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Abstract: A promising but still scarcely explored strategy for the estimation of gait parameters
based on inertial sensors involves the adoption of machine learning techniques. However, existing
approaches are reliable only for specific conditions, inertial measurements unit (IMU) placement
on the body, protocols, or when combined with additional devices. In this paper, we tested an
alternative gait-events estimation approach which is fully data-driven and does not rely on a priori
models or assumptions. High-frequency (512 Hz) data from a commercial inertial unit were recorded
during 500 steps performed by 40 healthy participants. Sensors’ readings were synchronized with a
reference ground reaction force system to determine initial/terminal contacts. Then, we extracted a
set of features from windowed data labeled according to the reference. Two gray-box approaches
were evaluated: (1) classifiers (decision trees) returning the presence of a gait event in each time
window and (2) a classifier discriminating between stance and swing phases. Both outputs were
submitted to a deterministic algorithm correcting spurious clusters of predictions. The stance vs.
swing approach estimated the stride time duration with an average error lower than 20 ms and
confidence bounds between ±50 ms. These figures are suitable to detect clinically meaningful
differences across different populations.

Keywords: gait analysis; spatio-temporal parameters; wearable sensors; decision trees

1. Introduction

Clinical gait analysis is routinely performed by medical operators to assess ambulatory
functional limitations in people with musculoskeletal or cognitive impairments [1,2], as
well as to evaluate an individual’s quality of life, morbidity and/or mortality [3]. Spatio-
temporal gait parameters (i.e., gait speed, stride duration, step length, step width, etc.)
provide an immediate picture of an individual’s gait profile [1]. They can be used to predict
fall risk [4–6] and/or to quantify rehabilitation outcomes [1,2,7–10].

In the last decade, considerable effort was devoted to provide valid and practical
alternatives to overcome the limitations of traditional laboratory testing, namely, expensive
equipment and time-consuming setup [11,12]. A clear research and development trend
appeared towards systems able to capture people’s motion without expensive equipment
and with limited expert knowledge required [13]. In this landscape, inertial measurements
units (IMUs) emerged as a promising family of devices to enable daily-life, affordable,
unobtrusive diagnosis and rehabilitation of gait in a wide plethora of cohorts, ranging from
neurological diseases to stroke patients [12,14–17].

Among the most appealing advantages of IMU-based gait evaluation in daily routine
activities is the opportunity to capture walking adaptations in response to environmental
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changes or perturbations [16], thus, substantially enhancing the ecological validity of
testing [18]. This poses severe challenges to the development of algorithms able to provide
accurate measurements despite the natural gait variability [16].

Estimating spatio-temporal parameters from IMU data is not a trivial task due to
inherent sensors noise and drift problems [11]. This partly explains why these systems
(despite the recent flowering of commercial products [11]) have achieved moderate and
sometimes inconsistent performances to date [17], that in turn limited their widespread
use for pervasive healthcare [19]. Drifts, in particular, are susceptible to produce large devi-
ations in the calculated results when a double-integration-based sensor fusion approach is
adopted [11,20,21]. This approach heavily depends on raw data quality even when an error
state Kalman filter is applied to correct sensors’ data [5,14]. Most studies achieved gait
events detection by sorting peaks, valleys, and zero-crossing in the signals [22,23]. Other
algorithms exploited a combination of continuous wavelet transform to detect initial/final
contacts (heel-strike, toe-off) and the inverted (double) pendulum model to extract spatio-
temporal parameters from sensors’ readings. Examples exist where the sensing device was
placed on the pelvis, typically in correspondence of the L4–L5 vertebrae [24,25] (assumed
to approximate body center of mass location [26]), or alternatively on the foot, exploit-
ing information on the angular velocity of leg swing and size to obtain stride and step
lengths [10]. Solutions were also proposed where the temporal detection of gait cycles was
based on the norm of the angular velocity of the foot relative to an empirical threshold [27].

A promising but still scarcely explored strategy for the estimation of gait parameters is
based on machine learning techniques. In this context, spatio-temporal gait parameters are
predicted using a set of features extracted from the IMU signals [11]. Zhang and collabora-
tors used support vector regression models to estimate fundamental gait parameters from
an IMU-equipped insole [19]. Hannink et al. used deep convolutional neural networks to
map stride-specific IMU data to the resulting stride length, training the model on a publicly
available database of 101 geriatric patients [5]. Stride length was estimated with an error of
0.01 ± 5.37 cm [5]. They did not, however, focus on temporal parameters.

