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Abstract 

Background: Paclitaxel is a well-known chemotherapeutic agent widely applied as a therapy for various types 
of cancers. In vitro culture of Corylus avellana has been named as a promising and low-cost strategy for paclitaxel 
production. Fungal elicitors have been reported as an impressive strategy for improving paclitaxel biosynthesis in 
cell suspension culture (CSC) of C. avellana. The objectives of this research were to forecast and optimize growth and 
paclitaxel biosynthesis based on four input variables including cell extract (CE) and culture filtrate (CF) concentration 
levels, elicitor adding day and CSC harvesting time in C. avellana cell culture, as a case study, using general regression 
neural network-fruit fly optimization algorithm (GRNN-FOA) via data mining approach for the first time.

Results: GRNN-FOA models (0.88–0.97) showed the superior prediction performances as compared to regression 
models (0.57–0.86). Comparative analysis of multilayer perceptron-genetic algorithm (MLP-GA) and GRNN-FOA 
showed very slight difference between two models for dry weight (DW), intracellular and extracellular paclitaxel in 
testing subset, the unseen data. However, MLP-GA was slightly more accurate as compared to GRNN-FOA for total 
paclitaxel and extracellular paclitaxel portion in testing subset. The slight difference was observed in maximum 
growth and paclitaxel biosynthesis optimized by FOA and GA. The optimization analysis using FOA on developed 
GRNN-FOA models showed that optimal CE [4.29% (v/v)] and CF [5.38% (v/v)] concentration levels, elicitor adding day 
(17) and harvesting time (88 h and 19 min) can lead to highest paclitaxel biosynthesis (372.89 µg l−1).

Conclusions: Great accordance between the predicted and observed values of DW, intracellular, extracellular and 
total yield of paclitaxel, and also extracellular paclitaxel portion support excellent performance of developed GRNN-
FOA models. Overall, GRNN-FOA as new mathematical tool may pave the way for forecasting and optimizing second-
ary metabolite production in plant in vitro culture.
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Background
Paclitaxel as a microtubule-stabilizing agent is widely 
used for the treatment of a vast range of cancers [1]. This 
natural source diterpene alkaloid, paclitaxel, is the most 
prosperous anticancer drug owing to its unique action 
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mechanism [2]. Paclitaxel arrests the disassembly of the 
microtubule, and in this unique way inhibits mitosis and 
proliferation of cancerous cells [3, 4].

In vitro culture of hazel (Corylus avellana) has been 
named as a promising and low-cost strategy for pacli-
taxel production [5–13]. The advantages of paclitaxel 
production through C. avellana cell culture are that the 
establishment of its in  vitro culture is more straightfor-
ward than that of Taxus [6–12], and also the response of 
hazel to genetic manipulation through Agrobacterium is 
likely more hopeful as compared to that of Taxus since C. 
avellana is a dicotyledonous plant [14]. Obtaining high-
producing cell cultures is essential for producing sec-
ondary metabolites by way of plant in vitro culture [15]. 
Biosynthesizing bioactive compounds in plants are influ-
enced by various factors [6–8, 16–19]. Fungal elicitors 
including cell extract (CE) and culture filtrate (CF) have 
been described as an impressive strategy for improving 
paclitaxel biosynthesis in cell suspension culture (CSC) 
of C. avellana [6, 7, 10–13]. Fungal elicitor type, concen-
tration level and adding time as well as exposure time of 
cell culture to it (harvesting time) should be optimized to 
achieve the highest biosynthesis of paclitaxel in C. avel-
lana CSC [6, 7, 10–13]. Precise analysis of the effects of 
these factors and their optimal selection would be a step 
forward to commercialize the bioprocess of C. avellana 
cells for paclitaxel mass production. Paclitaxel biosynthe-
sis and its elicitation are the complex biological processes 
because they are influenced by multiple factors and their 
nonlinear interactions. Optimizing these mentioned 
factors by performing experiment is laborious, costly 
and time-consuming. Robust nonlinear computational 
methods can effectively predict the optimized condi-
tions for multifactorial process [20, 21] such as paclitaxel 
biosynthesis.

Traditional modeling and forecasting methods includ-
ing regression models display insignificant non-linear 
predictive and fitting ability [7, 12, 13]. Artificial intelli-
gence (AI) is applied to address matters that cannot be 
clarified by traditional computational methods. Artificial 
neural networks (ANNs) are one of the main parts of AI 
discovering complex nonlinear relationships amongst 
input and output data [7, 13, 24–30]. Indeed, ANNs are 
brain-inspired systems that emulate human brain capa-
bility of sensing and thinking, in a simplified way, to 
processes information and identify patterns [31]. ANNs 
obtain their intelligence by discovering the relationships 
and patterns in data, and learn using experience [31].

