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Abstract: Early detection of grapevine viral diseases is critical for early interventions in order
to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can
potentially detect and quantify viral diseases in a nondestructive manner. This study utilized
hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the
newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic
stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO,
USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while
other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm
hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to
retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance
spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were
established and explored in terms of their importance to the classification power. Pixel-wise (spectral
features) classification was performed in parallel with image-wise (joint spatial–spectral features)
classification within a framework involving deep learning architectures and traditional machine
learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm
range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS)
region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence
ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and
water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the
support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces,
while the RF classifier performed better in pixel-wise and image-wise classification with larger feature
spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided
promising results over the 2D convolutional neural network (2D-CNN) in learning features from
hyperspectral data cubes with a limited number of samples.

Keywords: plant disease; spectral statistics; machine learning; 2D-CNN; 3D-CNN; grapevine vein-
clearing virus (GVCV)

1. Introduction

Climate change, unpredictable precipitation patterns, and temperature variability
are creating an optimal environment for virus breeding, survival, and transmission [1].
In this respect, reliable and accurate identification of plant disease at an early stage is
necessary to address the current challenge in agriculture. The existing in situ measures
conventionally consist of a processing chain, relying on visual inspections of the crop in
the field for signs that are already clearly visible, followed by intensive diagnostic tests in
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laboratories. Plant reactions to and manifestations of the incidence of pest and disease are
heterogeneous in the field [2], usually starting in a small region of foliage and spreading
out to the whole field. Manual detection methods are, thus, time-consuming, demanding,
and not ideal for large-scale and early intervention. Innovative farming methods with
precision approaches would close the gap by identifying previsual indicators and affected
areas, thereby preventing the disease from spreading.

Grapevine vein-clearing virus (GVCV) was recently discovered as the first DNA virus
in grapevines. It is a new species in the Badnavirus genus of the Calimorividae family. GVCV-
associated disease is considered a great threat to the sustainable growth and productivity of
grapevines in the Midwest region of the U.S.A. [3]. Diagnostic symptoms can be observed
on new shoots, whose margins become split and crinkled. The major and minor veins of the
leaves look translucent and zig-zag internodes appear and become discernable. Infectious
leaves are frequently misshaped and smaller, resulting in reduced vine size and a less dense
canopy than in healthy vines. Severely affected vines have reduced cluster sizes, irregular
shapes, and abnormal berry texture. Several common cultivars susceptible to GVCV are
Chardonnay, Chardonel, and Vidal Blanc, while Norton and Chanbourcin are resistant and
Vignoles and Traminette are tolerant (i.e., mild symptoms if infected). Polymerase chain
reaction (PCR), which is a molecular test, is the only method that can confirm the incidence
of GVCV on a vine [3].

Among passive remote sensing methods that measure the solar radiation reflected
from objects, hyperspectral imaging (HSI) shows great potential as a noninvasive and
nondestructive tool in monitoring plant biotic and abiotic stress [4]. This method captures
and stores an object’s spectroscopy information in a spectral cube, which contains spatial in-
formation and hundreds of contiguous wavelengths in the third dimension. Hyperspectral
images offer many opportunities for early sensing of plant diseases, providing previsual
indicators via subtle changes in spectral reflectance due to absorption or reflectance. To
the best our knowledge, there have been no studies investigating the defensive reaction of
a grapevine to GVCV, so we assumed that once infected by the virus, the host grapevine
would activate a protection mechanism similar to other species. The affected plant’s bio-
chemical and biophysical properties start changing and produce a spectral signature that
differs from those of healthy plants, which can be remotely sensed by spectral sensors. For
example, in the early stages, visual symptoms are not present on infectious leaves, but
instead a set of physiological variables starts adjusting, including the closure of stomata, a
decrease of transpiration, a reduction of photosynthesis rate, and increases of fluorescence
and heat emission [5]. The thermal properties of affected leaves are abnormally altered,
mainly due to changes of the water content, which can also be detected in the early infec-
tion stages [6,7]. At later stages, the chlorophyll content in the leaves may be reduced by
necrotic or chlorotic lesions and infected spots on the leaves can appear, with browning
effects caused by senescence [8]. Such altered pigments can be recorded in visual (VIS)
and near-infrared (NIR) regions of the spectrum. Structural properties such as the canopy
density and leaf area of the infected plant can be scaled down, which also influence the
NIR regions [9,10].

Intensive research on plant pathology scouting has leveraged hyperspectral imaging
for early identification of pathogens and diseases at varying spatial, spectral, and temporal
scales. Examples include using leaf reflectance to differentiate the signal change caused
by the foliar pathogens in sugar beet [11–13], wheat [14,15], apple [16], barley [17,18],
and tomato [19]. At the field scale, hyperspectral images are useful for early detection of
toxigenic fungi on maize [20], yellow rust on wheat [21], orange rust on sugar cane [22],
and tobacco disease [23]. The success of hyperspectral-based methods can also be seen
in the improved discrimination of highly complex and unique soilborne disease patterns
on sugar beet [24] and the enhanced classification accuracy of powdery mildew infection
levels on wine grapes [25]. With recent developments in unmanned aerial vehicles (UAVs),
airborne images have been utilized for weed monitoring and disease detection [26–29]. In a
more narrow review of precision viticulture, [30] observed the resistance of three grapevine
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cultivars to Plasmopara viticola by using a hyperspectral sensor. Other studies [27,28]
distinguished Flavescence dorée symptoms between two red and white grapevine cultivars,
and their later paper differentiated two diseases, Flavescence dorée and grapevine trunk, in
red vine cultivars. Other diseases were detected early using hyperspectral remote sensing
of different grapevines such as leafroll [31,32], leaf stripe [29], yellowness, and Esca [33]. In
short, applications of hyperspectral imaging technology can be categorized into: (i) early-
stage detection of diseases and symptoms; (ii) differentiation among different diseases; (iii)
separation of disease patterns; and (iv) the quantification of disease severity.

