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Abstract: Over half of older adult falls are caused by tripping. Many of these trips are likely due to
obstacles present on walkways that put older adults or other individuals with low foot clearance
at risk. Yet, Minimum Foot Clearance (MFC) values have not been measured in real-world settings
and existing methods make it difficult to do so. In this paper, we present the Minimum Foot
Clearance Estimation (MFCE) system that includes a device for collecting calibrated video data from
pedestrians on outdoor walkways and a computer vision algorithm for estimating MFC values for
these individuals. This system is designed to be positioned at ground level next to a walkway to
efficiently collect sagittal plane videos of many pedestrians’ feet, which is then processed offline to
obtain MFC estimates. Five-hundred frames of video data collected from 50 different pedestrians was
used to train (370 frames) and test (130 frames) a convolutional neural network. Finally, data from
10 pedestrians was analyzed manually by three raters and compared to the results of the network.
The footwear detection network had an Intersection over Union of 85% and was able to find the
bottom of a segmented shoe with a 3-pixel average error. Root Mean Squared (RMS) errors for the
manual and automated methods for estimating MFC values were 2.32 mm, and 3.70 mm, respectively.
Future work will compare the accuracy of the MFCE system to a gold standard motion capture
system and the system will be used to estimate the distribution of MFC values for the population.

Keywords: computer vision; falls; gait; marker-less gait analysis; minimum foot clearance; motion
capture; trips

1. Introduction

Falls are a major health issue, especially among those who are 65 or older, for whom
falling is the most common reason for non-fatal injuries [1]. Each year, 3 million people in
the United States suffer injuries caused by falls [2]. Twenty percent of these falls lead to
head injuries or fractures that can trigger a sudden downward spiral in health [3,4]. It is
estimated that just over half of falls in older adults are caused by tripping [5] that occurs
when an individual fails to adjust their gait when negotiating obstacles and raised surfaces.

A trip typically occurs during swing phase at or near the Minimum Foot Clearance
(MFC) point if the trajectory of the foot is suddenly interrupted by an obstacle [6]. The MFC
occurs at the point in time when the distance between the lowest point on the shoe and the
ground reaches a local minimum. A trip occurring at this point is likely to lead to a loss
of balance and therefore a subsequent fall [7,8] because the feet are close together and the
base of support is small. Combined with the fact that the foot has a relatively high velocity,
the potential for a trip-related fall is considered to be the highest at MFC [7]. Therefore,
individuals with lower or more variable MFC values are at higher risk of trip-related
falls [9].

Therefore, a better understanding of the distribution of MFC values for the overall
population would allow for safer design of the built environment. Current guidelines vary
considerably from one jurisdiction to the next. For instance, the Americans with Disabilities
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Act (ADA) [10], vertical changes in level on walkways are allowed to be a maximum of
6.4 mm while the city of Toronto [11] allows level changes up to 13 mm. Existing research
demonstrates that 13% of the older adults have MFC values below 6mm and that even
healthy young adults would trip on an unseen 5 mm obstacle 1 in every 95 strides [12].

Conditions such as advanced age, Parkinson’s disease, performing dual tasks, or
simply being fatigued, can cause individuals to have reduced mean MFC mean or increased
MFC variance compared to young healthy individuals.

1.1. MFC Measurement

There is a large body of literature when it comes to the measurement of MFC values
but nearly all perform the measurement in the laboratory and most use optical motion
capture [6]. Optical motion capture systems include a network of infrared video cameras
and reflective markers that are placed on bony landmarks on participants’ feet to be able
to track movement. The processes for both data collection with a motion capture system
(camera calibration, marker placement) and processing (labeling and filling in gaps in
marker trajectories) can be time consuming and the amount of equipment involved makes
it difficult to use these systems outside of the laboratory environment. These challenges
also tend to limit the number of individuals that are able to participate in studies performed
in controlled laboratory environments and make it difficult to establish a population-level
MFC distribution. It is also important to note that MFC values can be overestimated by
6.5–16.2% when measured in the lab compared to real-world settings [13].

Therefore, new methods for efficiently measuring MFC in the real-world from large
numbers of individuals are needed to develop a better understanding of MFC values for
the population.

1.2. Objective

The objective of this work is to present the Proof of Principle for an automated
Minimum Foot Clearance Estimation (MFCE) system for estimating MFC values to address
the limitations of existing MFC estimation methods. The MFCE system was designed to
quickly gather and process MFC estimates for large numbers (thousands) of pedestrians on
outdoor walkways that include level ground as well as obstacles of different sizes. This data
will then be used to create population level distributions of MFC values that we think will
be beneficial for revising standards for the design and maintenance of outdoor walkways.
We describe our data collection and analysis methods (both manual and automated) and
describe the development and evaluation of the automated footwear detection, trajectory
estimation and laser detection subsystems. Finally, we compare the manual and automated
analysis methods and comment on the potential for the system to be used for estimating
the distribution of MFC values for the population.

