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Osteosarcoma (OS) often occurs in children and often undergoes metastasis, resulting in lower survival rates. Information on the
complexity and pathogenic mechanism of OS is limited, and thus, the development of treatments involving alternative molecular
and genetic targets is hampered. We categorized transcriptome data into metastasis and nonmetastasis groups, and 400 dif-
ferential RNAs (230 messenger RNAs (mRNAs) and 170 long noncoding RNAs (lncRNAs)) were obtained by the edgeR package.
Prognostic genes were identified by performing univariate Cox regression analysis and the Kaplan–Meier (KM) survival analysis.
We then examined the correlation between the expression level of prognostic lncRNAs and mRNAs. Furthermore, microRNAs
(miRNAs) corresponding to the coexpression of lncRNA-mRNA was predicted, which was used to construct a competitive
endogenous RNA (ceRNA) regulatory network. Finally, multivariate Cox proportional risk regression analysis was used to
identify hub prognostic genes. )ree hub prognostic genes (ABCG8, LOXL4, and PDE1B) were identified as potential prognostic
biomarkers and therapeutic targets for OS. Furthermore, transcriptions factors (TFs) (DBP, ESX1, FOS, FOXI1, MEF2C, NFE2,
and OTX2) and lncRNAs (RP11-357H14.16, RP11-284N8.3, and RP11-629G13.1) that were able to affect the expression levels of
genes before and after transcription were found to regulate the prognostic hub genes. In addition, we identified drugs related to the
prognostic hub genes, which may have potential clinical applications. Immunohistochemistry (IHC) and quantitative real-time
polymerase chain reaction (qRT-PCR) confirmed that the expression levels of ABCG8, LOXL4, and PDE1B coincided with the
results of bioinformatics analysis. Moreover, the relationship between the hub prognostic gene expression and patient prognosis
was also validated. Our study elucidated the roles of three novel prognostic biomarkers in the pathogenesis of OS as well as
presenting a potential clinical treatment for OS.

1. Introduction

Osteosarcoma (OS) is characterized by a high recurrence
rate and early lung metastasis. It is more prevalent in
children and adolescents and is the leading cause of poor
survival rates [1]. )e disease lesions manifest themselves in
the metaphysis of the limb bones [2]. Despite significant
advances in adjuvant chemotherapy [3], the high migration
and invasion ability of OS antagonizes efforts to reduce its
mortality rate [4]. )e high mortality rate is associated with
the lack of research on the mechanism related to metastatic

OS. Understanding the mechanisms of OS metastasis de-
velopment will not only define important diagnostic or
prognostic biomarkers but also inform clinical management
of OS.

Recent studies have shown that the competitive en-
dogenous RNA (ceRNA) network, as a theory explaining
gene transcription, is closely related to the pathophysiology
of many diseases [5–7]. So far, due to its potential biomarker
or therapeutic target, the ceRNA network has attracted
enormous research interest for clinical application [8, 9].
Research on the ceRNA network and disease metastasis is of
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particular interest [10–12]. Among the ceRNA, the interplay
between long noncoding RNA (lncRNA), messenger RNA
(mRNA), and microRNA (miRNA) has been widely in-
vestigated. Using molecular sponge activity, lncRNAs attract
miRNAs, which then block the interaction between miRNAs
and mRNA [13]. )is cascade of events thus affects mRNA
expression and influences various human disease processes,
including OS metastasis [13–15].

Transcription factors (TFs) regulate the transcription
process by binding to specific DNA sequences [14–16].
)erefore, TFs affect variability in mRNA expression levels,
which ultimately affect various biological processes, in-
cluding cancer development [17–19]. Regulation by TFs
determines the fate of many cells [20]. It has been dem-
onstrated that metastatic OS is also prone to regulation by
TFs [21–23].

We hypothesize that TF, as an RNA-binding protein of
mRNA, regulates gene transcription, and lncRNA, as a
sponge, interacts with miRNA to influence the translation of
mRNA into protein, which in turn leads to tumorigenesis
(Figure 1).

In this study, based on the theory that lncRNAs can be
used as miRNA sponges to regulate gene expression, a
ceRNA network was constructed to find related molecules
that affect the development of OS. Moreover, we show that
TFs regulate the expression of specific genes and signaling
pathways, which define the fate of many cells. )ese new
molecular dynamics may explain the mechanism of OS
metastasis. Additionally, we provide targeted therapy agents
that are helpful for the treatment of OS patients.