General regression neural network (GRNN) developed 
by Specht [32] is a kind of radial basis function (RBF) 
networks, and one of the most popular neural networks. 
GRNN as a powerful regression method with a dynamic 
network structure can successfully solve problems with 

extremely difficult and unknown solution in various fields 
[33–39]. GRNN displays strong non-linear mapping 
capability, high fault tolerance, high robustness in the 
solution of complex problems, very fast network training 
speed, ease of implementation and simplicity of network 
structure [32, 40]. It is highly regretful that GRNN has 
not been used to model secondary metabolite biosynthe-
sis in plant in vitro culture.

Smoothing (spread) parameter (σ) in GRNN architec-
ture has an important effect on predicting performance 
[41]. Indeed, the generalization capability of GRNN 
model depends on smoothing parameter. Intelligent opti-
mization algorithms including fruit fly optimization algo-
rithm (FOA) [42] was applied to determine parameters 
for predicting models.

Fruit Fly optimization algorithm or fly optimization 
algorithm (FOA) presented by Pan [43] is a new evolu-
tionary optimization algorithm inspired from food find-
ing behavior of fruit fly. The advantages of FOA are easy 
computational process, relatively simple and short pro-
gram code and ease of understanding. So, this research 
attempted to apply FOA to automatically determine 
smoothing factor value of GRNN for enhancing predict-
ing accuracy, and also optimize factors “CE and CF con-
centration levels, adding day of fungal elicitor and CSC 
harvesting time” for maximum paclitaxel biosynthesis 
and secretion in C. avellana cell culture treated with fun-
gal elicitors.

Results
General regression neural network‑fruit fly optimization 
analysis
Firstly, CE and CF concentration levels, elicitor adding 
day and CSC harvesting day were considered as input 
variables, and dry weight (DW), intracellular (µg  g−1 
DW), intracellular (µg  l−1), extracellular and total yield 
of paclitaxel, and also extracellular paclitaxel portion as 
output variables. Afterwards, output variables were fore-
tasted using developed GRNN-FOA models. The perfor-
mance of developed GRNN-FOA models were evaluated 
by plotting the predicted values against the observed val-
ues of training (Fig. 1) and testing (Fig. 2) subsets. Great 
accordance between the predicted and observed values 
of DW, intracellular (µg  g−1 DW), intracellular (µg  l−1), 
extracellular and total yield of paclitaxel, and also extra-
cellular paclitaxel portion was observed for both training 
and testing subset (Figs.  1, 2). Goodness-of-fit of devel-
oped GRNN-FOA models showed that they could accu-
rately  (R2 = 0.88, 0.90, 0.91, 0.90, 90 and 0.88) (Table  1) 
foretaste DW, intracellular (µg  g−1 DW), intracellu-
lar (µg  l−1), extracellular and total yield of paclitaxel as 
well as extracellular paclitaxel portion of testing subset, 
respectively, not used during training processes (Fig. 2).  
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Sensitivity analysis of models
To rank input variables based on their relative impor-
tance in the model, variable sensitivity ratios (VSRs) were 

estimated using entire data lines (training and testing 
subsets). VSRs were obtained for each output variables 
(DW, intracellular (µg  g−1 DW), intracellular (µg  l−1), 

Fig. 1 Scatter plot of actual data against predicted values of dry weight, intracellular (µg  g−1DW), intracellular (µg  l−1), extracellular and total yield 
of paclitaxel, and extracellular paclitaxel portion in Corylus avellana cell cultures using general regression neural network-fruit fly optimization 
algorithm (GRNN-FOA) models in training subset. The solid line shows fitted simple regression line on scatter points

Fig. 2 Scatter plot of actual data against predicted values of dry weight, intracellular (µg  g−1DW), intracellular (µg  l−1), extracellular and total 
yield of paclitaxel and extracellular paclitaxel portion in Corylus avellana cell cultures using general regression neural network-fruit fly optimization 
algorithm (GRNN-FOA) models in testing subset. The solid line shows fitted simple regression line on scatter points
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extracellular and total yield of paclitaxel, and also extra-
cellular paclitaxel portion) regarding CE and CF con-
centration levels, elicitor adding day and CSC harvesting 

time (Table 2). Analysis of DW model indicated that DW 
of C. avellana cells was more sensitive to CSC harvest-
ing time (VSR = 1.002), followed by elicitor adding day 

Table 1 Statistics and  information on  general regression neural network-fruit fly optimization algorithm (GRNN-FOA) 
models for growth, paclitaxel biosynthesis and secretion in Corylus avellana cell culture

