lamb wave is prominent for the excitation of GWUT in thin plates and other flat
composite structures because it influences structure properties and propagates useful
signal information regarding the structure’s integrity. It is sensitive to sundry defects and
discontinuity that manifests in its in-plane S0 and out-plane A0 modes [58–62]. These
are fundamental modes of symmetric and antisymmetric modes of Lamb wave that are
dispersive. The propagation speed of symmetric, Si modes is faster than antisymmetric Ai
modes [62]. The frequency of the guided wave and thickness of the inspecting structure
correlatively defines the lamb wave features’ varying nature. Hence, the product of the
frequency, f and the structural thickness, d (f–d) relate proportionally to the Lamb wave
modes [63]. It is pertinent to point out that fundamental lamb wave modes exist majorly
at smaller product value of f–d. The antisymmetric modes have been revealed to be
more sensitive to defects at a higher frequency than the symmetric mode in detecting
microcracks [63–65]. It was revealed in the study done by Alleyne and Cawley in [64]
that the sensitivity of the fundamental modes of the lamb waves are functions of damage
depth, h to guided wave thickness, d ratio ( h

2d ).
In a plate–water interface, the in-plane wave mode, S0 remains the same while partly

energy of the out-plane wave mode, A0 leaks into the water. This is an attribute to dif-
ferentiate media acoustic properties [66]. Contrary to this, both modes attribute to leaky
wave in the case of plate–soil interface. Although lamb wave propagates at high velocity,
it is susceptible to the effects of ambient noise, low-structural vibration and temperature,
which harden the ease of damage identification and interpretations [67]. In pipe diagnosis
and at low frequency, the longitudinal, L; torsional, T; and flexural waves, F, are domi-
nant [24,28,68,69]. Aside from the fundamental mechanical waves, other waves formation
are feasible but derivate of them [12,31,70] and occurs in different structural conditions.
To appreciably differentiate one wave mode from the other, a naming nomenclature was
devised by Meitzler in [71] as in Equation (3).

Wave modes = X(h, g), (3)

The X represents the wave mode type (Longitudinal, L; Torsional, T, or flexural, F)
while the h and g are circumferential order and mode order, respectively. The circumfer-
ential order and wave mode order of the longitudinal and torsional waves are similar
in convention and differ from the flexural mode. This often occurs due to wave mode
conversion of either the longitudinal or torsional modes [72].
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2.1. Wave Propagation and Dispersion

Since wave propagation brings about vibration and displacement of structural parti-
cles in the temporal and spatial directions, the fusion of the Hooke’s law and Newton’s law
results in a 1D governing wave equation [71] Equation (4).

∂2u
∂x2 =

ρ0

c
∂2u
∂t2 (4)

where u is the particle displacement, x is the propagation direction, ρ0 is the density
of the unstressed structure, c is the elastic constant of the structure, and t is the time.
Furthermore, the resolution of the harmonic propagating waves of different frequencies
but equal amplitude results in two-term frequencies as in Equation (5).

u = 2A cos
(

1
2

∆kx− 1
2

∆ωt
)
∗ cos(kx−ωt) (5)

The first term of (5) is of low frequency with limit group velocity as in Equation (6).

Cg =
∂ω

∂k
(6)

While the second term is of high frequency with phase velocity as in Equation (7)

Cp =
ω

k
(7)

By comparing Equations (6) and (7), it implies that group velocity and phase velocity
are related as in Equation (8).

Cg =
d
(
kCp

)
dk

= Cp + k
dcp

dk
(8)

where Cp = Cp(k).
It is pertinent to note that this wave propagation in lossless elastic structure is charac-

terized by group velocity, Cg and phase velocity, Cp. The group velocity is a function of the
central frequency, f , and the thickness, d of the guided wave as in Equation (9).

Cg( f .d) =
C2

p[
Cp − ( f .d) dcp

d( f .d)

] (9)

Equally, selecting the distinct wave mode for inspection is substantial for accurate
quantitative and qualitative damage detection [73]. However, it is a challenge to achieve
this due to the lamb wave’s multi-mode nature at different frequencies when the inspection
wave mode is supposed to be nondispersive [25]. Hence, in 1990, Mike Lowe and Brian
Pavlakovic of Imperial college London developed structure mode evaluation software
called ‘Disperse’ [74]. It predicts possible modes and characteristics of a wave propagating
in a structure [75,76]. This software is prominent and extensively used in NDE and NDT
of structures.

Similarly, in 2016 Armin Huber of the Lightweight Production Technology of the
German Aerospace Center developed ‘Dispersion Calculator’ (DC) [75,77]. DC is more
intuitive and interacting than the famous disperse software [76,77]. The calculator uses the
stiffness matrix method formulated by S. I. Rokhlin and L. Wang [78–80] to compute the
dispersion curve of longitudinal and shear waves in an anisotropic plate and multilayered
transversely isotropic composites. Figure 2 is the guided wave phase velocity, and group
velocity dispersive curves of 1 mm aluminum plate thickness generated using the DC.
It could be deduced from the dispersive curve of phase velocity that S0 mode is relatively
nondispersive up to 200 kHz with Cp of about 5430 m/s when compared with other
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modes. Therefore, it is suitable to monitor the health condition of the plate using S0 mode
as the generated excitation signal. However, excitability and sensitivity of the modes,
especially with regards to thickness reduction due to corrosion was not accounted for.
In [73], an optimized dispersion curve that relies on the excitability and sensitivity in
addition to the group velocity of the mode was developed. This was named goodness
dispersion curve, and it offers an informed mode suitable for damage detection but limited
to material thickness reduction due to general corrosion. It was revealed that sensitivity of
guided wave varies with wave frequency and at low frequency, the wave is insensitive to
small thickness variation of the metal. Interestingly, the fundamental symmetric, S0, and
asymmetric, A0, modes were recorded as insensitive.
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2.2. Transducer Arrangement and Configuration for Inspection of Structure