The achieved accuracy claimed by most of the existing researches is in principle
potentially feasible to enable clinical comparisons in terms of temporal parameters [28].
In particular, stride duration was mostly determined with an error (typically measured
against a reference system such as optical motion capture, force platforms or instrumented
walkways) lower than 50–60 ms [11,29]. However, the main weakness of these approaches is
that they are reliable only for particular subjects’ conditions [19], for specific IMU placement
on the body, for few protocols [22], or when combined with additional devices [19]. In this
paper, we tested an alternative gait-events estimation approach based on machine learning
algorithms which is fully data-driven and does not rely on a priori models or assumptions.

Section 2 will describe the experimental design, the equipment involved, the process-
ing steps, and the statistical computations performed. Results will be shown in Section 3
and separately discussed in Section 4, where limitations and possible practical implications
of the study are also reported; Section 5 contains concluding remarks and perspectives.

2. Materials and Methods
2.1. Experimental Design and Participants

This study involved the simultaneous collection of data with a commercial IMU device
and a force platform during walking. Ground reaction force data were used as a reference.
Forty healthy participants (19 women, 21 men) aged between 22 and 55 years voluntarily
took part in the experimental sessions; inclusion criteria were: (i) no diagnosed gait-related
impairments and (ii) ability to walk comfortably at different speeds. All of the subjects
were able to complete the test and coped with the provided instructions. Only anonymized
signals were analyzed and no clinical nor personal information was requested.
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2.2. Experimental Setup

A wearable IMU device (Physilog 5, GaitUp Ltd., Lausanne, Switzerland) was clipped
to the participants’ right shoe in correspondence to the navicular bone (Figure 1). This
IMU is a six-axes stand-alone unit integrating a three-axis accelerometer and a three-axis
gyroscope. Device settings were set to a sampling frequency of 512 Hz, and a dynamic
range of ±16 g for the accelerometer and 2000◦/s for the gyroscope. The unit is sized 47.5
mm × 26.5 mm × 10 mm and weights 36 g. The sensors’ inertial right-handed coordinate
system is oriented as displayed in Figure 1 (it is worth mentioning that GaitUp Ltd. also
provides a commercial gait analysis solution, which has been validated and already used
in several studies as described in [11]. As our goal was not to re-evaluate the GaitUp
algorithms, only the raw data from the IMU development platform were processed in this
study).
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Figure 1. GaitUp Physilog size (top) and placement on the foot (bottom). Direction of the local
right-handed reference frame axes is also reported.

A schematic representation of the laboratory setup is depicted in Figure 2. The labo-
ratory was equipped with two 46.5 × 51.8 cm2 AMTI OR6-7 force platforms (Advanced
Mechanical Technology, Inc., Watertown, MA, USA) sampling at 200 Hz, used to collect
ground reaction forces (GRF) data. AMTI OR6-7 are strain gages-based force platforms
designed for biomechanics applications. In the adopted configuration (10-V bridges excita-
tion), full scale output in the medial and anteroposterior directions was 4450 N, while in
the vertical direction it was 8900 N.

To provide a visual representation of the foot position during gait, the 3D position
of four passive reflective markers was recorded with an optoelectronic motion capture
system (SMART DX400, BTS Bioengineering, Milano, Italy) with a sampling frequency of
100 Hz. Markers were placed in correspondence to the lateral aspect of the foot at the fifth
metatarsal head, on the heel, on the lateral malleolus and on the knee in correspondence to
the lateral femoral epicondyle. Optical and ground reaction forces data are automatically
synchronized. Global laboratory reference frame was oriented with the x axis horizontal
and directed along the walking direction, the y axis pointing upwards, and the z axis
mediolateral and pointing to the participant’s right (Figure 2).
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Figure 2. Experimental setup—tests were conducted on the middle laboratory lane with force platform embedded on the
floor. Motion capture cameras are fixed on the wall in a standard gait analysis configuration.

2.3. Procedures

After starting the recording of both motion capture and IMU data, subjects were asked
to hit a force platform three times with their right foot. This enabled to synchronize the
two measurement systems (motion capture system and IMU) [30], as explained in the
following paragraph.