R2 coefficient of determination, RMSE root mean square error, MBE mean bias error

Measured factors Training subsets Test subsets

R2 RMSE MBE R2 RMSE MBE

Dry weight (g  l−1) 0.92 0.48 − 0.26 × 10–15 0.88 0.81 0.03

Intracellular paclitaxel (µg  l−1) 0.96 7.38 − 2.22 × 10–15 0.90 10.99 0.65

Intracellular paclitaxel (µg  g−1DW) 0.93 0.93 − 0.19 × 10–15 0.91 1.37 0.01

Extracellular paclitaxel (µg  l−1) 0.97 4.43 − 0.47 × 10–15 0.90 6.93 − 0.09

Total yield of paclitaxel (µg  l−1) 0.97 11.31 − 3.84 × 10–15 0.90 16.93 0.55

Extracellular paclitaxel portion (%) 0.95 1.46 − 0.76 × 10–15 0.88 2.88 − 0.23

Table 2 Importance (according to the sensitivity analysis) and optimal levels of the different factors including cell extract 
(CE), culture filtrate (CF) concentration levels [% (v/v)], fungal elicitor adding day and harvesting time (day) for achieving 
maximum growth, paclitaxel biosynthesis and its secretion in Corylus avellana cell culture by the optimization analysis 
using FOA and  genetic algorithm (GA) on  developed general regression neural network-fruit fly optimization (GRNN-
FOA) models

a Relative indication of the ratio between the variable sensitivity error and the error of the model when all variables are available

Criteria Variable Importance value 
(according to  VSRa)

Optimal level Output optimal

FOA GA FOA GA

Dry weight (g  l−1) CE concentration level 0.0068 4.26 5.34 12.57 12.18

CF concentration level 0.0053 0.54 0.71

Adding day 0.0237 16.33 15.62

Harvest time 1.0022 20.58 20.86

Intracellular paclitaxel (µg  g−1DW) CE concentration level 0.8904 4.12 3.45 19.26 18.53

CF concentration level 0.6751 5.84 5.68

Adding day 0.4257 15.72 16.97

Harvest time 0.2443 20.34 20.41

Intracellular paclitaxel (µg  l−1) CE concentration level 0.7458 4.43 5.07 224.78 213.78

CF concentration level 0.4406 5.69 5.46

Adding day 0.4083 16.09 16.79

Harvest time 0.3961 20.47 21.09

Extracellular paclitaxel (µg  l−1) CE concentration level 0.2862 4.58 4.73 152.15 141.11

CF concentration level 0.7519 4.71 5.06

Adding day 0.1893 15.91 16.19

Harvest time 0.9477 22.06 22.86

Total yield of paclitaxel (µg  l−1) CE concentration level 0.6891 4.29 4.97 372.89 369.04

CF concentration level 0.6043 5.38 5.01

Adding day 0.0943 17.00 16.53

Harvest time 0.2018 20.68 20.16

Extracellular paclitaxel portion (%) CE concentration level 0.1003 4.62 5.06 50.36 49.63

CF concentration level 0.0622 4.91 4.97

Adding day 0.1409 16.59 17.03

Harvest time 0.4224 22.66 21.98
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(VSR = 0.024), CE concentration level (VSR = 0.007) 
and CF concentration level (VSR = 0.005). Intracellu-
lar paclitaxel (µg g−1 DW) displayed more sensitivity to 
CE concentration level (VSR = 0.890), followed by CF 
concentration level (VSR = 0.675), elicitor adding day 
(VSR = 0.426) and CSC harvesting time (VSR = 0.244). 
Intracellular paclitaxel (µg  l−1) exhibited more sensitiv-
ity to CE concentration level (VSR = 0.746), followed by 
CF concentration level (VSR = 0.441), elicitor adding day 
(VSR = 0.408) and CSC harvesting time (VSR = 0.396). 
Extracellular paclitaxel showed more sensitivity to CSC 
harvesting day (VSR = 0.948), followed by CF con-
centration level (VSR = 0.752), CE concentration level 
(VSR = 0.286) and elicitor adding day (VSR = 0.189). 
Accordingly, total yield of paclitaxel exhibited more sen-
sitivity to CE concentration level (VSR = 0.689), followed 
by CF concentration level (VSR = 0.604), CSC harvesting 
time (VSR = 0.202) and elicitor adding day (VSR = 0.094). 
Also, extracellular paclitaxel portion displayed more 
sensitivity to CSC harvesting time (VSR = 0.422), fol-
lowed by elicitor adding day (VSR = 0.141), CE concen-
tration level (VSR = 0.100) and CF concentration level 
(VSR = 0.062) (Table 2).