When processing hyperspectral vegetation imagery, one often encounters an imbal-
ance in the limited availability of training samples and the high dimensionality of the
imagery data, which is referred to as the Hughes phenomenon [34]. Different points of
view among the remote sensing community have been proposed to solve the issue. The
dominant approach is to extract only spectral information from each pixel of the image.
This pixel-wise method assumes each pixel is a one-dimensional vector of reflectance
spectra and is correspondingly labeled with the target. This generally entails a data di-
mensionality reduction as a preprocessing technique, followed by primary modeling tasks
(e.g., classification). To reduce spectral data to manageable low-dimensional data, the
most widely used approaches are spectral band selection and data transforms. The former
approach is used to choose a discrete number of key wavelengths at various positions in
the spectrum to calculate representative indices (e.g., vegetation Indices) [21,35,36]. As
the band selection approach preserve as much spectral information as possible, the data
transform approach utilizes a transformation to compact the data into a new optimal size.
Common hyperspectral data extraction techniques applied in pathological studies included
principal component analysis (PCA) [37], derivative analysis [38], wavelet techniques, and
correlation plots [39]. It is noteworthy that the small training sample size available in the
pixel-wise methods can be addressed but the methods concurrently neglect the spatial
information [40].

Alternatively, one can process the hyperspectral imagery data at the image level to
extract either only spatial representation or joint spatial–spectral information. If only spatial
features are considered, for example by studying structural and morphological features, the
spatial patterns among neighboring pixels in relation to the current pixel in a hyperspectral
image will be extracted. Machine vision methods, such as using a 2D convolutional
neural network (CNN) with a patch of p × p pixel data input, have been implemented to
automatically obtain high-level spatial patterns. Extracting spatial features in tandem with
spectral features has been shown to significantly improve model performance. The use of
spatial–spectral features can be achieved through two approaches: (i) by extracting spatial
features separately, for example by using a 1D-CNN or 2D-CNN [41,42] and combining the
data from the spectral extractor, for example using a recurrent neural network (RNN) or
long short-term memory (LSTM) [42,43]; and (ii) by leveraging three-dimensional patches
(p × p × b) associated with p × p spatial neighborhood pixels and b spectral bands to
fully exploit important discriminative patterns in the hyperspectral data cubes. Despite
the advances in 3D-CNN architecture, very few studies have utilized this approach for
hyperspectral sensing in plant disease scouting [44]. The constraints are linked to the
small training set sizes available for hyperspectral image-wise models, whereas deep
learning requires a very large amount of labeled data. In this study, we attempted to use
a 3D-CNN architecture as a feature extractor to take full advantage of the joint spatial–
spectral correlation information, which was then trained using traditional machine learning
methods, with the aim of mitigating the data sample size issue in image-wise classification.

For classification tasks, traditional machine learning algorithms (support vector ma-
chine (SVM) and random forest (RF) classifier [45] algorithms) have received tremendous
attention from remote sensing scholars due to their versatility and the fact that they do not
require any assumptions regarding data distribution [26,46–48]. The SVM algorithm is a
supervised machine learning algorithm in which the objective is to maximize the distance
(margin) between the separating hyperplane (decision boundary) and the training samples
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(support vectors) closest to that hyperplane. The RF classifier is an ensemble method that
combines different classifiers (decision tree in this study) into a meta-classifier that is more
rigorous and is more generalizable compared to individual classifiers alone. With the RF
classifier, the majority or plurality voting principle is used to select the class label that
receives the most votes from individual decision trees. When modeling on small training
samples, traditional machine learning algorithms generally achieve good results, however
when compared to deep learning approaches modeled on larger datasets, the accuracy
may remain unchanged or even decline [49]. For this reason, we customized image-wise
deep learning networks and adopted SVM and RF approaches as classifiers to replace fully
connected layers.

The overall aim of the current research was to investigate the capability of hyper-
spectral imagery for early detection of previsual grapevine vein-clearing virus (GVCV)
infections in Chardonel grapevines. We aimed to address the main objectives as follows:
(1) to discriminate reflectance spectra between healthy and GVCV grapevines at different
stages of infection progression using a statistical test; (2) to perform an exploratory analysis
to identify the importance of disease-centric vegetation indices; (3) to classify healthy and
GVCV grapevines from three approaches, namely vegetation-index-based, pixel-based,
and image-based approaches, using handcrafted and automated deep learning feature
extractors and machine learning methods.

2. Materials and Methods
2.1. Study Area and Data Collection

An experiment was set up outside the University of Missouri South Farm Research
Center, Columbia, MO (38.92 N, −92.28 W) (Figure 1a). As reported by an onsite weather
station (http://agebb.missouri.edu/weather/stations/boone/index.htm), the average
temperature and precipitation were 21.83 ◦C and 2.9 mm, respectively, during the experi-
mentation period in summer 2019 (Figure 1b). Only Chardonel cultivar was selected for the
experiment due to its susceptibility to GVCV. Vines were divided into two groups, namely
the healthy group and the infected group inoculated with GVCV, as other experimental
factors were controlled in similar conditions.
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Figure 1. The experiment site at the University of Missouri South Farm Research Center, Columbia, MO (38.92 N, −92.28 W)
(a). The average temperature and precipitation during the experimentation period in summer 2019 (b). The arrows in (b)
indicate the hyperspectral measuring dates. The SPECIM IQ sensor with a tripod (c). A close-up view of the SPECIM IQ
sensor (d). The sensor produces hyperspectral images measuring 512 × 512 pixels with 204 spectral bands.
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Hyperspectral data for healthy and infected vines were collected at different infection
stages corresponding to August 7th, August 29th, September 19th, and October 8th, as
summarized in Table 1. The first batch of images were acquired as nadir images when
all vines were short enough to be kept in reach of the sensor tripod. Later, lateral image
acquisitions were taken because the vines had already grown and were higher than the
sensor tripod. There were 40 hyperspectral images in total, comprising 20 images of healthy
vines and 20 images of infected vines. The hyperspectral sensor used for data collection
was a SPECIM IQ sensor (Specim, Oulu, Finland), which is a portable and handheld system,
as shown in Figure 1c,d. This camera can provide a measurement pipeline, performing
hyperspectral capturing, data processing, and visualization. The operating hardware for
the SPECIM IQ sensor utilizes push-broom technology. The incoming light passes through
a prism (i.e., a convex grating) and is separated into narrow wavelengths and recorded on
a light-sensitive chip. As its name implies, a push-broom device simultaneously captures
a single spatial line of the image with the entire spectrum, then moves to the next line
(the broom is pushed forwards). The sensor images have a static size of 512 × 512 pixels,
with 204 bands ranging from 397 to 1004 nm, and with a spectral resolution of 3 nm.
According to the manufacturer, the viewable area is 0.55 × 0.55 m, which can produce
a spatial resolution of 1.07 mm within a distance of 1 m from the object. In this study,
we captured images of vines at the canopy-level at a distances of 1–2 m. More technical
specifications for the SPECIM IQ sensor can be found in [17]. As recommended for any
hyperspectral system, we placed a white panel (i.e., Lambertian surface [50]) next to
vines for each hyperspectral image to simultaneously record signatures of grapevines and
document the characteristics of the illumination sources. The transformation from the
digital number (DN) to reflectance is performed automatically based on built-in functions.
SPECIM IQ has three data processing modes on board: the default recording mode (without
any processing), automatic screening mode (single-class classifier), and application mode
(multiple-class classifier). Both the automatic screening and application mode allow users
to perform a classification process on the camera touch screen with a connection to SPECIM
IQ Studio software. We selected the default recording mode to only save hyperspectral
data cubes along with the RGB field of view for our further analysis.