Subsequently, all subjects performed a sequence of short straight-line level walking
tests, from three to ten steps each, at self-selected comfortable speed, which were measured
by means of the optical system.

2.4. Data Processing and Features Engineering

Data were processed by means of custom Matlab (v. 2019b, The Mathworks Inc.,
Natick, MA, USA) routines. GRF and inertial readings were time-aligned prior to each
recording (maximum 30 s each) by determining the delay corresponding to the peak of
the cross-correlation function among the vertical force and vertical acceleration signals
at the beginning of the recording (Figure 3). The maximum synchronization error when
dealing with cross correlation algorithms is typically lower than 1 sampling period [31]. In
our case this is 10 ms, thus entailing a standard uncertainty lower than 3 ms. This value is
trivial in comparison with the intrinsic variability of the observed phenomenon, as detailed
later. Reference time events were obtained from foot–ground contact information, setting a
binary GRF threshold of 10 N [32]. Stride time was computed as the time interval between
two consecutive initial contacts of the right foot.

The classification of gait phases and events followed a gray-box approach. First,
sensor readings related to each step were trimmed in order to contain two consecutive heel
strikes. The data stream was subsequently segmented in 64-sample (0.125 s) windows. A
fixed-width, 64-sample moving window on the 6 IMU channels (acceleration and angular
velocity) with step equal to 1 sample was used to compute 48 statistical features in the time
and frequency domains, similarly to what previously done in [33]. In the time domain,
the root mean square, variance, kurtosis, skewness, and correlation between each pair of
accelerometer and gyroscope (angular velocity) axes were computed. In the frequency
domain, the dominant frequency and the power at the dominant frequency were obtained
(Table 1). Data processing flow is depicted in Figure 4.
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Figure 3. Sample vertical (z-axis) raw accelerometer readings during a test. The first three spikes
correspond to the synchronization signal and the following data refer to gait events.

Table 1. Statistical and frequency-domain features.

Signal Time Domain Frequency Domain

Acceleration (3 channels) Root mean squared Dominant frequency
Variance Power at dominant frequency
Kurtosis
Skewness
Linear Correlation (x-y, x-z,
y-z)

Angular velocity (3 channels) Root mean squared Dominant frequency
Variance Power at dominant frequency
Kurtosis
Skewness
Linear Correlation (x-y, x-z,
y-z)

2.5. Gait Events and Phases Classification

Three binary classifiers, supporting two alternative approaches, were implemented
to identify:

• 1a: windows containing a heel strike vs. any other event.
• 1b: windows containing a toe off vs. any other event.
• 2: windows corresponding to stance vs. swing phases.

The results of gait event classifiers (1a) and (1b) were subsequently combined. Each
window was labelled based on the reference output: in the case of gait events classifiers,
label “1” was attributed to the windows containing a heel strike (1a) or a toe-off (1b), and
label “0” elsewhere. In the case of classifier 2, label “0” was assigned to the swing phase
and label “1” to the stance (ground contact) phase, evaluated at the time of each window’s
first sample.

The whole sample of labelled features was split into a training (70% strides) and a test
(30% strides) set. Of note, as the sequence of events is crucial to the problem of classifying
gait phases, we randomly allocated strides (collection of consecutive observations), and no
single observations.
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blue boxes represent the window moving across the signal); subsequently a set of features were obtained for each window,
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The Matlab Machine Learning Toolbox identified decision trees as the most accurate
binary classifiers relative to the concurrent application. Decision trees also allow for good
classification speed and for features importance evaluation [33]. For these reasons, it was
decided to base the following analysis on this classifier method.

The output stream returned by each classification approach was subsequently submit-
ted to a “correction algorithm” aimed at detecting and removing isolated short clusters
embedded in larger areas belonging to the opposed class. A cluster was considered “iso-
lated” if it was shorter than half a window (i.e., 32 samples or 0.063 s), preceded and
followed by a differently classified array of larger size (Figure 5). The correction algorithm
works sequentially and “prefers” the current class. That is, if we are within a “stance”
phase, short clusters labelled as “swing” are reversed into “stance”. The transitions be-
tween classes on the obtained output stream identified the correspondent gait event: for
instance, the transition between the stance and the swing phase denoted a toe-off event.
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Figure 5. Correction algorithm: isolated short (counter < threshold) clusters were corrected according to the surroundings,
as schematically reported in the bottom diagram.