Model optimization
The optimization analysis on developed GRNN-FOA 
models was performed using fruit fly optimization algo-
rithm to determine optimal levels of input variables for 
achieving maximum growth, paclitaxel biosynthesis and 
its secretion in C. avellana CSCs (Table 2). The optimi-
zation results showed that adding 4.8% (v/v) of CE:CF 
(89:11) containing 4.26% (v/v) CE and 0.54% (v/v) CF on 
16th day, and harvesting CSC 102 h after elicitation could 
result in the maximum DW (12.57  g  l−1) (Table  2). The 
highest content of intracellular paclitaxel (19.26  µg  g−1 
DW) may produce by adding 9.96% (V/V) of CE:CF 
(41:59) containing 4.12% (v/v) CE and 5.84% (v/v) CF 
on  16th day, and harvesting CSC 110 h and 53 min after 
elicitation (Table  2). C. avellana cell culture exposed 
with 10.12% (v/v) of CE:CF (44:56) containing 4.43% 
(v/v) CE and 5.69% (v/v) CF  on 16th day, and harvest-
ing it 105  h and 7  min after elicitation may obtain the 
highest intracellular paclitaxel (224.78  µg  l−1). Also, the 
results showed that the highest extracellular paclitaxel 
(152.15 µg l−1) can be produced by adding 9.29% (v/v) of 
CE:CF (49:51) containing 4.58% (v/v) CE and 4.71% (v/v) 
CF on 16th day, and harvesting CSC 147  h and 36  min 
after elicitation (Table 2). Additionally, CSC exposed with 
9.67% (v/v) of CE:CF (44:56) containing 4.29% (v/v) CE 
and 5.38% (v/v)  CF on 17th day, and harvesting it 88  h 
and 19 min after elicitation may obtain the highest total 
yield of paclitaxel (372.89 µg l−1) (Table 2). The results of 
GRNN-FOA model optimization displayed that adding 

9.53% (v/v) of CE:CF (48:52) containing 4.62% (v/v) CE 
and 4.91% (v/v) CF on  17th day, and harvesting CSC 145 h 
and 41 min after elicitation may lead to the highest extra-
cellular paclitaxel portion (50.36) (Table 2).

GRNN-FOA was also linked to genetic algorithm 
(GA) to determine the optimal level of input variables 
for achieving maximum growth, paclitaxel biosynthe-
sis and its secretion in C. avellana CSCs (Table  2). The 
optimization results of paclitaxel biosynthesis in GRNN-
FOA model using GA showed that adding 6.05% (v/v) 
of CE:CF (88:12) containing 5.34% (v/v) CE and 0.71% 
(v/v) CF on 16th day, and harvesting CSC 125  h and 
46 min after elicitation could result in the maximum DW 
(12.18  g  l−1) (Table  2). Also, optimization results indi-
cated that intracellular paclitaxel (18.53 µg g−1 DW) may 
produce by adding 9.13% (V/V) of CE:CF (38:62) con-
taining 3.45% (v/v) CE and 5.68% (v/v) CF on 17th day, 
and harvesting CSC 82 h and 34 min after elicitation. C. 
avellana cell culture exposed with 10.53% (v/v) of CE:CF 
(48:52) containing 5.07% (v/v) CE and 5.46% (v/v) CF on 
17th day, and harvesting it 103 h and 12 min after elicita-
tion may obtain the highest total intracellular paclitaxel 
(213.78 µg l−1). Additionally, the results showed that the 
highest extracellular paclitaxel (141.11  µg  l−1) can be 
produced by adding 9.79% (v/v) of CE:CF (48:52) con-
taining 4.73% (v/v) CE and 5.06% (v/v) CF on 16th day, 
and harvesting CSC 160  h and 6  min after elicitation 
(Table  2). Also, cell culture exposed with 9.98% (v/v) of 
CE:CF (50:50) containing 4.97% (v/v) CE and 5.01% (v/v) 
CF  on 17th day, and harvesting it 87  h and 7  min after 
elicitation may obtain the highest total yield of pacli-
taxel (369.04 µg l−1) (Table 2). The results of optimizing 
GRNN-FOA model using GA showed that adding 10.03% 
(v/v) of CE:CF (50:50) containing 5.06% (v/v) CE and 
4.97% (v/v) CF on 17th day, and harvesting CSC 118  h 
and 48 min after elicitation may lead to the highest extra-
cellular paclitaxel portion (49.63) (Table 2).

Validation experiment
C. avellana cell culture exposed to 4.29% (v/v) CE 
and 5.38% (v/v) CF on 17th day, and harvesting it 88  h 
after elicitation (optimized input variables in GRNN-
FOA model using FOA) produced 348.65 ± 36.8  µg  l−1 
paclitaxel.