2. Methods

The MFCE system includes two modules: a data collection module and an automated
data analysis module that processes video data offline. The benefits of this novel system
are that:

1. It can easily collect large amounts of data quickly from many pedestrians
2. The measured MFC values will represent the lowest point of the entire foot
3. The system is marker-less, there is no need for attaching markers to the participants

or control the environment in any way
4. It utilizes a simple and relatively low-cost equipment (consumer grade video camera

and two lasers)
5. The pedestrians are not aware of the device recording them therefore this measure-

ment will not affect their walking performance

The overarching objective of this work is to develop a system to define the population-
level MFC distribution for pedestrians walking over level-ground walkways as well as over
walkways that include a range of imperfections including surface discontinuities, obstacles
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or bumps. The resulting foot clearance distribution data will contribute to developing
evidence-based guidelines for outdoor walkway maintenance and inform other strategies
for minimizing the risk of trip-related falls on outdoor walkways.

2.1. Data Collection Module

The data collection module (Figure 1) consists of a consumer-grade video camera
(Sony FDR AX33) and two calibrated parallel laser beams (Galileo pro, 5 mW, Laserglow
Technologies) positioned within the field of view of the video camera such that they are
projected onto the pedestrian’s lower leg. The videos recorded by the camera are used to
track the foot trajectory of the pedestrian and extract the MFC value. The known distance
between the two laser beams is used to define a scale on the video image so that foot
clearance distances measured in pixels on the video image can be converted to distances
in mm.

Figure 1. This image shows the Minimum Foot Clearance Estimation (MFCE) device. The device
is made of a single video camera and two parallel laser pointers positioned on top of the camera.
This device is meant to be placed on outdoor walkways to gather video of the feet and lower legs of
pedestrians (general public) walking by. The camera is used to gather videos of passerby’s feet to
assess their foot clearance. The parallel lasers have a fixed distance that acts as a reference scale in
the recorded footage.

The device was designed to be positioned at ground level next to a public walkway
to collect sagittal plane video images of pedestrians’ feet and lower legs as they walk
by (Figure 2). Note that the pedestrians were not aware of the fact that they were being
recorded. Therefore, we were unable to present demographic/anthropometric information
or spatiotemporal gait parameters or allow for repeated measures with any given pedes-
trian. To setup the system, the centre of the camera lens is aligned with the ground plane
such that its view is parallel to the ground plane. Furthermore, the lasers are precisely
aligned to be parallel to each other, so that the distance between the two laser-beams re-
mains constant regardless of distance to the system. Figure 3 shows the distance each pixel
represents for subjects located in different distances from the camera. These calculations
assume that the video is recorded in HD resolution (1080 by 1920 pixels). It is apparent that
the further away the subject is from the camera, the less accurate measurements derived
from the image will be. Based on the average width of sidewalks in Toronto, we assumed
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that the pedestrians will be maximum two meters away from the camera. Figure 3 shows
that the accuracy of our system at this distance is 1.59 mm.

Figure 2. This image shows the MFCE device setup on the sidewalk. The device is placed on the
street facing the sidewalk, with the center of the camera aligned to the sidewalk plane. The system
will record passerby gait information and analyze the foot clearance automatically. No additional
set-up is required.

Figure 3. This figure shows how much real-world distance (mm) is represented by each pixel for different camera-to-subject
distances. Note that this is assuming that the camera has HD resolution (which was the case in our data collection). The
accuracy of the measurements rely on how close the subject is to the camera. The farther away the subject, the more potential
error in estimating the distances in the image.

Video was collected using the following camera settings: resolution of 1080 by
1920 pixels, frame rate of 60 p, shutter speed set to 1/10,000 s, and bit rate settings 130 Mb/s.
This study was approved by the University Health Network Research Ethics Board and the
University of Toronto Research Ethics Board.
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2.2. Data Analysis

In this section we present the manual method for estimating MFC values from the
video captured using the Data Collection Module and describe the development of the
automated Data Analysis Module along with our method for comparing the manual and
automated analyses.