Structure inspection involves the use of transducers as an actuator (exciter or emitter of
pressure waves) and a sensor (receiver or catcher of pressure wave) to generate and receive
wave through a waveguide at a predefined distance. The transducer’s major component is
the piezoelectric material that can transform electrical energy into mechanical vibrations
and vice versa [81,82]. The relationship between the material’s electrical and mechanical
effects is in Equations (10) and (11). The parameters of the equations are defined in Table 1.

Tj = CE
ji Si − ejjEj (10)

Di = εs
ijEj + eiiSi (11)

Table 1. Parameter definition.

Electrical Parameters Mechanical Parameters Constants and Couplants

Ej, applied electric potential Tj, material tensor stress ejj, third-rank tensor
Di, particle displacements Si, material tensor strain εs

ij, permittivity for constant strain
CE

ji , elastic stiffness tensor for
constant electric field

The transducer pressure wave is of two-zone formation [83]: the near zone and far zone,
as shown in Figure 3. At the near zone, the wave pressure amplitude varies spuriously with
many high and low echoes. However, beyond the near zone distance N, the wave gradually
attenuates in the amplitude. The multiple echoes at the near zone make it challenging to
detect structural damage between the near zone and transducer. This is a blind spot of the
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transducer where damage detection through signal amplitude analysis is ineffective. Hence,
damage detection is effective beyond the near zone distance and within the far zone. The
near zone distance is defined as in Equation (12). D is the transducer diameter, f is the
pressure wave frequency, λ is the wavelength, v is the velocity.

N =
D2 f
4v

(12)
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The effectiveness of structural inspection in one hand relies on the damping nature
and its spectral response to the targeted damage. On this account, transducers are grouped
into three and summarized in Table 2.

Table 2. Transducer categories concerning spectrum response.

S/N Transducer Series Remarks of Merit

1 High resolution (HR) Series

• Heavily damped
• Most broadband
• Effective for structure thickness gaging

2 General purpose(GP) Series

• Less damped
• Bandwidth is between the narrow banded and

broadband series
• Effective in detecting the majority of a structural flaw

3 High gain (HG) series

• Less damped and tuned
• Most narrow banded
• Effective in detecting flaw on highly attenuated,

rough surface or relatively thick materials.

The configuration topology of the transducer is majorly either pulse-echo (P–E) or
pitch-catch (P–C) depending on the geometry of the inspecting structure, targeted defect
of interest and the needed data [34]. The typical examples of the methods are shown in
Figure 4. In P–E, a single or two transducer(s) is used, and the reflected echo signal, time-of-
flight (ToF) alongside the propagation velocity are used to determine defect, deterioration,
discontinuity, or thickness of the material structure [70,85]. A minimum of two transducers
is required in P–C and spaced sufficiently to generate defect interrogating wave and receive
it after interrogation with the structural defect. This configuration is often applied to detect
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or monitor defects that are not sufficient to cause reflection somewhat further transmission
of the wave though attenuated. Unlike the P–E method, the P–C measurement is the
amplitude of the damage signal or the received damage signal’s shape. P–C is an excellent
choice to make when the intention is to cover a long-range structure [86].
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In pipeline inspection, piezoelectric transducers are distributed and interconnected in
parallel to form a ring of an array around the pipeline’s circumference [44–46]. This technique
of inspecting the pipeline is devoid of surface preparation unlike other types of inspecting
technique; hence, saves time and encourages more length inspection in a day. However,
hopping the device from one point to another is laborious, coupled with its weight, installation,
and uninstallation time at distances of interest. Some of the available collar ring transducers
in the market for a specific inspection challenge are shown in Figure 5. The compact ring
is designed for a wide range of inspection with a 30–35% weight reduction. The solid ring
transducer type is for standard inspection of 2–8 inches pipes while the claw transducer
type is designed to inspect a closely spaced pipeline that cannot allow the fitting of the
conventional ring [87]. A typical transducer ring array contains 2–24 transducers depending
on the diameter of the pipe [28,88,89].
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Therefore, about 48 transducers must form two rings of circumferential inspection
array of a sizeable guided wave. The high number of transducers per ring adds to the
high cost of inspecting structures. The networking together of such a large number of
transducers could pose a challenge in determining when a transducer has failed. Although
it offers merit in full inspection coverage of the structure, it increases the system inspection
power [71]. Also, the large size of the collar transducers does not encourage in-service
inspection of structure which demands permanent installation of the device [90]. In Figure 6,
two 24-transducers collars were configured in pitch-catch topology and used to inspect
internal corrosion activities in a pipeline [89]. In [28], multiple ring arrays of 24 transducers
were used to study the guided wave’s unidirectional excitation function. Fundamental
Torsional (0,1) wave mode was generated and conditioned to propagate only in a forward
direction. This approach reduces complexity in the signal collection and interpretation, and
it saves computational cost.
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2.3. Attenuation of Propagating Wave

Attenuation reduces signal level, either in amplitude or energy as it propagates
through a medium [81]. Figure 7 is a typical demonstration of wave attenuation in a
medium. The diminishing of the propagating signal amplitude often follows an exponential
decay pattern expressed in Equation (13) while variation in the signal intensity is described
in Equation (14).