Discussion
Paclitaxel biosynthesis in C. avellana CSC treated with 
fungal elicitors is affected by the type, concentration level 
and adding day of fungal elicitors and also CSC harvest-
ing time [6, 7, 10–13]. Forecasting the optimized value of 
these mentioned factors is highly promising and essential 
for paclitaxel biosynthesis improvement. However, the 
optimization of these factors by experimental studies is 
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laborious, time-consuming, and costly. Paclitaxel biosyn-
thesis is considered as complex biological process since it 
is affected by multiple factors in nonlinear ways [7, 13]. 
Therefore, the conventional computational methods are 
inefficient for modeling paclitaxel biosynthesis [7, 12, 
13]. Some machine learning algorithms such as multi-
layer perceptron [13], genetic algorithm [7, 13], adaptive 
neuro-fuzzy inference system [13] have been successfully 
used for forecasting and optimizing paclitaxel biosyn-
thesis. This is the first study for forecasting the optimal 
conditions for maximum paclitaxel biosynthesis in C. 
avellana CSC exposed to fungal elicitors using GRNN-
FOA model. To accurately forecast the optimized values 
of effective factors (CE and CF concentration levels, elici-
tor adding day and CSC harvesting time) on paclitaxel 
biosynthesis in C. avellana CSC, using a trustworthy 
modeling system is essential.

In this study, GRNN-FOA modeling was used to evalu-
ate the relationships among four studied factors “CE and 
CF concentration levels, elicitor adding time and CSC 
harvesting time” and the parameters “DW, intracellular, 
extracellular and total yield of paclitaxel and extracellular 
paclitaxel portion”, and also the possibility of forecasting 
of paclitaxel biosynthesis by the determined factors. Such 
mathematical predictions using GRNN-FOA model have 
not been described in this area.

Our results suggested that GRNN-FOA models could 
accurately forecast DW, intracellular paclitaxel (µg  g−1 
DW), intracellular paclitaxel (µg l−1), extracellular pacli-
taxel, total yield of paclitaxel and extracellular paclitaxel 
portion  (R2 = 0.88, 0.90, 0.91, 0.90, 0.90 and 88, respec-
tively) in testing subset (Fig.  1), not used in training 
process. Small bias values (Table  2) showed the high 
potential of GRNN-FOA models in forecasting output 
variables.

It is noteworthy that our group was previously used 
multivariate statistical methods including “stepwise 
regression, ordinary least squares regression, principal 
component regression and partial least squares regres-
sion [12]. Goodness-of-fit showed no difference regard-
ing the accuracy of different regression models for all 
output variables, 0.67, 0.57, 0.62, 0.60 and 0.86 for DW, 
intracellular paclitaxel, extracellular paclitaxel, total 
yield of paclitaxel and extracellular paclitaxel portion, 
respectively for training subset [12]. The fit of regres-
sion models was presented by  R2 for testing subset, 
suggesting the best-mentioned regression models can 
explain 67, 62, 68, 65 and 86% of the variability in DW, 
intracellular paclitaxel, extracellular paclitaxel, total 
yield of paclitaxel and paclitaxel extracellular por-
tion, respectively, when they faced unseen data [12]. 
As shown in Table  1, the statistical values for GRNN-
FOA models displayed higher prediction accuracy than 

regression models in previous study [12]. This finding 
was in line with the previous studies [7, 13] showing 
AI technology had the superior performances as com-
pared to conventional modeling methods for forecast-
ing growth and paclitaxel biosynthesis in C. avellana 
cell culture.

Additionally, multilayer perceptron-genetic algorithm 
(MLP-GA) was used to forecast growth and paclitaxel 
biosynthesis in C. avellana CSC treated with fungal 
elicitors [13]. Comparative analysis of MLP-GA [13] 
and GRNN-FOA (Table 1) showed very slight difference 
between two models for DW, intracellular and extracel-
lular paclitaxel in testing subset, the unseen data. How-
ever, MLP-GA was slightly more accurate as compared 
to GRNN-FOA for total paclitaxel and extracellular 
paclitaxel portion in testing subset.  R2 for GRNN-FOA 
(Table  1) vs. MLP-GA [13] were; DW = 0.89 vs. 0.90, 
intracellular paclitaxel = 0.90 vs. 0.89, extracellular 
paclitaxel = 0.90 vs. 0.92, total yield of paclitaxel = 0.90 
vs. 0.95, and extracellular paclitaxel portion = 0.88 vs. 
0.91.