2.2.1. Manual Analysis of MFCE Video Data

To manually measure MFC values from MFCE video data, separate video clips were
cropped for each pedestrian (50 frames) and identified the frame(s) where the laser beams
land on their lower leg/foot (Figure 4. These frames were then viewed using MB Ruler,
which allowed extracting precise measurements of the distance between the two lasers
in pixels by zooming in to see individual pixels making up the video images. The pixel-
to-millimeter conversion factor (k) was calculated using Equation (1) where the known
distance between the two parallel laser pointers (164 mm) was divided by the distance in
pixels (x).

k = 164/x. (1)

Figure 4. This image shows an example of a frame where the laser dots are projected onto the
pedestrian’s foot. The laser dots are marked with a green circle. The distance between the center
of these two dots in the picture is equal to the fixed distance between the two laser pointers on
the device.

Next, we measured the distance (in pixels) between the lowest point of the pedestrian’s
footwear and the ground plane for each frame in where the foot was in swing phase.
These distances were plotted for all frames from each pedestrian and the local minima
was extracted. We measured this distance (d) and calculated MFC value as shown in
Equation (2).

MFC = d × k. (2)

2.2.2. Automated Analysis of MFCE Video Data

Automated analysis of MFCE video data requires five steps: selecting the video
frames where each pedestrian is visible, detecting the ground plane, detecting the footwear,
finding the MFC point in the swing foot trajectory, and locating the laser dots in the video
image. In this paper, we describe how we used computer vision and machine learning
techniques to automate three of these steps: footwear detection, estimation of the MFC
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point in the swing foot trajectory, and laser dot location detection. Future work will focus
on automating the remaining two steps: selecting the video frames for each pedestrian,
and ground plane detection.

Footwear Detection. Mask Region-based Convolutional Neural Network (Mask R-
CNN) [14] was used for instance segmentation to locate the location and boundaries of
the shoes. Mask R-CNN expands on the previously known Faster-RCNN [15], which is a
method for finding bounding boxes and adds a layer for finding an exact mask (outline) for
objects present in the input image. A neural network was trained to search for footwear in
MFCE video images and return their locations with pixel-wise accuracy using Matterport’s
implementation of Mask R-CNN [16] with a backbone of ResNet101. Table 1 shows the
configuration of the trained network.

Table 1. Mask-RCNN network configuration.

Parameter Value

GPU count 1
Images per GPU 2
Steps per epoch 1000
Validation step 50
Learning rate 0.001
Weight decay 0.0001

Back bone ResNet101
FPN layers’ size 1024

RPN NMS threshold 0.7
Number of classes 1
Anchors per image 256

Detection minimum confidence 0.7

Our data set consisted of 500 frames taken from 10 video frames from each of 50 pedes-
trians walking through the camera view from three different locations. All three locations
were in the vicinity of Toronto Rehabilitation Institute and were sections of level concrete
sidewalk with not observable discontinuities or obstacles. The three sites were similar in
appearance except that the lighting conditions varied (locations A and B were in shade
while location C was in bright sun). Eighteen pedestrians were captured location A, 19 in
location B and 13 in location C. We included 370 frames from 37 different pedestrians
(locations A and B) to train the network and the remaining 130 frames from 13 pedestrians
(location C) to test the performance of the network. The footwear visible in each frame was
manually traced for each frame as shown in Figure 5.

Figure 5. This image provides an example labeled frame. The two instances of footwear are traced
with a yellow line. The masks are then given to the network as the ground truth.
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Each foot’s distance from the sidewalk was determined for each frame. The foot that
was further from the sidewalk was labelled the swing foot and the other was labelled the
stance foot. In video frames where the two feet were overlapping, the network initially
struggled to find the exact boundaries of the feet. To solve this problem, we used knowledge
of the number of footwear masks found in previously analyzed frames to categorize each
new frame of video into one of four states by following the state diagram shown in Figure 6.
Each frame was categorized as either ‘No one’: no pedestrians in the field of view of the
camera, ‘Begin’: a person has just entered the frame and only foot is visible, ‘Fully visible’:
both feet are visible and distinguishable by the network, and ‘Overlap’: two feet are
overlapping in the sagittal plane and not separable by the network. This categorization
allowed the system to easily identify frames where there were two feet overlapping in an
image which caused an occlusion flag to be raised. When this flag was raised, swing foot
data was retrieved from the previous frame. Then, the current frame was searched to find
the most similar patch to the swing shoe. Then the swing shoe was rotated, and the search
was performed again. We compared the similarity between the bottom edge of the detected
swing shoe with edges present in the overlap frame to find the patch that best aligned with
the bottom of the mask in the search image. The shoe was rotated 20 degrees clockwise and
20 degrees counter-clockwise, in steps of 5 degrees. The patch with the highest similarity
was chosen to show the location of the swing foot in the current frame.