Table 1. Summary of sample size by grapevine health status and measurement dates. GVCV, grapevine vein-clearing virus.

Data Measurement
Time (US Central Time)

Days after
Sowing (DAS)

Number of
Healthy Vines

Number of
GVCV-Infected Vines Total

August 7th 10:30–11:30 30 days 6 4 10
August 29th 14:00–15:00 50 days 4 6 10

September 19th 12:00–13:00 70 days 5 5 10
October 8th 13:30–14:30 90 days 5 5 10

Total 20 20 40

2.2. Methods
2.2.1. Hyperspectral Preprocessing

The overall workflow for our research is graphically summarized in Figure 2. The
data obtained from the SPECIM IQ camera were in the form of radiometrically corrected
hyperspectral images, which were then imported and preliminarily examined on ENVI
software (Harris Geospatial, Boulder, CO, USA). The last band was removed as noise
from the hyperspectral data cubes, leaving 203 spectral bands. The ENVI built-in support
vector machine (SVM) classifier with a radial basis function kernel was used to segment
grapevines from the background. A binary mask layer was created to mask out the
background and soil pixels, leaving only grapevine pixels (Figure 3). The overall accuracy
of the SVM classification ranged from 84.4% to 97.6% across 40 hyperspectral images.
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For training and testing sets, we randomly selected 3 hyperspectral images from
2 classes (healthy and GVCV-infected) from each measuring date (4 dates), which generated
24 images for training and 16 images for testing. For vegetation index VI-based and pixel-
based classification, pure grapevine pixels were extracted (Figure 4) and resampled to
avoid class imbalance. Further, data from all dates were pooled together and named
“combined data” (Figure 4e,j) with the aim of lessening the geometric sensing effects. Due
to computational costs, we only trained the model with 10,000 random pixels from both
classes from 24 training images (spectral signals in Figure 4a–e) and tested it on all pixels
in the 16 testing images (spectral signals in Figure 4f–j).
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2.2.2. Reflectance Spectral Signal Discrimination

To examine the difference between the reflectance spectra of healthy and GVCV-
infected vines, band-by-band independent sample t-tests were employed in each dataset
corresponding to each collection date to explore spectral changes uniquely attributed to
that infection stage and in the combined dataset. Three statistical assumptions of a t-test
were addressed. The first assumption was that the two groups were independent of one
another. The second assumption was that the dependent variable, i.e., the reflectance
values of each band, was normally distributed, which was confirmed by examining the
skewness (symmetry) and kurtosis (peakness) of the distribution. The third assumption
was that the two groups had approximately equal variance for the dependent variable (i.e.,
homogeneity of variance). Levene’s tests [51] produced nonsignificant values for all bands,
and thus pooled or equal variances t-tests were applied, as in Equation (1):

SD2
p =

(n1 − 1)SD2
1 + (n2 − 1)SD2

2
(n1 − 1) + (n2 − 1)

(1)

Equation (1) was substituted into Equation (2) to calculate the t values:

=
M1 − M2

SE(M1− M2)

where SE(M1− M2)
=

√
SD2

p

n1
+

SD2
p

n2
(2)

where M1 is the reflectance mean of band i of healthy vines; M2 is the reflectance mean of
band i of infected vines; n1 is the number of samples from healthy vines; n2 is the number
of samples from infected vines; SD2

p is the pooled variance
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Because we were comparing the difference in the spectral reflectance means of each
band between healthy and infected grapevines, nondirectional hypotheses were denoted:

Null hypothesis Hi0: µi Healthy vine = µi GVCV vine
Alternative hypothesis Hi1: µi Healthy vine 6= µi GVCV vine

2.2.3. Index-Wise Vegetation Classification

From grapevine pixels of hyperspectral images, spectral indices were established
in relation to the state of plant properties based on previous studies in the literature
review section. In Table 2, the indices were partitioned into four categories: (i) pigment,
(ii) structure, (iii) physiology, and (iv) water content. Before modeling the data, a set of
feature engineering techniques was achieved, including binary encoding (0: healthy; 1:
infected), scaling, and feature selection. During the feature selection process, irrelevant or
partially relevant vegetation indices (VIs) were filtered and removed for the purpose of
reducing redundant data and algorithm complexity while improving the model accuracy
and speeding up the training process. The relevance of VIs towards the output was scored
by using random forest feature importance, which is also known as the mean decreased
impurity (MDI) [45]. The scoring mean was then set as a threshold to retain meaningful
VIs. The MDI was selected because of its robustness in avoiding the multicollinearity (high
correlation among features) [35].