2.6. Statistical Analysis

The error’s bias and random component in the identification of heel-strikes, toe-offs,
stride, stance, and swing times were determined on the test set. To do so, the mean and
standard deviation of the difference between the reference and the estimated value were
computed, as well as the corresponding root-mean-square (RMS) error and 95% confidence
intervals (95%CI). The standard error of the mean was computed for the whole test set (U)
and for 10 strides (U10), the latter considering a common number of repetitions per subject
in clinical gait applications [1].

Paired Students’ t-tests were performed between estimated and reference stride, stance
and swing times, and associated with the corresponding Cohen’s d effect size (ES): values
of d ≤ 0.5, 0.5 < d ≤ 0.8, and d > 0.8 were considered low, moderate, and large effects,
respectively. The coefficient of determination (R2) was obtained between estimated and
reference stride time, and between the related error and the corresponding gait speed. A
statistical significance threshold of 0.05 was implemented throughout.

3. Results

Overall, participants performed 10–15 strides each, for a total of 500 recorded strides.
Of them, 75 were discarded due to inconsistent or incomplete data. Therefore, the training
set included 298 strides and the test set 127 strides. The global number of collected
observations (64-sample windows) was 311,802.

Figure 6 and Table 2 report the output of the three binary classifiers: the gait events
classifiers (1a and 1b) returned an accuracy of 91–93%, while the stance vs. swing classifier
(2) reached 95.6% before being submitted to the correction algorithm. Some features were
remarkably more predictive of the correct class. In particular, vertical acceleration played a
substantial role in all the models, while angular velocity was less important to discriminate
between stance and swing phases.
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Figure 6. Classification performance of the three tested approaches. Left: heel-strike (1a) and toe-off
(1b) events detection; Right: stance vs. swing moving windows classification (2).

Table 2. Classifiers (decision trees) technical figures. The reported accuracy refers to the classification outcome, not to the final gait
event estimation result. The outputs of Methods 1a and 1b were subsequently combined.

Item Heel-Strike vs. Other (1a) Toe-Off vs. Other (1b) Stance vs. Swing
(2)

Prediction accuracy 93.3% 91.4% 95.6%
Observations 218,933 218,933 218,933
Misclassification cost 14,713 18,754 9428
Prediction speed 7 × 106 observations/s 7 × 106 observations/s 6.9 × 106 observations/s
Training time 52.145 s 18.137 s 49.694 s
Size of training data 87 MB 85 MB 87 MB
Validation Hold-out Hold-out Hold-out

Features whose importance
was greater than 5%

Mediolateral mean ω

Vertical acc. RMS

Vertical acc. Mean
AP ω mean
AP ω var

Vertical acc. RMS
AP acc. Mean

Acc.: acceleration, AP: anteroposterior, ω: angular velocity, RMS: root-mean-square; var: variance.

Globally, the stance vs. swing approach returned lower errors in determining all the
considered parameters (Table 3). In particular, events identification returned an average
error between −11 and 5 ms (95%CI, heel-strike) and between −13 and 50 ms (toe-off).
Conversely, the approach involving methods 1a and 1b returned larger uncertainty values,
reaching 35 ms (heel-strike) and 74 ms (toe-off) when considered over 10 strides. Gait
phases estimation were therefore significantly different with small-to-medium effect sizes
for the approach 1a–1b, while the stance vs. swing method showed no statistical differences
for stance and swing phases duration (p = 0.098 and p = 0.782, low effect); the same approach
underestimated the stride time by (p = 0.004, 95%CI between −37 and −7 ms) with a low
effect size. However, as displayed in Figure 7a, the coefficients of determination were 0.796
and 0.808 for the gait-events classifiers (1a and 1b) and stance vs. swing (2) approaches,
respectively (p < 0.001 for both).
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Table 3. Descriptive statistics (in ms) of the heel-strike and toe-off identification, as well as swing/stance/stride time estimation, with
respect to the reference system (force platform).

