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Abstract: In this study, the physical and electrical characteristics of an AlN/4H-SiC Schottky barrier
diode-based temperature sensor annealed in various gas atmospheres were investigated. An alu-
minum nitride (AlN) thin film was deposited on a 4H-SiC substrate via radio-frequency sputtering
followed by annealing in N2 or O2 gas. The chemical composition of the film was determined by
X-ray photoelectron spectroscopy (XPS) before and after annealing, and its electrical properties were
evaluated by plotting a current–voltage (I–V) curve. The voltage–temperature (V–T) characteristics
of the sensor were extracted from the current–voltage–temperature (I–V–T) plots constructed in the
temperature range between 475 and 300 K in steps of 25 K. Sensitivities of 9.77, 9.37, and 2.16 mV/K
were obtained for the as-grown, N2-annealed, and O2-annealed samples, respectively.

Keywords: AlN; 4H-SiC; temperature sensor; Schottky barrier diodes; XPS

1. Introduction

Silicon carbide (SiC) is a promising next-generation semiconductor composed of silicon
and carbon. It possesses a wide bandgap (3.2 eV), good physical properties, low leakage
current, high thermal conductivity, excellent electron mobility, and high critical electric
field [1]. Thus, SiC can be used in high-temperature and high-power electronic devices as
well as in inverters of electric vehicles and aerospace applications. In addition, SiC exhibits
a high thermal and chemical stability and a small crystal lattice mismatch with aluminum
nitride (AlN), which is another wide bandgap semiconductor of high interest. These
properties make SiC a most suitable substrate material for epitaxially grown AlN films.
AlN is a III–V compound semiconductor with a large bandgap of 6.2 eV, high melting point
of 3200 K, high thermal conductivity of 3.2 W/mK, and high thermal and chemical stability,
similar to those of SiC [2,3]. The wide bandgap of AlN makes it suitable for photoelectric
applications, including deep ultraviolet detectors and various sensors. AlN thin films can
be grown by different methods including molecular beam epitaxy, metal organic chemical
vapor deposition, pulsed laser deposition, and radio-frequency (RF) sputtering [3]. Sputter
deposition enables the growth of large area, highly uniform, inexpensive, and high-quality
AlN thin films at relatively low temperatures in a wide deposition range [4,5]. Meanwhile,
gas annealing is an important process performed during the fabrication of compound
semiconductors, which can increase the AlN crystallinity [6] and reduce the number of
defects. The manufactured SBDs show promise for use in combined sensors for measuring
both temperature and UV-light. Further sensing capabilities are being explored in related
work [7–12]. In this study, Schottky barrier diode (SBD)-based temperature sensor samples
were fabricated by RF sputtering deposition of AlN onto an n-type 4H-SiC substrate.
A number of the samples were subsequently annealed in either a nitrogen or oxygen
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atmosphere after which sensor parameters were investigated to establish the effects of the
applied annealing gas.

2. Materials and Methods

AlN thin films were deposited on n-type 4H-SiC substrates containing n-type epitaxial
4H-SiC layers by RF sputtering of an AlN target (99.9%) in an argon atmosphere (99.999%)
at room temperature. The sputtering power was 160 W, with a gas flow rate of 4.0 sccm, as
maintained by a mass flow controller. The chamber pressure was held at 25 mTorr during
the 5 h deposition process. AlN film thickness was measured using a stylus profiler (SP)
and atomic force microscopy (AFM). According to [13], AFM thickness measurements are
in good agreement with measurements performed by ellipsometry. The resulting 400 nm
thick AlN film samples were annealed at 500 ◦C for 1 h in two different atmospheres
(N2 or O2) using an annealing furnace. Finally, top electrodes of nickel were deposited
on the AlN films to a thickness of 60 nm by means of an e-beam evaporator. Then, the
samples were subjected to rapid thermal annealing at 950 ◦C for 60 s in an N2 atmosphere
to form ohmic contacts. Figure 1 shows the SBD structure of the manufactured devices. The
devices fabricated without annealing or with annealing in either a N2 or O2 atmosphere
are herein named “as-grown”, “N2-annealed”, and “O2-annealed”, respectively. Note
that the current level degradation for all the devices remains within less than 10% of the
initial level after a six-hour long exposure to elevated temperature (675 K). The detailed
results of the comparative stress test study will be discussed elsewhere. The compositions
of their AlN films were determined by X-ray photoelectron spectroscopy (XPS) before
deposition of the top electrodes. Finally, to evaluate the effects of the different annealing
conditions on the temperature sensing properties of the completed devices, their I-V-T
characteristics were measured using a Keithley 4200-SCS (Tektronix, Beaverton, OR 97077,
USA) for temperatures ranging from 300 to 475 K.
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Figure 1. Structure of the fabricated AlN/4H-SiC Schottky barrier diode samples.