Figure 6. This figure provides the state diagram of the possible states of each frame in the captured
pedestrian videos.

We evaluated the performance of the Footwear Detection System by calculating the
Intersection over Union (IOU) between the detected footwear masks and the ground truth
masks. We also calculated the RMS error between the bottom of the detected footwear
mask and the ground truth masks.

Finding the MFC Point in the Swing Foot Trajectory. To calculate the trajectory, we
needed to first separate individual strides since most pedestrians walked an average of
2.5 strides within the MFCE field of view. To separate strides, we identified the direction
each person was moving based on which side of the video image their shoe was detected
in first. Next, we tracked the position of the center of the swing foot’s mask. The change in
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direction of the swing foot was used to indicate the transition to stance phase indicating
the end of the stride.

Next, the lowest point of the swing foot (foot clearance) was located in each frame
and stored in a vector and a 5th degree polynomial was fit to the set of points making
up a stride. A 5th degree curve was chosen based on previous work that had identified
foot trajectory has three inflection points [17]. Figure 7 shows an example of the trajectory
formed by connecting the lowest point found on the swing foot in stride along with the 5th
degree polynomial fit to those points.

Figure 7. This figure shows the trajectory of the swing foot in one stride; the solid line shows the
trajectory based on the lowest point on the detected swing masks and the dotted line shows the fitted
5th degree curve.

Laser Dot Location Detection. The following assumptions were made about the
characteristics of the lasers in the video images to locate them:

1. The laser dots were among the brightest points in the entire image
2. The two lasers were aligned nearly vertically within the 2D video image
3. The laser points were circular

The lasers were located by thresholding [18] to eliminate the darker pixels in the
images and performing blob detection [18] to find two bright, circular groupings of pixels
vertically aligned in the images. Part of our automated system included a user interaction
to confirm whether the lasers were indeed visible on the pedestrian’s leg in the cases where
the algorithm had failed to locate the two laser dots. This functionality was added to
address the 10% of cases where the algorithm failed to find the laser points in the video
images because the pedestrian was walking fast enough that no video frames included
both lasers were projected onto the pedestrian’s leg/foot. If both lasers were found on the
pedestrian’s legs/feet, the user was asked to right click on the centers of the lasers.

2.3. Comparison of Manual and Automated Methods

To evaluate the performance of the automated system, we compared the RMS errors
of automatic and manual MFC estimates from 10 pedestrians from Site A. The RMS errors
were calculated by comparing to the mean manual measurement in each case.
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Five manual raters (3 female and 2 male, age 28 ± 8 years) were asked to estimate
MFC values from 10 pedestrians recorded with the MFCE system. Each manual rater was
asked to:

1. Locate the laser points: The raters were asked to record the frame number in each
video clip where the laser points were projected onto each pedestrian’s lower leg
or foot and click the centre of each to record their 2D coordinates in pixels using
MB Ruler.

2. Locate the ground plane: The raters were asked to define the ground plane in each
video clip by clicking on two points to record their coordinates.

3. Locate the frame where the MFC occurred and estimate the distance to the ground
plane that was defined previously.

The raters were given two additional video frames for each pedestrian to analyze
to allow for determining the magnitude of each potential source of error present in the
manual analysis. The first was the video frame for each pedestrian was pre-determined to
be the one in which the MFC point occurred and the raters were asked to define the ground
plane and measure the distance between the lowest point of the shoe and the ground.

The second of these two additional frames included the same frame used in the
previous task, but with the ground plane pre-defined as well. This meant raters only
needed to select the lowest point on the pedestrian’s shoe to estimate the MFC values for
each of the 10 pedestrians again.

The results of the manual methods were compared to the results obtained from using
the automated sub-systems to analyze the video data from the same pedestrians. The
videos were manually cropped and the ground plane was manually defined as part of the
automated process.

3. Results and Discussion
3.1. Performance of the Three Automated Subsystems
3.1.1. Footwear Detection

The footwear detection network was found to have an Intersection over Union of
85%. The combined approach consisting of the network and the post-processing occlusion
method to locate the shoes in a stride was able to identify the bottom of the swing shoe with
an average RMS error of 6.8 pixels or 5 mm compared to the manual ground truth masks.

3.1.2. Finding the MFC Point in the Swing Foot Trajectory

The network was able to correctly distinguish between the stance foot and the swing
foot in 100% of the cases of which the two feet were not overlapping in the sagittal plane.
When they are overlapping, the post-processing algorithm is designed to only look for the
swing shoe.