As shown in Fig. 3, residual plots for all the developed 
GRNN-FOA models displayed a high density of points 
close to the origin and a low density of points away from 
the origin, and symmetric shape about the origin. Indeed, 
the residuals appear to behave randomly (normal distri-
bution), it suggests that developed GRNN-FOA models 
for forecasting DW, intracellular paclitaxel (µg g−1 DW), 
intracellular paclitaxel (µg  l−1), extracellular paclitaxel, 
total yield of paclitaxel and extracellular paclitaxel por-
tion fit the data well.

The results of optimization analysis using “GA” and 
“FOA” on developed GRNN-FOA models displayed the 
slight difference in maximum growth and paclitaxel bio-
synthesis optimized by these optimization algorithms.

As previously mentioned, sensitivity analysis displayed 
that CE and CF concentration levels are the most impor-
tant variables affecting total yield of paclitaxel (Table 2). 
Accordingly, CSC harvesting time and CF concentration 
level had the greatest effect on extracellular paclitaxel 
content (Table  2). The increment of paclitaxel secre-
tion from the cells to culture medium decrease toxicity 
and feedback inhibition of paclitaxel [6, 13]. Paclitaxel 
secretion to culture medium undoubtedly makes easy 
extraction and the purification of it which is required for 
steady production of paclitaxel at the commercial level. 
Extracellular paclitaxel content is important for paclitaxel 
biosynthesis in continuous system. Sensitivity analysis 
displayed that CSC harvesting time is the most important 
factors affecting extracellular paclitaxel (Table  2). Pacli-
taxel biosynthesis is the complex biological processes 
which require the accurate techniques for modeling and 
optimization. GRNN-FOA has been efficiently used to 
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solve problems with extremely difficult and unknown 
solution in various fields [40, 44–47].

Based on high forecasting accuracy of training and 
testing subsets (Figs.  1, 2) and also residual analysis 
(Fig. 3), it can be conclude that developed GRNN-FOA 
could precisely forecast DW, paclitaxel biosynthesis 
and secretion in C. avellana CSC. Additionally, the val-
idation experiment revealed that GRNN-FOA hybrid 
method is an efficient method for forecasting and opti-
mizing paclitaxel biosynthesis in C. avellana cell cul-
ture responding fungal elicitors.

In conclusion, this research applied GRNN-FOA for 
forecasting and optimizing paclitaxel biosynthesis in C. 
avellana cell culture treated with fungal elicitors for the 
first time. Great accordance between the predicted and 
observed values of DW, intracellular, extracellular and 
total yield of paclitaxel, and also extracellular paclitaxel 
portion support excellent performance of developed 
GRNN-FOA models. This research introduced GRNN-
FOA as a new mathematical tool for forecasting and 
optimizing the  complex systems including secondary 
metabolite biosynthesis in plant in  vitro culture, pacli-
taxel biosynthesis in C. avellana CSC responding to fun-
gal elicitors as a case study. Overall, GRNN-FOA could 
be useful as a strong method for forecasting and optimiz-
ing in various fields of plant systems.

Methods
Cell suspension culture
C. avellana CSC was established as described by Salehi 
et al. [8–11].

Preparation of elicitors and elicitation experiment
Endophytic fungus applied in this research was a strain 
of Camarosporomyces flavigenus,  HEF17, isolated from 
the leaf of C. avellana grown in Iran [13]. CE and CF 
were prepared as described previously [10]. For elicita-
tion, 1.5 ± 0.1 g of C. avellana cells (fresh mass) was cul-
tured in 100 ml flasks containing 30 ml of Murashige and 
Skoog (MS) medium supplemented with 2 mg l−1 2,4-D 
and 0.2 mg l−1 BAP.

Three concentrations [2.5, 5 and 10% (v/v)] of fungal 
elicitors “CE:CF (100:0, 75:25, 50:50, 25:75, 0:100 v/v)”, 
and also mid (day 13) and late (day 17) log phase of C. 
avellana cell cultures were selected for adding fungal 
elicitors. Control received an equal volume of water (for 
CE)/potato dextrose broth (PDB) (for CF).

Cell growth measurement
Cell dry weight (DW) was measured as cell growth 
[6–13].

Quantification of paclitaxel
The extraction of intracellular and extracellular pacli-
taxel, and also HPLC analysis were performed with a pro-
cedure described by Salehi et al. [8–11].

Experimental design
The experiment was planned based on completely ran-
domized design (CRD) with factorial arrangement, 
three factors containing fungal elicitor type with 10 lev-
els [(CE:CF (100:0, 75:25, 50:50, 25:75, 0:100 v/v) and 
water:PDB (100:0, 75:25, 50:50, 25:75, 0:100 v/v), elicitor 
concentration with three levels (2.5, 5, and 10% (v/v)], 
elicitor adding day with two levels (days 13 and 17), and 
three replicates. The cultures were harvested in two-day 
intervals after elicitation until 23rd day.