3. Results and Discussion

Figure 2a–c show scanning electron microscopy (SEM) images detailing the surface
morphology of the manufactured AlN films. The AlN thin films in Figure 2b,c display
larger average grain size relative to the grain size of the film in Figure 2a.
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Figure 3 shows the O 1s and Al 2p XPS spectra of the AlN films obtained for the
as-grown sample, as well as samples after annealing in either N2 or O2 gas. The Al–OH
and O–Al peaks in the O 1s spectrum of the as-grown sample are centered at 531.78 and
530.88 eV, respectively. After gas annealing, in the N2-annealed sample, Al–OH and O–Al
binding energies shifted to 531.38 eV and 530.56 eV, respectively. Said energies were 0.4 eV
and 0.32 eV lower than those of the as-grown sample, respectively. Furthermore, in the O2-
annealed sample, the Al–OH and O–Al binding energies shifted to 531.33 eV and 530.52 eV,
which in turn were lower compared with the binding energies of the N2-annealed sample.
Additionally, the relative area of the Al–OH peak decreased. The Al–N peak of the Al
2p spectrum was detected at 74.68 eV, and the corresponding Al–O peak was centered
at 73.78 eV. The ratios between these two components determined for the as-grown and
O2-annealed samples were identical, while the relative area of the Al–N peak obtained
for the N2-annealed sample increased to 47.4%. The reason for the higher O 1s binding
energy in the as-grown sample than in the annealed samples was likely to be the result of
chemisorption of oxygen or superficially adsorbed OH species [14]. The observed decrease
in the relative Al–OH peak area after annealing can be attributed to the cleavage of O-H
bonds at high temperatures [15]. Similarly, the decreased Al–O peak area in the Al 2p
spectrum of the N2-annealed sample indicated that N2 gas suppressed the formation of
Al–O bonds and increased the fraction of Al–N bonds during annealing [14].
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Figure 3. The results of XPS analysis of the fabricated AlN films performed before and after annealing;
(a–c) the O 1s peaks of the various AlN films where (a) relates to the as-grown sample, (b) the N2-
annealed sample, and (c) the O2-annealed sample; (d–f) the Al 2p peaks with Al–N and Al–O
sub-peaks of the different samples, with results in (d) for the as-grown sample (e), the N2-annealed
sample, and (f) the O2-annealed sample.

The I–V characteristics of the annealed and non-annealed SBD devices obtained
at room temperature are shown in Figure 4. The as-grown sample shows a current of
4.6 × 10−5 A at a voltage of 5 V. The corresponding current increased to 1.5 × 10−4 A in the
N2-annealed sample, while it decreased to 1.15 × 10−6 A in the O2-annealed sample. The
XPS analysis indicated that the O 1s binding energy was higher in the as-grown sample
than in the annealed samples. As previously mentioned, this is likely to have resulted from
chemisorbed surface oxygen or superficially adsorbed OH species [15]. Consequently, the
improved electrical characteristics of the N2 and O2-annealed samples were attributed to
the decreased charge carrier trap concentration. Meanwhile, the Al–N peak area in the Al
2p spectrum increased after N2 annealing because of the suppression of the Al–O bond
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formation process. Thus, the purity of the N2-annealed sample appears to have increased
as a result of the N2 gas exposure during annealing [16]. At the same time, it increased the
electrical resistance of the AlN layer, thereby reducing its conductivity [17].
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obtained before and after annealing.