Table 2. Extraction of vegetation indices (VIs) from hyperspectral imagery data.

No. Vegetation Index Acronym Equation References

Pigment

1 Anthocyanin (Gitelson) AntGitelson AntGitelson = (1/R550 − 1/R700) × R780 [52]
2 Chlorophyll Index CI CI = (R750 − R705)/(R750 + R705) [53]

3 Optimized Soil-Adjusted Vegetation
Index OSAVI OSAVI = (1 + 0.16) × (R800 −

R670)/(R800 + R670 + 0.16) [54]

4 Red–Green Index RGI RGI = R690/R550 [55]
5 Structure Intensive Pigment Index SIPI SIPI = (R800 − R450)/(R800 + R650) [56]

6 Transformed Chlorophyll Absorption in
Reflectance Index TCARI TCARI = 3 × ((R700 − R670) − 0.2 ×

(R700 − R550) × (R700/R670)) [57]

7 Nitrogen Reflectance Index (NRI) NRI NRI = (R570 − R670)/(R570 + R670) [58]

8 Modified Chlorophyll Absorption in
Reflectance Index mCARI mCARI = 1.2 × (2.5 × (R761 − R651) −

1.3 × (R761 − R581)) [59]

9 Photochemical Reflectance Index PRI PRI = (R531 − R570)/(R531 + R570) [60]

10 Ratio Analysis of Reflectance of Spectral
Chlorophyll a RARSa RARSa = R675/R700 [61]

11 Ratio Analysis of Reflectance of Spectral
Chlorophyll b RARSb RARSb = R675/(R700 × R650) [61]

12 Ratio Analysis of Reflectance of Spectral
Chlorophyll b RARSc RARSc = R760/R500 [61]

13 Pigment-Specific Simple Ratio PSSR PSSR = R800/R680 [62]
14 Plant Senescence Reflectance Index PSRI PSRI = (R660 − R510)/R760 [63]

15 Normalized Chlorophyll Pigment Ratio
Index NCPI NCPI = (R670 − R450)/(R670 + R450) [56]

16 Plant Pigment Ratio PPR PPR = (R550 − R450)/(R550 + R450) [64]

Structure

17 Normalized Difference Vegetation Index NDVI NDVI = (R860 − R670)/(R860 + R670) [65]
18 Greenness Index GI GI = R554/R677 [55]

19 Green NDVI GNDVI GNDVI = (R750 − R540 + R570)/(R750 +
R540 − R570) [66]

20 Simple Ratio SR SR = R900/R680 [67]
21 Red-Edge NDVI RNDVI RNDVI = (R750 − R705)/(R750 + R705) [68]
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Table 2. Cont.

No. Vegetation Index Acronym Equation References

22 Modified Triangular Vegetation Index MTVI MTVI = 1.2 × (1.2 × (R800 − R550) −
2.5 × (R670 − R550)) [59]

23 Triangular Vegetation Index TVI TVI = 0.5 × (120 × (R761 − R581) −
200(R651 − R581)) [69]

Physiology

24 Fluorescence Ratio Index 1 FRI1 FRI1 = R690/R630 [70]
25 Fluorescence Ratio Index 2 FRI2 FRI2 = R750/R800 [71]
26 Fluorescence Ratio Index 3 FRI3 FRI3 = R690/R600 [72]
27 Fluorescence Ratio Index 4 FRI4 FRI4 = R740/R800 [72]
28 Fluorescence Curvature Index FCI FCI = R2

683/(R675×R691) [70]
29 Modified Red-Edge Simple Ratio Index mRESR mRESR = (R750 − R445)/(R705 + R445) [73]
30 Normalized Pheophytization Index NPQI NPQI = (R415 − R435)/(R415 + R435) [74]
31 Red-Edge Vegetation Stress Index 1 RVS1 RVS1 = ((R651 + R750)/2) − R733 [75]
32 Red-Edge Vegetation Stress Index 2 RVS2 RVS2 = ((R651 + R750)/2) − R751 [75]

Water content

33 Water Index WI WI = R900/R970 [76]
34 Water Stress and Canopy Temperature WSCT WSCT = (R970 − R850)/(R970 + R850) [77]

2.2.4. Pixel-Wise Extraction and Feature Reduction

Each pixel contained 203 spectral bands. We used two different feature extraction
techniques to compress and reduce the number of features, while still maintaining most
of the relevant information. Principal component analysis (PCA) and kernel principal
component analysis (Kernel-PCA) were both used as unsupervised data transformations.
PCA can project high-dimensional data to a new subspace with fewer dimensions. PCA
outputs principal components that are orthogonal axes of the new subspace and represent
the directions of maximum variance. While PCA works in tandem with the assumption
of the linear separability of the data, Kernel-PCA, which is an extension of PCA, can deal
with nonlinear problems due to its kernelized function. Three common kernels, namely
polynomial, hyperbolic tangent (sigmoid), and radial basis function (RBF), were used for
hyperparameter tuning and selecting the best model.

2.2.5. Machine Learning Pipeline

A sequential classification pipeline was established to preprocess and classify the
2 classes, beginning with normalizing data from 0 to 1, feature engineering (feature selection
for the VI-based model and feature extraction for the pixel-based model), and the use of 2
competing classifiers (SVM and RF). To enhance the performance in dealing with highly
complex and nonlinear data, SVM can be adjusted with kernels, a cost penalization function
(namely C parameters), and gamma values. Kernel tricks can transform original data into a
higher dimensional feature space where the data become separable. The C variable can
control the penalty for misclassification and the width of the margins, and thus tune the
bias–variance tradeoff. Large C values correspond to large error penalties and are sensitive
to misclassification errors, and vice versa for smaller C values. Gamma values determine
how quickly the class boundaries dissipate as they get further from the support vectors.
In terms of RF, we considered the following hyperparameters: the number of trees in the
forest, the maximum number of features considered to split a node, the maximum number
of levels in each decision tree, the minimum number of data points placed in a node before
the node is split, the minimum number of data points allowed in a leaf node, and whether a
replacement for sampling data points (bootstrap) applied or not. The grid search technique
was added to aid tuning of these hyperparameters in each step in the entire pipeline.