Model development
Before testing machine learning algorithm, Box-Cox 
transformation [48] was used for normalizing the data-
sets. Also, principal component analysis (PCA) was 
applied to detect outliers; however, no outlier was 
detected in this case.

Five-fold cross-validation method with ten repetitions 
were used to calculate the prediction accuracy of all the 
tested models. Thus, we found the model with the best 
prediction on unknown data from the entire data set. The 
advantages of K-fold cross-validation are low computa-
tion time, low bias, every data dataset is used for both 
training (k − 1) and testing (1) subset.

General regression neural network (GRNN) model
GRNN modeling was used to define the influences of 
CE and CF concentration levels, elicitor adding day and 
harvesting day on DW, paclitaxel biosynthesis (intracel-
lular, extracellular and total) and extracellular paclitaxel 
portion.

GRNN is established on a standard statistical method 
named Gaussian kernel regression [49]. As shown in 
Fig. 4, GRNN is made up of four layers including input, 
pattern, summation and output layers. Input layer (dis-
tribution unit) stores information as an input vector X, 
and is totally connected to pattern layer. The neurons of 
input layer, input neurons, feed input variables to all neu-
rons on second layer (pattern unit). Pattern layer applies 
a non-linear transformation from input space to pattern 
one. Pattern neurons, the neurons in pattern layer, mem-
orize the relation among input neuron and the proper 
response of pattern layer. Pattern Gaussian function “pi” 
given in Eq.  (1) is applied to compute an output pi by a 
pattern neuron i.
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where X denotes input variable, Xi is a specific training 
vector of pattern neuron i, and σ signifies smoothing 
parameter.

Summation neurons, the neurons in summation layer, 
pass on the outputs of pattern unit to third layer, sum-
mation unit. Third layer has two summations including 
simple summation (Ss) and weighted summation (Sw) 
while Ss (Eq.  2) computes the summation of all pattern 
layer outputs. Sw (Eq. 3) computes weighted sum of pat-
tern layer outputs, where  wi is interconnection weight of 
pattern neuron i to summation layer.

Then, summation layer feed both Ss (numerator) and 
Sw (denominator) to output layer. Output layer computes 
output Y of GRNN model by dividing summation layer 
outputs (Eq. 4).

Smoothing parameter “σ” is only parameter that needs 
to be defined in GRNN model. This research applied fruit 
fly optimization algorithm (FOA) to automatically deter-
mine appropriate smoothing parameter value in GRRN 
model.

Fruit fly optimization algorithm (FOA)
FOA was used (1) to determine appropriate value of 
smooth parameter (σ), and (2) to optimize the values of 
input variables (CE and CF concentration, elicitor elici-
tor adding day and CSC harvesting day) in developed 
GRNN-FOA models for maximum paclitaxel biosynthe-
sis and its secretion.

FOA is a new intelligence method inspired from food 
searching behavior of fruit fly which can find global opti-
mal solution [43]. Food searching process of fruit fly 
includes two steps: (1) fruit fly detects the food location 
using osphresis organ and flies towards it, (2) when fruit fly 
gets close to the food source, the sensitive vision is likewise 
applied for detecting source and fruit flies flocking loca-
tion, and fly towards that direction. Food finding iterative 
behavior of fruit fly group is presented in Fig. 5.

(1)pi = exp

[

−
(x − xi)

T (x − xi)

2σ 2

]

(i = 1, 2, . . . , n),

(2)Ss =
∑

i=1

pi.

(3)Sw =

∑

i=1

wipi.

(4)Y = Ss/Sw .

The procedure of FOA for detecting the optimal values is 
described as follows.

Step 1. Randomly initialize FOA parameters includ-
ing population size (sizepop), maximum iteration number 
(maxgen), location coordinate (LC) (X, Y) of fruit fly group, 
and flight distance range (FDR).

Step 2. Give the random distance and direction (Eq. 5) to 
an individual fruit fly such that they can detect the food by 
osphresis organ.

Step 3. Compute the distance of food location to the ori-
gin (Dist) (Eq. 6), smell concentration judgment value  (Si) 
(Eq. 7), and smell concentration (Smelli) of individual fruit 
fly location by putting smell concentration judgment value 
(Si) into the smell concentration judgment function (fit-
ness function) (Eq. 8). At last, determine the fruit fly with 
highest smell concentration (highest  Smelli value) (Eq.  9) 
among the fruit fly group:

Step 4. Keep the highest smell concentration value 
(Eq.  10), and find fly location coordinate with highest 
smell concentration value (Eq. 11), and at this point, fruit 
fly group flies towards that location using vision. Enter 
iterative optimization until (1) current iteration numbers 
is less than maxgen (2) highest smell concentration is 
superior as compared to previous iterative one.

