Skip to main content
. 2021 Feb 2;21(3):994. doi: 10.3390/s21030994

Table 1.

Summary of the VGG16 [30] architecture alongside the resulting feature vector dimension with respect to the intra-layer correlation.

Block Layer (Name) Layer (Type) Kernel Size # Filters Feature Vector Dimension
1 conv1_1 Convolutional 3×3 64 2016
conv1_2 Convolutional 3×3 64 2016
Max_Pooling Pooling - - -
2 conv2_1 Convolutional 3×3 128 8128
conv2_2 Convolutional 3×3 128 8128
Max_Pooling Pooling - - -
3 conv3_1 Convolutional 3×3 256 32,640
conv3_2 Convolutional 3×3 256 32,640
conv3_3 Convolutional 3×3 256 32,640
Max_Pooling Pooling - - -
4 conv4_1 Convolutional 3×3 512 130,816
conv4_2 Convolutional 3×3 512 130,816
conv4_3 Convolutional 3×3 512 130,816
Max_Pooling Pooling - - -
5 conv5_1 Convolutional 3×3 512 130,816
conv5_2 Convolutional 3×3 512 130,816
conv5_3 Convolutional 3×3 512 130,816
Max_Pooling Pooling - - -
6 fc6 Dense
7 fc7 Dense