Sensors 2021, 21, 742 10 of 23

The metric to assess the model performance was the accuracy score calculated by
all pixels and images correctly classified (true positive and false negative) over all pixels
and images classified. To evaluate the models, the accuracy scores in the hold-out test
set were compared. It is noteworthy that for the image-wise classification, a test set of
16 hyperspectral images (Figure 3) was withheld separately and independently from the
training and validating process. For vegetation index-wise and pixel-wise classification,
pure pixels from these 16 hyperspectral images (Figure 4f–j shows the hold-out test set).
Further, during the training process, we employed 5-fold cross validation to lessen the
probability of model underfitting and overfitting. The machine learning pipeline was built
and executed on Python 3.8 and Scikit-learn library.

2.2.6. Convolutional Neural Network (CNN) Feature Extractors and
Image-Wise Classification

In the context of imagery data, it usually makes sense to assume the existence of spatial
patterns in which adjacent pixels are more relevant than distant pixels. A convolutional
layer generally performs very well on image-related tasks due to its ability to efficiently
extract spatial–spectral representations of images. The architecture is typically constituted
by several to hundreds of convolutional and pooling (subsampling) layers that are followed
by several fully connected layers at the end. Early convolutional layers serve as feature
extractors that can extract low-level features such as edges and blobs from raw images.
These low-level features are combined together in a layer-wise manner to form high-level
features as complex shapes such as contours. The convolutional layers usually work in
tandem with pooling layers to reduce the network complexity, speed up computation,
and avoid overfitting. For instance, the pooling layer with max operation (max pooling)
reduces the height and width of the activation maps created by the earlier convolutional
layer but retains the depth of the activation maps. Batch normalization layers are frequently
placed between convolutional and pooling blocks. They are added to mitigate unstable
gradient issues in a deep network and to reduce overfitting, respectively. After a series of
convolutional and pooling layers, the three-dimensional activation map passes through
flattening layer and is collapsed down to an array of one-dimensional vectors. Besides
the functionality of the 2D-CNN, a 3D convolutional (3D-CNN) layer can simultaneously
extract features from both spatial and spectral dimensions, thereby effectively capturing
spatial–spectral patterns encoded in multiple adjacent pixels and wavelengths.

Because of the very small sample size of 40 hyperspectral images, we customized the
architecture (Figure 5) by using 2D-CNN and 3D-CNN blocks as automated feature extrac-
tors and by training the reduced features on the machine learning pipeline described above.
The deep learning architecture for the feature extraction was inspired from AlexNet [78] be-
cause of its simplicity and suitability for binary classification problems. Hyperparameters
such as filters, kernel sizes, and pool sizes were fully investigated and selected for both 2D-
and 3D-CNN models for comparison. Specifically, there were 8 convolutional filters in the
first blocks, 16 and 32 in the subsequent blocks, and ending with 64 in the last layer. The
kernel size was 3 × 3 pixels for the 2D-CNN model and 3 × 3 × 3 pixels for 3D-CNN with
a stride of 1. The same size was also set for the max pooling layers.
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(p > 0.3) in both measurements. In the later stage on October 8th (Figure 6d), the VIS and 
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fected values, which was confirmed by a significant t-test in the wavelength range of 449–
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was not statistically significant. When combining datasets across asymptomatic stages 
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diminished and became indistinguishable, especially in NIR wavelengths. The confidence 
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Figure 5. The architecture diagram for the image-wise classification. The original dimensions of the hyperspectral images
were 512 × 512 pixels × 203 spectral bands. The automated feature extraction network used was an architected based on
AlexNet [78], but the hyperparameters filters, kernel sizes, and pool sizes were experimented on in parallel and were kept
the same for both the 2D- and 3D-CNN for a comparison. The 2D-CNN reduced the data cubes to 16 spatial features ×
16 spatial features × 64 convolutional filters, while the 3D-CNN reduced the data cubes to 16 spatial features × 16 spatial
features × 5 spectral features × 64 convolutional filters. Reduced features were flattened and supplied to the RF and SVM
machine learning classification pipelines.

3. Results
3.1. Statistical Analysis used to Discriminate between Spectral Signatures

The spectra separability between healthy and GVCV-infected vines in the early in-
fection stages was examined in Figure 6. In the earliest stage August 7th (Figure 6a), no
difference was found in VIS wavelengths, but differences were found in the region of NIR
wavelengths (800–1000 nm). The reflectance spectra for GVCV-infected vines were higher
than the healthy ones at longer wavelengths. The t-test supported the difference with
statistical significance in the region of 900–940 nm (p < 0.05). On the next measurement
dates (August 29th and September 19th; Figure 6b,c, respectively), the spectra factor for the
GVCV vines was slightly adjusted in the NIR region to be lower than the healthy samples.
This change was small and insignificant, as the statistical evidence produced high p-values
(p > 0.3) in both measurements. In the later stage on October 8th (Figure 6d), the VIS and
red-edge bands (400–700 nm) were found to be most distinctive and separable between
spectral values of healthy and infected vines. The healthy values were lower than the
infected values, which was confirmed by a significant t-test in the wavelength range of
449–461 nm. The pattern for NIR wavelengths (720–920 nm) in this late asymptomatic stage
was identical to the one on August 7th in that the infected signal was higher, although
it was not statistically significant. When combining datasets across asymptomatic stages
(Figure 6e), the discrepancy of the spectra factor for healthy and GVCV grapevines was
diminished and became indistinguishable, especially in NIR wavelengths. The confidence
level was also lowered to 80% (p < 0.2) to statistically validate the discrimination in the
VIS spectra of healthy and GVCV vines. There was a prompt increase in reflectance val-
ues in the range of 925–930 nm, regardless of the dataset. This effect was caused by the
atmospheric and water absorption of those bands in outside measurements under direct
sunlight [17].
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Figure 6. Reflectance spectra signature discrimination for healthy and GVCV-infected vines at the early infection stages.
The 20-day interval hyperspectral measurements of 30 days after sowing (DAS) grapevines occurred on August 7th (a),
August 29th (b), September 19th (c), and October 8th (d) in 2019. Data from all dates were pooled and named the “combined
dataset”, (e) since all measurements were in asymptomatic stages. An independent sample t-test was applied to calculate
p-values (in gray regions) so as to validate the confidence level for the spectral discrimination.