The optimization procedure for searching appropriate 
value of smoothing parameter in GRNN model, and also 
optimal input variables for maximum paclitaxel biosyn-
thesis through FOA in GRNN-FOA model is presented in 
Fig. 6. Maxgen of 100, sizepop of 10, LC of [0, 1] and FDR 

(5)Xi = X + Random Value,

Yi = Y + Random Value.

(6)Disti =

√

(

X2
i + Y 2

i

)

.

(7)Si = 1/Disti.

(8)Smelli = Function(Si).

(9)[bestSmell bestIndex] = max(Smelli).

(10)Smellbest = bestSmell.

(11)X = X(bestIndex).

Y = Y (bestIndex).
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Training subset

Dry weight (g l-1)

Intracellular Paclitaxel (µg g-1DW)

Intracellular Paclitaxel (µg l-1)

Extracellular Paclitaxel (µg l-1)

Total yield of paclitaxel (µg l-1)

Extracellular paclitaxel
 portion (%)

Testing subset

Fig. 3 Histogram of residuals for general regression neural network-fruit fly optimization algorithm (GRNN-FOA) models developed for forecasting 
dry weight, intracellular (µg  g−1DW), intracellular (µg  l−1), extracellular and total yield of paclitaxel and extracellular paclitaxel portion in Corylus 
avellana cell cultures treated with fungal elicitors
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of [− 10, 10] [40] were set to establish the fittest GRNN 
structure, and also optimize input variables for maximum 
paclitaxel biosynthesis in GRNN-FOA model.

The performance of GRNN-FOA models is determined 
by three statistical criteria including root mean square 
error (RMSE) (Eq.  12), mean bias error (MBE) (Eq.  13) 
and coefficient of determination  (R2) (Eq. 14).

where “yact” are the actual values, “yest” are the predicted 
values, and “n” is the number of data.

Sensitivity analysis of the models
Sensitivity analysis was done on GRNN-FOA models 
to determine the importance degree of the factors (CE 
and CF concentration levels, elicitor adding day and 

(12)RMSE =

√

√

√

√

(

n
∑

i=1

(

yest − yact
)2

)

/n,

(13)MBE = 1/n

n
∑

i=1

(

yest − yact
)

,

(14)

R2
= 1−

(

n
∑

i=1

(

yest − yact
)2
/

n
∑

i=1

(

yact−
−

y

)2
)

, harvesting time) on the model parameters (DW, pacli-
taxel biosynthesis and its secretion). The sensitivity of 
DW, paclitaxel biosynthesis (intracellular, extracellular 
and total yield) and extracellular paclitaxel portion was 
determined by the criteria including variable sensitivity 
error (VSE) value displaying the performance (RMSE) of 
GRNN-FOA model when that particular input variable 
is unavailable from the model. Variable sensitivity ratio 
(VSR) value was calculated as ratio of VSE and GRNN-
FOA model error (RMSE value) when all input variables 
are available. The input variable with higher VSR was 
considered as higher important variable in model [7, 
13, 50–52]. Finally, calculated VSR values were rescaled 
within range [0, 1] to make them more easily comparable.

The mathematical codes for the development and 
evaluation of GRNN-FOA and GRNN-FOA-GA mod-
els were written using MATLAB [53] software, and the 
graphs were made by GraphPad Prism 5 [54] software.

Validation experiment
CE and CF concentration levels, elicitor adding day, and 
harvesting time of CSC optimized by FOA were tested 
to evaluate the efficiency of GRNN-FOA model for fore-
casting and optimizing paclitaxel biosynthesis in C. avel-
lana cell culture responding to fungal elicitors.

p1 p2 p3 pn

x1 x2 x3 xn Input Layer 

Pattern Layer 

Summation Layer 

Output 

Fig. 4 Schematic diagram of general regression neural network 
(GRNN) architecture

Fruit fly group 
, Y

Food 

Dist1 

Fruit fly1 
(X1, Y1) 

S1

Dist2 

Fruit fly 2 
(X2, Y2) 

S2

Dist3 

Fruit fly 3 
(X3, Y3) 

S3

Dist4 
Fruit fly 4 
(X4, Y4) 

S4

Iterative evolution 

Si= 1/Disti

Fig. 5 Food searching iterative process of fruit fly group
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