Method Mean SD RMSE U U10 95%CI p ES

Heel-strike identification
Heel-strike and toe-off (1a, 1b) −20 111 113 7 35 −33, −6 - -
Stance vs. swing (2) −3 59 59 4 19 −11, 5 - -
Toe-off identification
Heel-strike and toe-off (1a, 1b) 95 233 251 21 74 54, 136 - -
Stance vs. swing (2) 19 165 166 15 52 −13, 50 - -
Stance phase estimation

Heel-strike and toe-off (1a, 1b) −113 214 241 19 68 −150,
−75 <0.001 0.514

Stance vs. swing (2) −26 168 169 16 53 −50, 5 0.098 0.158
Swing phase estimation
Heel-strike and toe-off (1a, 1b) 39 221 224 20 70 0, 78 0.048 0.205
Stance vs. swing (2) 5 179 178 17 56 −29, 38 0.782 0.034
Stride time
Heel-strike and toe-off (1a, 1b) −74 140 158 12 44 −98, −49 <0.001 0.258
Stance vs. swing (2) −22 79 81 7 25 −36, −7 0.004 0.122

ES: Cohen’s d effect size; RMSE: root mean square error; U: standard error of the mean; U10: standard error of the mean on 10 strides; p:
paired t-tests.
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Figure 7. Regression plots comparing estimated and reference stride time (a) and the measurement error as a function of
gait speed (b). Regression lines (dashed) and 95% confidence bounds (solid lines) were reported.

In the best case (stance vs. swing approach), we found a single totally erroneous
heel-strike (2% of the test set, difference from the reference of about 0.7 s) and seven toe-off
events whose error was higher than 0.2 s (6% of the test set). There was not a significant
correlation between the estimation error and the walking speed (Figure 7b), being R2 equal
to 0.004 (p = 0.482, approach 1a and 1b) and 0.021 (p = 0.135, approach 2).

4. Discussion

By exploiting uncorrected, high-frequency acceleration and angular velocity data
readings combined with a grey-box machine-learning approach, in this paper, we showed
that it was possible to estimate gait events (heel-strikes and toe-off) with an average error
lower than 20 ms and confidence bounds between ±50 ms. This led to determine stride
time with a root-mean-squared error of about 80 ms.
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4.1. A Data-Driven Approach

The discrimination of stance vs. swing phases (approach 2) outperformed the first
approach (1a and 1b), intended to detect time windows where the initial/final contacts
occur. This was partly expected, as gait events per se are distinct instants in time: a moving
window, even if relatively short (64 samples at 512 Hz equals 125 ms) turned out to be
prone to systematically anticipate (heel-strike, negative bounds of 95% CI) or delay (toe-off,
positive bounds of 95%CI) the events detection. This inevitably led to significant systematic
differences between the estimated temporal gait parameters (low-to-moderate effect sizes)
and the reference system (force platform).

Conversely, the stance vs. swing approach almost halved the measurement error.
Stride time resulted still significantly lower than that detected by the reference system,
but with a low effect size and a reduced uncertainty (U10 = 25 ms). The RMSE of about
80 ms were slightly higher than a more sophisticated experimental setup based on an
instrumented insole [19]. Confidence interval was limited to 29 ms and between the limits
of agreement obtained by Yeo and colleagues [29] (60–100 ms), who also reported a very
similar error of 20 ms. The correlation coefficient with the reference measure was r =
0.89, substantially in line with [11] and slightly lower than in Zhou and collaborators [16]
(r = 0.95). Swing and stance time confidence intervals (−29, 38 ms and −50, 5 ms) were
comparable with those provided by Godfrey and collaborators, who obtained (−35, 49
ms and −39, 49 ms) with a pelvis-mounted IMU and event detection based on Gaussian
continuous wavelet transform [25].

Notably, these outcomes were purely data-driven. In other words, they were obtained
without a priori assumptions, neither concerning subjects’ anthropometrics or speed nor
regarding raw signal conditioning (i.e., filtering, sensors’ bias compensation), which was
deliberately avoided to show the potential of the approach. Not relying on any determin-
istic model, the algorithms provided are potentially able to capture unconventional gait
patterns, for instance with long stance phases and shorter steps than normal, as in the case
of Parkinson’s disease [14,17,28].

Discrepancies from previous research performances should also be read in the light of
the numerosity of the experimental cohort. Instead of gathering a large number of strides
from a relatively reduced sample of participants, we decided to extend the survey to a
wide (n = 40) range of subjects, higher than those observed in similar studies (e.g., five
subjects in [11], 14 subjects in [19], and 30 subjects in [29]). This was done to enhance the
generalizability of results, despite it could have introduced interindividual variability and
reduced the estimation accuracy.