The I-V-T graphs obtained for the three studied samples in the temperature range
from 475 to 300 K in steps of 25 K are shown in Figure 5. In these graphs, the turn-on
voltage decreases with increasing temperature. Thermionic emission theory describes
charge carrier activation at low currents and high temperatures [18]. Its governing equation
shows the temperature dependence of the forward voltage:

V = IR +
kTη

q
ln
(

I
AR∗∗T2

)
(1)

where η is the ideality factor, q is the electronic charge, k is Boltzmann’s constant, A is
the contact area, T is the temperature, and R** is Richardson’s constant. Obviously, the
equation was shown to need low voltage in high temperature (Figure 5). The ideality
factors for the as-grown, N2-annealed, and O2-annealed samples are 11.03, 2.79, and 4.65,
respectively at 475K. The Richardson constant for AlN is ≈57.6 A cm−2 K−2 [4]. Rs was
calculated from the I-V-T curve. The obtained values were as follows; as-grown sample:
0.0044 Ω; N2-annealed sample: 0.331 Ω; O2-annealed sample: 0.0187 Ω for 1.75, 1.85, 0.9 V
turn-on voltages at 300 K, respectively. Thus, Rs in the as-grown sample was lower than in
the annealed sample at 300 K. On the other hand, at 475 K, the resistance of the as-grown
sample was 0.015 Ω, while it was 0.2981 Ω in the N2-annealed sample and 0.0005 Ω in the
O2-annealed sample. Consequently, the O2-annealed sample exhibited larger currents at
elevated temperatures than the other samples. High-performance temperature sensors
consume little power and exhibit good linearity and sensitivity [19]. The sensitivities of the
fabricated SBD devices were measured at various forward currents.
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Figure 6 shows the V-T graphs extracted from the respective I-V-T plots at temperatures
between 475 and 300 K and currents between 0.5 and 1 A. In all the V-T graphs, the
temperature increases with decreasing voltage. For the as-grown sample, the peak current
begins to decrease after achieving a maximum sensitivity of 9.77 mV/K at 0.5 µA. In
contrast, the N2-annealed and O2-annealed samples exhibit relatively small sensitivities
at low currents; however, their magnitudes increase to 9.37 and 2.16 mV/K at 1 µA,
respectively. The sensitivity of the sample fabricated by Ao et al. was approximately
1.3 mV/K [20], which was 4.7 times lower than the value obtained for the as-grown
sample in the present study. Furthermore, the N2-annealed and O2-annealed samples
demonstrated the same trends as that observed in the temperature sensor fabricated by
Tan et al. The latter possessed a sensitivity of approximately 1.59 mV/K, which was 5.9
and 1.3 times lower than the maximum sensitivities of the N2-annealed and O2-annealed
devices, respectively [21].
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4. Conclusions

In this study, an AlN/SBD temperature sensor was fabricated by depositing an AlN
thin film on an n-type 4H-SiC substrate by RF sputtering. The effects of N2 and O2
annealing on the composition of the AlN layer and the thermal sensitivity and electrical
characteristics of the produced device were examined. The high-temperature annealing
process caused the cleavage of Al–OH bonds. As a result, the relative area of the Al–O
peak increased, which was apparently because of a decrease in the number of oxygen
vacancies. Additionally, N2 annealing increased the purity of the AlN film due to the lower
number of Al–O bonds, essentially reducing the effective doping of the film. Consequently,
the current decreased with the increasing electric resistance that resulted from the N2
annealing. Finally, the thermal sensitivity of the fabricated sensor was calculated from its
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V-T characteristics, which was extracted from the corresponding I-V-T plot. The sensitivity
values obtained for the as-grown, N2-annealed, and O2-annealed samples exceeded the
sensitivities of the sensors reported in the literature by 4.7, 5.9, and 1.3 times, respectively.
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