A = A0e−σx (13)

where A = Attenuated signal amplitude

A0 = unattenuated signal amplitude
σ = coeffiecient of attenuation
x = signal travelled distance
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∆I(dB) = 10 log
P2

2
P2

1
= 20 log

V2

V1
(14)

where ∆I = variation is sound intensity between two successive measurements, p1 and p2
are successive sound pressure, V1 and V2 are successive output voltage of the transducer.
In [91], ultrasonic wave attenuation was statistically correlated with the strength of low
carbon steel. The study showed that as wave attenuation increases from 0.24–0.36 dB/mm,
the steel strength decreases from 290–460 MPa. This is a linear relationship suggesting that
a structure’s strength can be monitored through a propagating wave’s attenuation level.
The wave attenuation α and material thickness, X are related as in Equation (15). ∆A is the
change in wave amplitude between successive reflections.

α =
20
2X

log(∆A) (15)

Aside from reflection, wave dispersion and waveform alteration, the combined effects
of wave signal scattering and absorption results in signal attenuation. Hence, attenuation
is a significant effect that happens to wave propagating in structures.

As expected in reality, the propagating wave will attenuate over a distance of the
guided medium. This could be due to losses resulting from leaking wave energy from
the monitoring structure, interaction with the corroded area, defect, flange, welded area,
and cracking. In NDT, attenuation is a linear effect that commensurates with the degree
of defect in the material structure [30]. Accordingly, signal-to-noise ratio, SNR, is used to
determine the level of attenuation undergone by a signal using input and output energies
or amplitudes of the input and output wave strengths [69]. The GWUT is primarily an
inspection/screening tool; hence SNR is suitable for determining the activities of an internal
and external defect in the monitored structure. Environmental operating conditions also
contribute to attenuation and distortion of damage signal information [92], thereby leading
to false signal alarm, masking damage signal, and difficulty in defect localization. Tempera-
ture is a major environmental factor that causes damage signal distortion and diminishing,
although scholarly works have been done to resolve its influence. It is pertinent to note that
GWUT serves only the role of inspection and its capability to determine the size, shape, and
orientation of crack has not been extensively studied [93–95]. In fluid-filled pipe inspection,
the wave attenuation is affected by similarity and dissimilarity between the filled-fluid
and the surrounding fluid [90]. It was revealed that, irrespective of the position of fixed
structure features (weld, flange, etc.), attenuation rate in dissimilarity scenario is twice that
of similarity. In a pipeline, attenuation is considered intrinsic when caused by absorption
and extrinsic when caused by pipeline features like corrosions, cracks, and other defects
that could decrease signal strength [90].

2.4. Damage Severity Indicator, DSI

Crucial in structural health monitoring is being aware of the damage present, espe-
cially at an early stage. This allows for an appropriate maintenance scheme to be applied
on time and avoid unscheduled system shutdown due to structural damage. Several
works have used lamb wave features extracted before and after the occurrence of damage
or between two states condition of the structure to achieve this purpose [45,96,97]. The
lamb wave feature extraction could be processed through an already established model or
deterministic approach. The quantification of the lamb wave feature’s extracted damage
information in any of the methods is the damage index (DI). The DI defines the severity of
the damage in the structure and its health status. It could be classified as time-domain
(root mean square (RMS), time of flight (ToF), wave energy attenuation, peak signal ampli-
tude variation, and beat length), frequency-domain (figure of merit (FoM), spectral density,
peak of FFT) or time-frequency domain as in Table 3. In [98], ToF was successfully used
in the two comparable techniques to locate crack and its propagation in an aluminium
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plate. The continuous wavelet transform coefficient was used in [99] to detect thickness
reduction in a thin aluminium plate.

In contrast, the amplitude coefficient peak was used in [58] to assess fatigue crack in an
aluminium pipe. In [27], the beat wavelength was used to monitor thickness reduction due
to generalized corrosion activities in the steel structure. In [45,100], different statistical dam-
age indices (i.e., RMSD (Root-Mean-Square Deviation), MAPD (Mean-Absolute-Percentage
Deviation), Cov (Covariance), TMAC (Transmissiblity Modal Assurance Criterion), and
CC (Correlation Coefficient.)) were compared using PZT impedance measured under the
uniformly corroded pipeline.

Table 3. Classification of DI according to domain.