Besides their limited computational cost, an advantage of the regression trees used
as the main classification algorithm is the opportunity to easily examine features’ relative
contribution. Vertical acceleration [23] and anteroposterior angular velocity were the most
revealing among a reduced set of discriminant statistical features. In that, the grade of
variability of a signal throughout a time window (accounted for by the signal’s variance)
was probably key to capture quick variations due to initial contact and/or toe-off. Ad-
ditionally, limiting the number of relevant features adds to the feasibility of a real-time
implementation. This reduces the computational burden often associated with end-to-end
complex machine learning models (as deep convolutional neural networks [19]) or double
integration approach (exploiting zero-velocity update technique), which requires sensors
fusion algorithms [11]. Lastly, the proposed correction algorithm is simply enabling a sort
of data cleaning prior to the determination of gait events, and its execution requires very
simple and inexpensive operations.

4.2. Effect of Measurement Uncertainty in the Real Instrument Usage Context

Normative data in healthy adults report an interindividual variability (standard
deviation) of stride time of about 80–120 ms [34]. This parameter tends to increase with
age [34–36] and when a perturbation (physical, pathological, or cognitive as dual-task)
arises, reaching values up to 180 ms [17,37]. Other investigations on orthopaedic patients
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reported a variability of 90 ms in the stride times measured in a single participant at
self-selected speed across over ten gait cycles [8]. In this context, the obtained U10 value
of 25 ms appears tolerable to properly characterize temporal gait parameters, even when
the goal is detecting mean differences across populations: as a reference, Beauchet et al.
reported between-sexes differences in stride time of about 50 ms [34], while Hollmann and
collaborators denoted an increase in stride time higher than 60 ms between 70–74 years
and 85+ years old women [35]. Significant differences of about 20–30 ms were also found
between healthy controls and Down Syndrome patients at lower walking speed [38].

4.3. Limitations

The purpose of this study was to show the feasibility of classifying gait phases and
determining the related events during walking in healthy adults. While we claimed
that this method could be easily extended to other forms of locomotion like running or
hopping, the proposed approach could not necessarily directly apply to patients with
locomotor impairments. The collection of new training data in these conditions would be
probably required. Likewise, in order to correctly capture the specific walking variability
of pathological or pediatric populations it is advised that additional training data would
be collected and combined. The real-time implementation of the algorithm was beyond the
scope of this paper, and will be addressed in upcoming research.

A second limitation is that the original dataset was randomly split into a training
and test set, without explicitly separate subjects. This was done to ensure the highest
generalizability of the training set, but it also means that in principle, steps from the same
participants could have be assigned to both splits.

The sampling frequency of the reference laboratory equipment (force platforms)
was 200 Hz. This brought in an inherent uncertainty of 5 ms/2·

√
3 = 1.4 ms. In this

sense, referring to instrumented walkways (e.g., Microgate’s Optogait [39]) the higher
time resolution (up to 1 ms) would lead to a minor reduction in the overall measurement
uncertainty. However, previous investigations relied on optical systems with a sampling
frequency of 100 Hz to perform the same comparison [16]. Moreover, as previously
discussed, differences in gait temporal parameters of this magnitude (<10 ms) are not
clinically meaningful.

Lastly, we did not face the issue of multiple units’ synchronization, that, in principle,
could be an additional source of uncertainty [40].

5. Conclusions

IMU-based solutions for the assessment of the gait function in real-world settings
are continuously improved to provide personalized and pervasive healthcare [16]. In
this study, we proposed a novel data-driven approach for the determination of tempo-
ral gait parameters based on inertial sensors and simple machine learning algorithms.
Measurement errors were comparable to existing IMU-based methods, still, the proposed
approach did not rely on any particular raw data processing constraint, and it was robust to
inter-subject variability, thus, making it unnecessary to collect patient- or condition-specific
training data [19]. Further, the proposed approach opens to further advancements on
this path, which offers reduced computational burden and the potential to detect gait
phases even when unconventional ambulatory modes are evaluated outside from restricted
laboratory settings.

This study also reinforces the use of a movement analysis laboratory as a required
reference when testing the measurement uncertainty of new devices. In the current market
situation, in which we are witnessing the rapid spread of different systems for measuring a
wealth of parameters related to human movement, it is necessary to adopt methods aimed
at rigorously verifying the quality of the data produced.
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