3.2. Index-Wise Classification of Vegetation

Generated from the random forest-based mean decreased impurity (MDI) function,
the feature importance function returned the normalized scores for all 34 vegetation indices
(VIs) and ranked them by their respective ability to classify healthy and GVCV-infected
vines. The MDI technique utilized on August 8th (Figure 7a) suggested two physiology
indices (NPQI and FRI1) and a pigment index (AntGitelson) as the most prominent features.
For the August 29th measurements (Figure 7b), FRI1 became the most important index,
the score for which was far higher than the others. Its importance remained for the next
20 days until September 19th (Figure 7c), in addition to another pigment index, PSRI. On
this date, both water indices WSCT and WI started shifting to within the top five of the
scale. On the last measurement date (Figure 7d), these water indices became the two most
important features in classifying healthy and GVCV vines, whereas FRI1 dissipated. The
feature selection technique for the combined dataset (Figure 7e) showed FRI1, WSCT, and
AntGitelson as the critical indices for classification power. It is worth mentioning that the
sum of all normalized values equals 1.0, and thus if two or more VIs are highly correlated,
one VI may have high values while the information for other VI(s) may not be fully
captured. We set the mean of the scores as a threshold to allow selected features to enter
a machine learning pipeline (Figure 7f) for the classification task. The SVM classified the
target marginally more accurately than RF classifier, which was in turn selected for testing
purposes. In the training process, the 5-fold cross-validation accuracies were as high as
96.75% for SVM classifier for the August 29th data and as low as 82.13% for the RF classifier
for the October 8th data. The accuracy for the test set reached 67.81% for the August 7th
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data and noticeably varied for the next measuring dates. The combined data displayed
better stability between training scores with 85.86% for the RF classifier, 90.24% for the
SVM, and 65.70% for the testing score.
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the training process, 5-fold cross validation accuracies from SVM pipelines (orange bars) were uniformly higher than the
ones from RF pipelines (blue bars), and thus SVM pipelines were selected for testing (green bars).

3.3. Pixel-Wise Classification

From 203 spectral bands of each pixel in the hyperspectral images, these features
were projected to new 2-, 50-, 100-, and 150-feature spaces by using PCA and Kernel-PCA,
and were subsequently supplied to a machine learning pipeline of SVM and RF classifiers
(Figure 8a–e). Regardless of the datasets and classifiers, PCA and larger feature spaces
(50, 100, and 150 features) worked the best and achieved over 95% validation accuracy
compared to Kernel-PCA and 2 features models. RF consistently outperformed SVM for
almost all datasets and feature reduction techniques. The machine learning pipelines
yielded the highest cross-validation accuracy values of 94.70% (50-feature model) for the
August 7th data, 95.30% (50-feature model) for the August 29th data, 91.60% (50-feature
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model) for the September 19th data, 89.70% (100-feature model) for the October 8th data,
and 85.10% (100-feature model) for the combined dataset. These trained pipelines were
thereafter evaluated on the independent test set (Figure 8f), giving accuracy scores of
77.75%, 41.89%, 28.71%, 58.80%, and 73.62% for the August 7th, August 29th, September
19th, October 8th, and combined dataset, respectively.
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Figure 8. Pixel-wise classification performance for different machine learning pipelines and datasets. The 5-fold cross
validation (CV) accuracy was plotted by reducing the number of features for the August 7th (a), August 29th (b), September
19th (c), October 8th (d), and combined dataset (e). The best pipelines were the PCA–random forest pipeline with the
50-feature model (94.70%) for August 7th data, the PCA–random forest pipeline with the 50-feature model (95.30%) for
August 29th data, the PCA–random forest pipeline with the 100-feature model (91.60%) for September 19th data, the
PCA–random forest pipeline with the 100-feature model (89.70%) for October 8th data, and the PCA–random forest pipeline
with the 100-feature model (85.10%) for the combined dataset. These pipelines were selected for evaluation on the test
set (f).