Reference DI Time-Based DI Frequency-Based Remark

[99]

Coefficient of CWT, Z = ( A
B +

A
C )

2
Where

A = Fraction of the total energy of the CWT
that lies at the centred frequency

B = Fraction of the total energy of the CWT
that lies at the higher frequency

C = Fraction of the total energy of the CWT
that lies at the lower frequency

Thickness reduction in
a thin plate

[58]

Peak amplitude coefficient, β = A2
A2

1
Where

A1 = amplitude of the fundamental wave and
A2 = amplitude of the second harmonic

Fatigue crack
propagation in

aluminium pipe

[27]
The beat wavelength, L = 2π

KA0−KS0
KA0 and Ks0 are the wavenumbers of the

fundamental symmetric and antisymmetric

Monitored thickness
reduction due to general

corrosion activity

[90]
Rre f =

Awel
Adir

Awel = Peak amplitude at the weld
Awel = Peak amplitude from a direct source

The severity of damage
in the fluid-filled pipe

[101]

DI =
∣∣∣1− f dT f d

f bT f bL

∣∣∣
fd = the spectral signal frequency

response at damage state
fbL = the spectral signal frequency
response at the undamaged state

Corrosion severity
detection in pipeline

[59]

DIij( fex) = ∑
t

∣∣∣VB
ij (t, fex)−VD

ij (t, fex)
∣∣∣

for i,j = 1~6
where:

DIij(fex) = Damage signal differential
VB

ij ( fex) = Baseline signal when pairing
the i-th PZT actuator and the j-th PZT

sensor at a given excitation
frequency (fex).

VD
ij ( fex) = damage signals when the

corrosion damage was present at the
targeted position of the plate.

Corrosion detection and
severity in the plate

Aluminium

[61]

Spectral density, DI2 = |A(2ω)|
|A(ω)|

Where|A(2ω)| = spectral magnitude of
the fundamental frequency

|A(ω)| = Spectral magnitude of the
second harmonic frequency

Microscale crack
detection in a plate

structure
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2.5. Corrosion and Sensitivity

Corrosion activity is an inevitable effect on metallic structures. It is one of the signifi-
cant issues of safety in industries and results in corrosion failure of structures. It is instigated
mostly through metal interaction with immediate environmental variables (oxygen in the
air, hydrogen, chlorine, ambient temperature, humidity, and presence of microbial) or
stress on the metallic structure as in the case of stress corrosion cracking [102–104]. The
result of corrosion activity would be reddish rust if it happened in the presence of oxygen
or greenish rust in the chlorine-dominated environment [105,106]. Some corrosion forms
are pitting, crevice, and stress corrosion cracking with their peculiarities [107,108] as shown
in Figure 8.
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The pitting corrosion is caused by unevenness in the metal structure or breakdown
of the metal surface’s protective coating, thereby exposing it to electron loss. It is not
easy to predict and detect. Hence, it has the capability of causing corrosion failure and
remain undetected. Crevice corrosion occurs due to an imbalance in ion concentration
between the activity areas of the metal structure. It could happen in an oxygen-limited
area such as under washers or bolts [111]. The growth of crack on ductile metal due to
corrosive surroundings and applied cyclic stress is referred to as stress corrosion cracking
(SCC) [112]. Corrosion rate on the material is estimated using Faraday’s law [113] of metal’s
electrochemical reaction as in Equation (16).

Corrosion rate
(

mm
year

)
=

3.16× 108 × icorr ×M
z× F× ρ

(16)

where icorr is corrosion current, M is molar mass of the metal, z is the number of electrons
transferred per metal atom, F is Faraday’s constant, and ρ is the metal density.

Corrosion can occur on plate and pipes but with different quantification approaches.
Unlike plate, pipes’ defect size is quantified by the loss of wall area or thinning of pipe
thickness [108]. This loss of wall area is termed percentage reduction in cross-sectional area,
CSA, of pipe. This is on the account that propagating incident waves do not extend across
the entire plate. Monitoring the corrosion activities and where it happens on the structure
under different situations is of utmost importance to industries. Detecting corrosion activity
of the least percentage of CSAL is a step in the early prevention of asset failure. This is
plausible using a highly sensitive tool whose parameters can respond quickly to changes
in the structure. The aftermath effect of corrosion activity is the deterioration of structural
integrity through rust. The formation of rust involves loose surface properties of the
structure, contamination of fluid in pipes, decreased service time, and a sudden failure of
the structure that could cause loss of lives, and highly valued properties.
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High-frequency GWUT has been extensively used in monitoring corrosion activity
in structures [63,114,115] although low-frequency monitoring was demonstrated in [116]
using 64 PZT sensors. In [117], Victor Giurgiutiu et al. leveraged on piezoelectric wafer
active sensor (PWAS’s) cheap cost, and networked multiples of it for corrosion detection
and localization in plates and pipelines. Fundamental lamb wave modes S0 and A0 at high
frequency (120 KHz) were generated and used. It was revealed that A0 is more sensitive
than S0 in detecting corrosion both in plate and pipe although S0 travels faster but less
sensitive to the metal thickness changes. This is depicted in Figure 9.
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Figure 9. DI analysis on pitch-catch signals for corrosion detection. (a) Received signal at PWAS 4
when PWAS 0 sent at 120 kHz; (b) DI curves of both A0 and S0 wave packets at 120 kHz of path
0–4 [117].