3.1.3. Laser Dot Location Detection

Our algorithm was able to locate the laser pointer dots in each frame in 60% of the
cases initially without the need for user interaction. The use of user input was able to locate
the laser points in the remaining 40% of frames where the laser dots were visible on the
pedestrian’s leg/foot.

3.2. Comparison of Manual and Automated Methods

The Bland-Altman plot in Figure 8 shows the inter-rater agreement for the five raters’
manual MFC estimates from the 10 pedestrians. The overall RMS error of these estimates
was 2.32 mm.
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Figure 8. The Bland-Altman plot showing the inter-rater agreement between the five raters in the
final evaluation.

The automated algorithm was also used with the same 10 pedestrians to see if the
automated measurements’ RMS was comparable to that of the manual method.

Figure 9 shows the mean and standard deviation of manual measurements for each
pedestrian (blue box), as well as marking the value reported by the automated system
for each pedestrian (green cross). The RMS error for the MFC estimates from automated
system was 3.70 mm.

Figure 9. The Manual measurements’ range within one standard deviation of each pedestrian’s
respective mean is shown with the blue boxes and the automatic measurement for each case is
marked by the green x.

The manual evaluation demonstrated that there was a wide variability in MFC esti-
mates for different manual raters. If we eliminate the conversion factor and only compare
the measurements done in pixels, the RMS error from the mean of all manual raters was
2.88 pixels.
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After controlling for the chosen MFC video frame, the average root mean squared
error for different raters dropped to 2.36 pixels (0.5 pixel less than the first step).

After pre-defining the ground plane and pre-determining the MFC frame, the average
RMS error for different raters further dropped to 0.97 pixels (1.11 pixels less than the
second step).

Table 2 shows the manual measurements mean and standard deviation, as well as
RMS errors for the manual and automated measurements for each pedestrian.

Table 2. The manual measurements’ mean and standard deviation and the manual and automatic
measurements’ root mean squared error for Minimum Foot Clearance (MFC) measurement (mm) for
each of the pedestrians.

MFC Values (mm)

1 2 3 4 5 6 7 8 9 10

Manual mean 7.76 16.33 6.04 13.52 1.36 1.79 7.28 8.46 9.89 16.61
Manual STD 0.57 3.19 2.18 1.98 0.77 1.76 6.19 2.28 5.04 2.14

Manual RMS 0.51 2.85 1.95 1.77 0.69 5.54 1.58 2.04 4.34 1.91
Auto RMS 0.56 3.26 0.86 7.23 0.50 5.66 0.67 2.09 11.34 7.40

The results demonstrate that the performance of the automated elements of the MFCE
system are comparable to the manual measurements and are therefore an acceptable
substitute for the analysis of data gathered with the MFCE device. However, there is still
room for improving the performance of the algorithm and the overall performance of
the device.

3.3. Limitations
3.3.1. Systematic Errors

The following are the potential sources of random and systematic error in the MFCE
system. (1) Video camera image resolution: Higher resolution (4K) consumer-grade cam-
eras are available and would increase accuracy of the system. (2) Camera to sidewalk
alignment: If the sidewalk was at an angle relative to the camera, it would become more
difficult to define the ground plane accurately and this variability will result in uncertainty
in the location of the MFC values. (3) Pedestrian route to camera angle: To correctly mea-
sure the MFC using our settings, we assume that the pedestrians are walking in a plane
perpendicular to the camera. However, this is not always the case. (4) Lasers not being
parallel: If the lasers were not parallel, the distance would not stay the same throughout
the depth of the sidewalk location and the measured pixel-to-millimeter scale would be
wrong.

3.3.2. Validation

This system is yet to be validated against the gold standard to evaluate the perfor-
mance. A future study will compare MFC estimates produced by our system and an optical
motion capture system.

3.4. Future Work

Future work will include the use of higher resolution (4K) video recording, automating
video cropping, ground plane detection, and measuring the accuracy of the system by
comparing to a gold standard optical motion capture system. The device will be used to
collect data to gather MFC data from a wide range of public walkways and pedestrians.
Data will be gathered from approximately 1000 members of the public to estimate their
MFC values using walkways that are level, sloped, and locations with existing tripping
hazards of different sizes to determine if and how people adjust their foot clearances. These
findings will be used as the basis for influencing positive changes to minimize outdoor
trips, that is, influencing policy changes for outdoor walkway maintenance. Future work
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will also assess the potential benefits and limitations of using the MFCE system in the
clinical environment, in the home, or in other settings.
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