3.4. Automated 2D-CNN and 3D-CNN Feature Extraction and Image-Wise Classification

The 2D convolutional network served as an automated feature extractor to reduce
the high-dimensional hyperspectral images from 512 × 512 pixels × 203 bands (width ×
height × spectral bands) in Figure 3 to a new and much lower dimensional data space of
16 × 16 pixels × 64 filters (width × height × convolutional filters) in Figure 9a. Similarly,
the 3D-CNN feature extractors shrunk the original images to a new dimensional equivalent
to the 2D-CNN’s output with 16 × 16 pixels × 5 bands × 64 filters (width × height ×
spectral bands × convolutional filters) in Figure 9b. The difference between the 2D-CNN
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and 3D-CNN feature extractors was in how the transformation of the spectral features
occurred. With regard to 2D-CNN, the first convolutional layer instantly transformed
all 203 spectral features and a few of the spatial features. By contrast, the 3D-CNN fil-
ters fractionally absorbed the spatial–spectral features on each layer, and as such were
continually processed and reduced to 5 spectral features in the last layer. Further, with
a kernel measuring 3 × 3 pixels, the 2D-CNN blocks transformed features separately in
every spectral band, whereas the 3D-CNN blocks utilized a cube of 3 × 3 × 3 kernels
to transform spatial–spectral features at the same time. The concurrent 3D-CNN trans-
formation allowed it to learn features better from the hyperspectral cubes; however, it
also had more trainable parameters in each block, thus making the whole model more
complex, more time-consuming, and require more computational resources compared to
the 2D-CNN.
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Figure 9. Convolutional filters and feature maps of an automated 2D-CNN feature extractor (a) and 3D-CNN feature
extractor (b) for 24 training HSIs and 16 testing HSIs. From the original dimension 512 × 512 pixels × 203 bands
(width × height × spectral bands), hyperspectral data cubes were reduced to a new and lower-dimensional data space of
16 × 16 pixels × 64 filters (width × height × convolutional filters) by the 2D-CNN feature extractor and 16 × 16 pixels ×
5 bands × 64 filters (width × height × spectral bands × convolutional filters) by 3D-CNN feature extractor. The reduced
spatial features (16 × 16) were plotted against the convolutional filter values (a random selection from 64 units). The
graduated scale represents the convolutional values.
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In the machine learning pipeline training and validation on 24 HSIs, the random
forest classifier produced the best results for both 2D-CNN and 3D-CNN models, with 71%
and 75% accuracy values, respectively, for 5-fold cross validation. Figure 10a,b shows the
classification performances on the test set (n = 16 HSIs) using 2D-CNN and 3D-CNN as
automated feature extractors. The 2D-CNN testing accuracy exactly matched the accuracy
of the 3D-CNN model at 50%. Both performed well on the August 7th data by correctly
classifying 3 out of 4 HSIs, but not performed well on the August 29th data by falsely
claiming 3 out of 4 HSIs. Overall, half of the September 19th and October 8th test images
were correctly identified into their true groups as healthy or GVCV-infected vines.
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Figure 10. Classification performance of 2D-CNN (a) and 3D-CNN (b) models on a hold-out test set (n = 16 HSIs). The
RF approach was the best classifier, with 71% validation accuracy for the 2D-CNN model and 75% validation accuracy
for the 3D-CNN model. Both correctly classified 50% of 16 HSIs in the test set. The image subtitles indicate true and
predicted classes (healthy versus GVCV-infected vines). Green image subtitles indicated a correct classification, while red
subtitles indicated an incorrect classification. The row order corresponds to the measuring dates on August 7th, August
29th, September 19th, and October 8th, 2019.

4. Discussion
4.1. Reflectance Spectra Discrimination Performance

Band-wise differences in the VIS wavelength range (500–620 nm) in the combined
dataset were found at a confidence level of 80% and statistical significance of p < 0.2. When
examined in under temporal conditions, the spectral signals of GVCV vines were more
discriminative at VIS wavelengths (449–461 nm, p < 0.1), starting at the same spectral
value and progressing to significantly higher values than for the healthy group as the
infection severity increased (Figure 6d). This phenomenon happened due to changing
leaf pigment constituents, which dominate the VIS spectral region [79]. This supported
our hypothesis and our previous research [80], stating that the pigment concentrations
of disease vines will reduce, leaves will become less absorbable, and will, thus, reflect
more electromagnetic energy to the sensor. Although reduced leaf pigment was observed,
the vines had not yet displayed chlorosis or yellowing at those stages, as the red-edge
region did not shift to lower wavelengths [73]. Considering the spectral separability in



Sensors 2021, 21, 742 17 of 23

NIR wavelengths, this was noticeably discriminative between healthy and GVCV vines in
the 900–940 nm wavelengths (p < 0.1) in the early infection stage. However, the pattern
vanished in the next spectral measurements and was vaguely detected again in the late
asymptomatic stage. The higher NIR spectra factor in GVCV vines reinforced our prior
assumption of the plants’ physiological changes in relation to a reduction of leaf water
content. Moreover, once leaves were infected, the destruction of cellular structures and the
collapse of cell compactness also partially contributed to higher leaf reflectance spectra
in NIR wavelengths [80]. The flipping issue that meant the NIR region values of GVCV
vines were lower in August 29th and September 9th data might be due to changing the
sensing angle. On August 7th, the vertical (nadir) sensing angle could capture spectroscopy
images of almost all new shoots and young leaves, at which point the GVCV started. From
the horizontal measurements, GVCV-affected shoots and leaves were obscured until the
infectious areas spread across the whole plant in the late stage. The issue of the shooting
angle is also a challenge in UAV-based disease detection, as the lower portion of the canopy
cannot be captured with the nadir sensor angle. This is especially true for diseases such as
the fungus Corynespora cassicola, which starts in the bottom part of a plant [26].

4.2. Interpretation of Feature Importance Analysis

With respect to the importance of the vegetation indices, the random-forest-based
mean decreased impurity (MDI) feature importance was used for exploratory analysis.
Among common disease-centric vegetation indices (VIs), the normalized pheophytization
index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI),
and anthocyanin index (AntGitelson) were identified as the most discriminative indices in
early stages, while the water stress and canopy temperature (WSCT) was identified as
important in later stages. In more detail, the NPQI (values of 415 and 435 nm) was more
sensitive to the chlorophyll degradation into pheophytin [74]. The FR1 (values of 630 nm
and 690 nm) is a chlorophyll fluorescence indicator that is highly associated with the
physiological status of photosystem II and stomatal conductance [70,72]. It is worth noting
that chlorophyll fluorescence is correlated positively with photosynthesis under stress
conditions and negatively under normal status [81]. PSRI is closely related to carotenoid
and mesophyll cell structures [63,82], AntGitelson (values of 550, 700, and 780 nm) is closely
related to anthocyanin [52], and WSCT (values of 850 and 970 nm) is closely related to the
canopy water content and temperature [77]. Previous studies also showed that the NPQI
was important for early detection of Xylella fastidiosa (Xf)-affected olive trees [83], that
FRI1 was important for identification of water-stressed soybean plants [84] and to estimate
grapevine berry yield and quality [36], that PSRI was critically needed to characterize
the spectra of peanut leaf spot disease [85], that AntGitelson was necessary for identifying
tomato spotted wilt virus (TSWV) in capsicum plants [86], and that water-related indices
were essential for more accurate detection of citrus canker disease [26].