In [72], scattering and attenuation of propagating torsional wave in the pipeline with
general corrosion were numerically and experimentally investigated using pulse-echo
transducer configuration. In the study, rough surface mean depth and surface roughness
were unified as corrosion activity. It was revealed that wave scattering is proportional to
the unified corrosion activity. It implies that wave scattering increases as the pipe wall
thickness reduction and rough surface area increases. This interaction effect significantly
contributes to the wave attenuation and mode conversion from torsional T (0,1) wave mode
to a higher flexural wave mode. Hence, corrosion development on structures impinges
the propagating wave’s strength and promotes wave mode conversion that introduces
background noise into the monitoring system.

In [118], accelerated corrosion activity on a steel bar in concrete was successfully
monitored using high frequency (200 KHz) lamb wave. The study revealed that corrosion
in this nature could be detected using the FFT signal’s amplitude response. In [59], corrosion
activity was experimentally monitored and quantified using a damage index profile map
and A0 phase shift of the sensor signal. The A0 group velocity was observed to vary
accordingly with the material loss from 0–50% of the thickness. The obtained result
suggested that the phase shift of the fundamental antisymmetrical lamb wave A0 mode
can be used to quantify early corrosion activity in structures, as shown in Figure 10.

In [116], real-time low-frequency (30–90 kHz) monitoring of corrosion on mild steel
was studied. Fundamental antisymmetric wave mode, A0 was generated using 64 PZTs.
It was revealed that the scattering waves’ influence on the accuracy of the thickness
reconstruction is minimal. However, the thermal stability of the design on guided wave
techniques was not considered.
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In [101], PWAS configured in the pitch-catch mode were installed permanently on
a SMART layer to perform in-service monitoring of the pipeline integrity. The severity of
corrosion activity is determined via the damage index defined in Equation (17).

DI =
∣∣∣∣1− f dT f d

f bLT f bL

∣∣∣∣ (17)

where

DI = the damage index for each affected paths
fd = the spectral signal frequency response at damage state
fbL = the spectral signal frequency response at the undamaged state

In [27], thickness reduction of material through uniform milling and corrosion activity
were studied and compared using the high-frequency Rayleigh waves. Beat length effect
due to continua slight shift difference between the two fundamental lamb wave modes, S0
and A0, were used to quantify thickness reduction. The technique was able to determine
thickness reduction of about 0.1 mm; hence, it could quantify general corrosion impact or
detect early corrosion activity, as a result implying the high sensitivity of the technique.
In [119], thickness reduction of a thin copper plate was experimentally studied, compared
with actual thickness reduction through milling. The variation of the plate thickness
was monitored using group velocity. It was revealed that the two situations showed an
agreeable result to the tune of 64% when the reduction was relatively small but deviated
when it became more extensive. The study achieved a minimum detectable thickness
reduction of 0.37% thickness. In [120], corrosion–erosion activity in plate and pipeline
was studied using constant group velocity. The velocity of A0 mode was adopted in the
study. The minimum detectable wall thickness reduction in the study is 1% of the general
wall. This result showed an improvement in the sensitivity of the transducer. In [73],
Lamb wave group velocity responsiveness to corrosion activity on the aluminium plate
was studied. This study was numerically studied alongside the finite element solutions
to determine the most sensitive frequency to thickness variation. It was revealed that
sensitivity of guided waves varies with wave frequency and at low frequency, the wave
is insensitive to small thickness variation of the metal. Interestingly, the fundamental
symmetric, S0 and asymmetric A0 modes were recorded as insensitive. Mode conversion of
the shear horizontal lamb wave (SH0 and SH1) after interaction with corrosion activity is
studied in [121]. It was revealed that the group velocity of SH1 mode varies proportionately
with variation in the structural thickness while SH0 mode remains nearly constant and
insensitive to the thickness variation.
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3. Effect of Environmental Conditions on Guided Wave and Ultrasonic Parametric Features

Environmental factors vary uncontrollably and interact with installed asset structures.
This interaction results in guided wave parameter variation, especially during thermal
expansivity [122]. Since metallic structures are an excellent medium for propagating the
inspecting wave and serve as host for the sensors, the effect of environmental variation on
the metal could be transferred on the sensor directly or indirectly hence causing variation
in the parametric features of the sensor signals. These variations mostly result in mask-
ing damage signals, thereby allowing failure to occur. Studies have been carried out to
investigate the ambient temperature variation on the ultrasonic guided wave (host) and
the transducers (actuator and sensor). In [123], Cawley made a comparison study of crack
formation effect on the resonant frequency and impact of the beam’s length on the resonant
frequency. The result showed that the change caused by 2% depth cut of the crack was
40 times smaller than that caused by a 2% increase in the beam’s length. The effect of
temperature on UGW has been widely studied. In [124], Lui Zenghua et al. investigated
the effect of temperature (−4 ◦C to 34 ◦C) on lamb wave, L (0,1) propagating on steel.
The wave velocity was reported to vary inversely to increase in temperature, as shown in
Figure 11. The retardation rate of the velocity was recorded to be 0.9 m/s for every degree
of increase in temperature.
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The study on anisotropic plate material carried out by Lanza et al. witnessed similar
behaviour but on the wave signal amplitude [3]. It was observed that the wave amplitude
increases at the temperature below 20 ◦C and decreases at a temperature above 20 ◦C. This
effect is suggested to be attributed to the competing roles of the PZT coefficients and the
dielectric permittivity. When the parameters were isolated, the amplitude response to
temperature variation was observed to be proportional. Similar proportionality response
was observed when the high-temperature transducer array coupled in an empty pipeline
was subjected to a temperature of 7–150 ◦C [125]. In the pitch-catch study of varying
temperature(20–150 ◦C) effect on guided wave performed by Raghavan and Cesnik in [126],
the response was observed to be nonmonotonic in the measured amplitude as shown in
Figure 12. The amplitude response signal increased when the temperature is 20–90 ◦C but
decreased when it is 90–150 ◦C. This behaviour was subjected to further theoretical and
experimental studies. Its behaviour was attributed to the assumption of perfect bonding
and constant adhesive layer properties through the temperature range.
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where νg is the group velocity, T is the varying temperature, f is the frequency of the wave,
E is the material young modulus and K is the coefficient of change in phase velocity with
stress, and ν is the propagation velocity. Since K

