Table 1.
Block | Layer (Name) | Layer (Type) | Kernel Size | # Filters | Feature Vector Dimension |
---|---|---|---|---|---|
1 | conv1_1 | Convolutional | 64 | 2016 | |
conv1_2 | Convolutional | 64 | 2016 | ||
Max_Pooling | Pooling | - | - | - | |
2 | conv2_1 | Convolutional | 128 | 8128 | |
conv2_2 | Convolutional | 128 | 8128 | ||
Max_Pooling | Pooling | - | - | - | |
3 | conv3_1 | Convolutional | 256 | 32,640 | |
conv3_2 | Convolutional | 256 | 32,640 | ||
conv3_3 | Convolutional | 256 | 32,640 | ||
Max_Pooling | Pooling | - | - | - | |
4 | conv4_1 | Convolutional | 512 | 130,816 | |
conv4_2 | Convolutional | 512 | 130,816 | ||
conv4_3 | Convolutional | 512 | 130,816 | ||
Max_Pooling | Pooling | - | - | - | |
5 | conv5_1 | Convolutional | 512 | 130,816 | |
conv5_2 | Convolutional | 512 | 130,816 | ||
conv5_3 | Convolutional | 512 | 130,816 | ||
Max_Pooling | Pooling | - | - | - | |
6 | fc6 | Dense | |||
7 | fc7 | Dense |