Further, in the first measure, the sensor was able to fully and stably capture the
pheophytin, anthocyanin, and chlorophyll fluorescence contents that had been altered
in diseased grapevines, and these images were homogeneous (Figures 3 and 4), which
made them successfully classifiable compared to the healthy ones (Figure 7f). In Figure 7f,
the reason for the unstable and weak inference between training and testing results in
the hyperspectral measurements for August 29th and September 19th data was the wide
variation between FRI1 and PSRI values among images. It is possible that FRI1 chlorophyll
fluorescence heavily relies on the sunlight conditions and the time of the day. One study [87]
found that the magnitude of fluorescence emission and photosynthesis fluctuates the most
in the afternoon, as plants are exposed to high sunlight intensity. On August 29th and
September 19th, we measured the reflectance spectra at 14:00 to 15:00 (Table 1). Regarding
the PSRI variation, horizontally sensing of a plant at the canopy level was only able to
proportionally capture the carotenoid and mesophyll changes in the cell structure and
leaves [82,88], and these proportions remarkably varied from plant to plant. Noticeably, no
structural VI was found to be useful for spectral classification because of the similarity in
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canopy structure and color (i.e., greenness) between healthy and diseased plants in such
asymptomatic periods.

4.3. Comparison of Classification Performances

Comparing the classification success of VI-based and pixel-based classification meth-
ods, they both achieved comparable results. Specifically, the 5-fold cross-validation accura-
cies ranged from 82.13% to 96.75% in the VI-based model (Figure 7f) and from 85.10% to
95.30% in the pixel-based model (Figure 8a–e). Our results also suggested that the support
vector machine (SVM) was more successful with small feature data in the VI-wise classifica-
tion. It indeed worked as well as the random forest (RF) classifier for the smallest 2-feature
model when using pixels for classification. On the other hand, the RF classifier turned out
to be the best classifier for reflectance data that had been orthogonally transformed by PCA
and Kernel-PCA, which comprised a larger feature space. This clearly proved the merit of
the RF classifier in modeling high-dimensional data because it intrinsically works with a
random subset of features instead of all of the features of the model at each splitting point
of an individual tree in the forest, thereby averaging away the feature variance. Numerous
pathological and entomological vegetation studies have reported that SVM succeeded
in modeling f VIs extracted from spectral bands [39,89,90], while at the same time the
modeling performance of for the RF classifier was found to be stable and superlative with
transformed spectral reflectance data [91–93].

It is hard to directly compare the classification success of the VI-based and pixel-based
models to the image-based model because of the different labeled targets. Nonetheless, we
maintained the same training sets, hold-out testing sets, and machine learning pipelines for
all three approaches, which might provide a holistic picture of the classification problem.
With the automated 2D-CNN and 3D-CNN feature extractors, the image-based machine
learning pipeline gained 71% and 75% accuracy for 5-fold cross validation and 50% accuracy
for testing in both networks. As we expected, the primary reason was the limitation of the
small sample size (40 images) in the image-wise classification. Alternatively, whereas both
VI-based and pixel-based methods mostly considered spectral features, the image-based
simultaneously extracted joint spatial–spectral features. The spatial features could have
been a source of noise, considering the highly fragmented portions of grapevines extracted
instead of whole plants in each image (Figure 3). The foregoing feature importance analysis
also indicated the usefulness of the plant structure and morphology for this classification
task. All three approaches persistently classified August 29th and September 9th imagery
data with limited success. It was clear that the high variation in these canopy-level datasets
was caused by failure to fully capture physiological changes in leaf cells and to receive
additional neighborhood electromagnetic scattering data.

5. Conclusions

A reliable, accurate, and nondestructive measure is critical for early identification of
disease incidence in crops, thereby allowing timely intervention to prevent diseases from
spreading to entire fields. This study investigated the feasibility of using hyperspectral
remote sensing imagery as a nondestructive method to identify grapevines inoculated with
grapevine vein-clearing virus (GVCV) in the early asymptomatic stages. With all things
considered, the major conclusions included:

1. Reflectance spectra revealed useful information that was used to identify a set of
optimal wavelengths to discriminate GVCV-affected vines from healthy vines in the
asymptomatic stage. The discriminative wavelength regions included 900–940 nm
in the NIR region in vines inoculated 30 DAS, 449–461 nm in the VIS region in
vines inoculated 90 DAS, and in the entire VIS region of 400–700 nm when a lower
confidence value of 90% was accepted (p-value of 0.1);

2. The exploratory analysis showed the importance of vegetation indices (VIs) associated
with pigment, physiological, and canopy water changes. In earlier stages of GVCV
infection, NPQI, FRI1, PSRI, and AntGitelson were the most discriminative indices,
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however in the later stages WSCT was found to be important in identifying the viral
disease. Correspondingly, the above indices reflected changes in the chlorophyll
degradation into pheophytin, the chlorophyll fluorescence, carotenoid and meso-
phyll cell structures, anthocyanin levels, and canopy water and temperature statuses.
Further consideration of the intensity of light illumination, sensing geometries, and
measuring time must occur in order to draw conclusions regarding FRI1 and PSRI
indices. Neither canopy structure nor greenness VIs were important in identifying
GVCV disease in asymptomatic stages;

3. The classification performances of the VI-based and pixel-based models were com-
parable across datasets. The SVM was found to be effective in VI-wise classification
with smaller feature spaces, while the RF classifier performed better in pixel-wise
and image-wise classification with larger feature spaces. All classification methods
were the most accurate with grapevines 30 and 90 DAS and had limited success with
grapevines 50 and 70 DAS;

4. When modeling at the image level, the automated 3D-CNN feature extractor pro-
vided promising results over the 2D-CNN extractor in terms of feature learning from
hyperspectral data cubes with a limited number of samples.

The findings of this study can aid viticulture farmers, wine manufacturers, and
pathology and entomology scientists in early identification of the first DNA viral disease
(GVCV) in grapevines in a nondestructive and efficient fashion. In addition, this study
demonstrates potential frameworks for processing and modeling hyperspectral imagery
data when considering only spectral features, only spatial features, and joint spatial–
spectral features. The advantages of deep learning techniques were leveraged in the
processing of digital images, combined with the versatility of traditional machine learning
in working with a limited sample size.
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