ν > 1
E , it could be inferred from Equation (18)

that thermal influence on the wave velocity is more responsible for signalling time shift
than the material mechanical property at peak temperature. Equation (19) was proposed
in [127] to represent the group wave velocity function of varying ambient temperature and
the propagating wave’s excitation frequency. The study on the influence of temperature
variation on a diffused ultrasonic wave in a plate revealed waveform shift is an attribute of
temperature. In contrast, distortion in waveform shape is proportional to the size of the
flaw and perhaps its orientation [4]. In [128], the experimental study on steel thickness
measurement at varying temperature (>21 ◦C) revealed an inverse relationship between
temperature and the velocity of the ultrasonic wave. Based on the analysis, it was suggested
that material young modulus E is the only property that could significantly contribute
to variation in ultrasonic velocity under varying temperature and stress conditions as in
Equation (20).

Cl =

[
E.g
ρ

.
1− v

(1 + v)(1− 2v)

] 1
2

(20)

where E is the material young modulus, v is the Poisson ratio of the material, g is the
acceleration due to gravity, and ρ is the density of the material.

Some other research studies on temperature influence on a guided wave and wave
inspection parameters can be read in [6–10,129–131]. Figure 13 showed the significant effect
of temperature variation that resulted in amplitude distortion and signal phase shift [5].
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In [132], the influence of temperature variation (0–50 ◦C) on the ultrasonic feature
of pulse-echo between motor oil and 1018 low carbon steel was studied. The attenuation
of oil was concluded to affect the wave absorption coefficient significantly. This implies
that motor oil is not a suitable interface coupling medium for GWUT under an elevated
temperature, although it could limit corrosion development at the interface.

Aluminium metals are predominantly used as a thin plate to construct more extensive
parts of an aircraft. Its exposure to harsh and varying environmental conditions are sug-
gested to contribute to its deterioration and possible failures. In [67], temperature variation
(−20–60 ◦C) effect on PZT propagating wave on an aluminium plate was experimentally
studied. The wave amplitude and velocity were revealed to be inversely proportional to
temperature variation. Towards 60 ◦C, the amplitude variation was about 30% while it
was 2.5% on the velocity. This observation suggested that the tendency of missing damage
signal at an elevated temperature of the structure is high.

Although it has been shown that temperature variation significantly affects the guided
wave mechanical properties and ultrasonic wave parametric features, most of the studies
were performed on pristine materials under controllable temperature with a marked
range [67,91,128,132–134].

The unified effect of temperature con other environmental factors on sensor para-
metric features has not been given sincere attention than the investigative study done on
temperature effect alone.

Conversely, the temperature effect on the PZT ultrasonic sensor’s parametric feature
has been applied in a very innovative way to monitor an elevated temperature in a heated
spiral spring [135]. The ToF of the pulse-echo signal after interaction with the structural
predefined embodiment reflectors formed the basis for distributed temperature measure-
ment. The comparable results showed that the ultrasonic waveguide measurement and the
temperature measurements are acceptable with a maximum mean error of about 1–3 ◦C.
The novel techniques could be deployed to measure assets’ temperature in an economical
approach since a sensor could monitor the asset’s distributed temperature.

Compensating for the environmental effects on wave information signal is an ap-
proach to mitigate temperature and improve the positive probability of flaw detection in
the structure. Different techniques have been applied to this effect, such as optimal baseline
selection, baseline signal stretch technique, linear discriminant analysis [26,136,137]. As ear-
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lier mentioned, variation in temperature results in ultrasonic phase shift or delay in the
signal arrival, reducing the sensitivity, and probability of damage detection. In the absence
of temperature, determining the damage and its location would be a simple statistical
evaluation between the baseline waveform signal and the current monitored signal. In [26],
combined optimal baseline selection (OBS) and baseline signal stretch (BSS) techniques
were used to suppress and compensate for the distorted information signal due to tem-
perature variation. The results revealed that a combination of OBS and BSS performed
better than simple subtraction method and OBS method. The compensation techniques
have temperature range (Table 4) beyond which they are unreliable. Also, the size of the
temperature reference signal interval attributes the ease of calculation process and the
reference data set’s size.

Table 4. Temperature range and interval of some existing compensation technique.

Compensation Method Temperature Range Maximum Compensation Interval Reference Signal Interval

BSS 5–40 ◦C 5 ◦C 0.1 ◦C
OBS 22–32 ◦C 10 ◦C 0.1 ◦C

BSS + OBS 21.5–31.5 ◦C 10 ◦C 0.5 ◦C

In [136], the effect of temperature and flow rate of fluid in working pipeline acquired
using principal component analysis techniques and Fourier transform, (FT) were used to
classify the damage situation of the pipeline through linear discriminant analysis (LDA).
The approach achieved an average of 98% damage detection accuracy. In [137], a modified
baseline signal stretch (MBSS) method was used to enhance the damage detection of
complex signals due to large temperature variation effect with fewer baseline data set. The
improvement was on selecting and applying a range of stretch factors instead of using
all at a given time, thereby retaining a minimum value of the residual envelope. It was
validated experimentally on a plate structure. The study revealed that MBSS could detect
damage in a structure at a higher temperature variation, hence it has more comprehensive
application than BSS, as shown in Table 5.

Table 5. Summary of result indicating the largest temperature change for which the damage could be
accurately localized by applying temperature correction methods.

Name Aluminium Small Artificial Damage Aluminium Crack CFRP BVID

BSS Up to ∆T = 3 ◦C Up to ∆T = 15 ◦C Up to ∆T = 8 ◦C
MBSS Up to ∆T = 13 ◦C Up to ∆T = 23 ◦C Up to ∆T = 28 ◦C

In [138], dynamic time warping temperature compensation was studied to map the
monitored data set with the baseline data set. The technique performed better than the
stretch-based method at high-temperature variation. The obtained correlation coefficients
at different study scenarios were steadily above 0.75, unlike 0.35–0.45 obtained in the
stretch-based method. To ensure that the weak damage signature is not hidden in the noise,
a statistical step detector approach was used to quantify the damage as correlation coeffi-
cients reduce over time. However, the technique’s computational cost is high, requiring
any other method to reduce the cost while ensuring accuracy in damage detection. The
flexibility of the dynamic warping technique is suspected to be unreliable as it has not been
subjected to many case scenarios.

In [139], the structural health of material was studied by monitoring the variation of the
propagating frequencies of the exciting wave using PZT transducers. The Gaussian kernel
was used in support vector machine (SVM) to determine the damage states similarities
at each measured frequency. The method showed a 90% performance score although,
environmental factors were not included in the study or considered. Hence, factoring
environmental conditions effect into the approach may improve its performance score
above 90%.
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4. Impedance-Based Model Damage Detection

It is an acknowledged fact that temperature variation brings about changes in the
PZT constant properties, adhesive layer properties between the PZT and the target struc-
ture, mechanical properties of the target structure such as young modulus [4,140,141].
Principally, the PZT is bonded to the target structure using an adhesive agent. When
an appropriate excitation voltage is applied on the PZT, it would exert acoustic pressure
via adhesive layer to the target structure and cause its particles to vibrate in their mean
positions. The interaction of the PZT sensor with the target structure in SHM has been
modelled in different ways. The essence is to understand their behaviour when there is
an existence of damage in the target structure. Among these models are the static and the
dynamic finite element models that used the static properties of PZT and structural stiffness
to determine the output characteristics of the PZT sensor. The impedance-based-model
coupled electro-mechanical system has been more interesting and advantageous than the
other two models [142,143]. However, these models are of one degree of freedom (1-DOF)
because they considered only the interface between the PZT and the host structure. The
physical model of the system is shown in Figure 14 and its simplified model equation for
impedance coupling, Z(ω) the PZT and the target structure are given in Equation (21)
while Equation’s structural impedance is Equation (22). For brevity, the equation terms are
defined in Table 6.

Z(ω) =

iω
wpztlpzt

tpzt

ε̂T
33 −

1
Zpzt(ω)
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Equations (21) and (22) showed that impedance-based monitoring of structural dam-
age is a function of the frequency band that must be selected appropriately to detect
damage change in a structure effectively. In the case of excitation frequency of the PZT
matches the natural frequency of the target structure, the structural, mechanical impedance
could be compared with the mechanical impedance of the PZT thereby resulting in an
electro-mechanical impedance given in Equation (23).
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Table 6. Equation terms definition.

Terms Definition

ŶE
31 Complex young modulus of the PZT at zero electric field

d2
31 PZT coupling constant in 1-direction

ε̂T
33 Complex dielectric at zero electric field

Zpzt(ω) Electrical impedance of the PZT
Zs(ω) Structural mechanical impedance of the target structure
wpzt Width of the PZT
lpzt Length of the PZT
tpzt Thickness of the PZT
Cs Damping coefficient of the structure
ω Angular frequency of the excitation voltage applied on the PZT
m Mass of the target structure
ωn The angular natural frequency of the target structure
Kij Dynamic stiffness of the 2-DOF

Ẑ(ω) Structural mechanical impedance of the interface-target structure

Hence, damage detection in a structure could be detected through the quantification of
the measured impedance variation. However, when PZT is coupled on the target structure
without an adhesive agent, it results in a high impedance mismatch due to air that serves
the adhesive agent’s intended function. Over time, the adhesive layer becomes weak and
debonds from the interface, allowing air to exist in between the PZT and the target structure
interface. Exposure to high environmental temperatures promotes this effect. This effect
degrades the SHM system’s sensitivity and makes damage detection difficulty. Hence, there is
a need to factor in the impedance-based model the adhesive layer’s influence. In furtherance
of EMI based 1-D model, an improvement was made on the model to accommodate the
adhesive layer [142]. The modified model of the system is in Figure 15. The resulting 2-DOF
EM impedance between PZT-interface-host structure is given in Equation (24).
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Ẑ(ω)+1

d2
31ŶE
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In this model, the output characteristics of PZT is determined via its dynamic proper-
ties and structural impedance. By varying the stiffness of the model depicts changes in the
target structure.

The impedance-based model was used by Bin Lin et al., in [7] to study the durability
and survivability of PWAS. The impedance of one free bond PWAS and one bonded
PWAS on metal were measured after been subjected to different situations of harsh and
mild temperature for a shorter time. The situations were captured as cryogenic and high
temperature, temperature cycling, freeze–thaw, outdoor environment, operational fluids,
large strains, and fatigue load cycling [144]. It was concluded that PWAS could function
well in cryogenic temperature but not in high temperature. It could be said that the
durability and survivability of PZT are subject to the nature of the working environment
and condition of the system operation. In [145], the durability of PZT actuators under the
influence of electro-thermo-mechanical condition was studied.

Although PZT could be perfectly bonded to the target structure’s surface, the adhesive
agent could weaken after a prolonged time in service. At this point, the performance
of the PZT will start degrading, and integrity of the SHM compromised. PZT actuator
unfortunate damage could occur before or during structural health monitoring. Its failure
during operation could impair structural damage detection by generating signals that
interfere with structural damage signal [146,147]. This effect brings complexity in damage
signal interpretation. It is vital to determine when a sensor has failed and isolate it from
the network of others. Since a failed sensor signal can interfere with the structural damage
signal, using the real admittance to discriminate the failed sensor damage signal from that
of the host structure, electro-mechanical impedance (EMI) technique has shown strength
in this regard [144,146,147]. Sensor self-diagnosing was studied in [10] using electrical
impedance and in [147] using real admittance of the EMI-based model. In [147], the authors
used the resonant frequency shift of the real admittance caused by structural impedance
and root mean square deviation (RMSD) index to achieve this discrimination. However,
the study did not consider the effect of temperature variation.

5. Conclusions

A review is presented on damage inspection, severity, and temperature influence
on the inspecting guided wave and its parametric features. The sensor’s choice for asset
integrity monitoring depends primarily on the structure’s nature and the targeted flaw.
Different ultrasonic parametric features are used in determining the existence of flaw or
damage in the structure. However, it is pertinent that it must be highly responsive to the
intended flaw, otherwise a high rate false detection alarms is bound to occur and reliability
of the structure would be jeopardized.

In contrast with the conventional ultrasonic inspection technique, an inspection of
a large structure area from a test point is possible with GWUT. This improvement brings
about a reduction in the cost of structural assessment and the amount of time required
to inspect its health state. Although at the expense of ease of interpretation, the ability of
guided wave ultrasonic technique to generate multi-mode waves is a good characteristic
that aids in monitoring and detecting sundry damage in the structure.

From the DI reviewed works, it was observed that damage indices in time-domain
are mostly used to monitor the existence of macroscale damage in structures. These are
cracks and other damage that have developed and could significantly reflect or scatter
the propagating wave. The microscale damage under breathing crack mechanism results
in higher harmonics formation and makes signal interpretation difficult in time-domains.
In such a situation, frequency-domain DI is mostly adopted to diagnose and interpret
its existence.

Additionally, DI’s effectiveness is a function of its responsiveness to the presence and
variation of damage while being robust to unwanted interfering signals. However, most
of the IDs depend mainly on pristine structure values to be reasonably accurate, which is
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difficult to obtain from the existing asset that are many years old. All the DIs are mono
damage identifier or mono severity indicator and unfit to define much damage at a time.

The influence of temperature in damage detection and localization is still a challenge.
However, different temperature compensation techniques exist but at the expense of high
computational cost and reference to pristine values which are not readily available. The
effect of varying temperature on waveforms results in a time shift of the inspecting signal
with a high probability of missing flaw detection at an elevated temperature. The influence
could worsen at high temperature and large defect size leading to system unreliability.
Thermal conductivity is perceived as a key factor in ultrasonic attenuation under tempera-
ture variation and the ultrasonic velocity’s proportionality behaviour with temperature.
Temperature variation is the only environmental factor considered in most of the studies,
whereas the monitoring system could be affected by other environmental factors when
deployed to the field.

Study on the effect of crack or breathing crack in a corroded area on GWUT parameters
under varying temperature influences is yet to be studied. Situations are abounding where
corrosion activities may cover cracks, and structure diagnosis would reveal the existence
of corrosion. This could cause misinformed asset reliability and unscheduled system
failure. Also, damage detection in the dynamic stressed thin plate under the influence of
thermomechanical condition has not been explored using GWUT. Most metallic structures
are subjected to dynamic stress and environmental conditions while in service. These two
conditions are detrimental to damage detection in structures using GWUT. Leveraging
the potentialities of GWUT for structure health inspection, determining the effect of these
combined conditions is significant in deciding damage severity, location, and orientation
in a structure. Understanding the dynamics of these aforementioned challenges with
respect to ultrasonic guided waves will open a new research discussion. The solution will
increase the effectiveness of GWUT in achieving informed and reliable damage detection
in metallic assets.
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