2. Materials and Methods

2.1. Raw Data. RNA-seq expression profiles (HTSeq-
counts) and clinical manifestations of OS were downloaded
from )e Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/repository). )e project is TARGET-
OS. A total of 88 patients with OS were included, including
66 nonmetastatic patients and 22 metastatic patients.

2.2. LncRNA/mRNA Reannotation. To obtain the mRNA
and lncRNA expression profiles, the gene transfer format-
(gtf-) annotated GRCh38.p12 in the Ensembl database was
used to reannotate the downloaded RNA-Seq expression
data. Genes with “protein-coding” annotation information
were kept as mRNAs. )e genes with “3’-overlapping
ncRNA,” “ambiguous ORF,” “ncRNA host,” “noncoding,”
“processed transcript,” “retained intron,” “sense over-
lapping,” “sense intronic,” “bidirectional promoter lncrna,”
“lincRNA,” or “antisense” were selected as lncRNAs. Clinical
phenotypes that corresponded to the gene expression profile
samples were also screened.

2.3. Differential Analysis. )e raw data were normalized by
calcNormactors function in the R package, whereas the
differences between metastasis and nonmetastasis tumor
samples in the two expression profiles were analyzed using
the edgeR package [24].

2.4. Survival Analysis. )e univariate Cox proportional
hazards regression analysis and the Kaplan–Meier (KM)
survival analysis were used to determine the prognostic
genes. Using the multivariate Cox analysis, seven nodes in
the ceRNA network were identified that were used to de-
velop a prognosis model. In addition, an algorithm: risk
score� β gene1∗expr (gene 1) + β gene2∗expr (gene
2) + ... + β gene∗expr (gene n) was used to calculate the risk
score, where β is a coefficient for estimating prognosis by
Cox analysis, while expr corresponds to the expression value
of the gene. )e above model was used to obtain a risk score
for 88 patients with OS, and the median risk score for all
patients was divided into a high-risk group and a low-risk
group. )e risk survival curve and the five-year survival rate
were calculated using the survival R package. )e receiver
operating characteristic (ROC) [25] curve analysis was used
to assess the accuracy of the model for predicting the
prognosis and the diagnostic value of gene expression. Data
on the risk curves and survival states were processed using
the survival package in R.

2.5. Coexpression Analysis. )e corr.test function in the R
package was used to calculate the Pearson correlation co-
efficient between the prognostic mRNA and the prognostic
lncRNA, and the gene pairs were selected (|Pearson cor-
relation coefficient| >0.4 and P value <0.001). Similarly, the
correlation between the mRNA and TFs was also assessed.

2.6.miRNARegulatoryNetwork. MiRcode [26] (http://www.
mircode.org/) was used to predict the intersection between
the lncRNAs and miRNAs. StarBase [27] (http://starbase.
sysu.edu.cn/), microRNA (http://www.microrna.org/
microrna/home.do), and miRDB (http://mirdb.org/) were
used to decode the relationship between mRNAs and
miRNAs.

2.7. Construction of the ceRNA Network. LncRNA-mRNA
expression pairs, regulated by the same miRNA, were se-
lected and then integrated with miRNA to construct a
ceRNA network. Cytoscape software (version 3.7.2) was
used for network construction.

2.8. Prediction of TFs. )e 1,000 bp upstream sequence of
each gene was downloaded fromUCSC (http://genome.ucsc.
edu/cgi-bin/hgTables). TFBSTooLs and JASPAR2016 pack-
ages were used to predict TFs with a gene binding score
greater than 0.8.

2.9. Function and Pathway Enrichment Analysis. Based on
the expression level and median expression values of can-
didate genes, the OS expression matrix was divided into low
and high expression groups. To determine the potential
functions of candidate genes, the annotated gene sets
c5.all.v7.1.symbols.gm and c2.cp.kegg.v7.1.symbol.gmt were
selected as reference. )e first five gene sets and pathways as
screened by Gene Ontology-gene set enrichment analysis
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and Kyoto Encyclopedia of Genes and Genomes-gene set
enrichment analysis (GSEA) were assessed.

2.10. Correlation Analysis of Drug Sensitivity. )e CellMiner
database (https://discover.nci.nih.gov/cellminer/), a data-
base of 60 cancer cells based on themassive data of drugs and
gene targets, was used to identify drugs that are sensitive to
cancer cells. )e Food and Drug Administration (FDA) and
the drug sensitivity data with experimental verification were
used to screen ABCG8-, LOXL4-, and PDE1B-related drugs
(|Pearson correlation coefficient |>0.4, P< 0.01).

2.11. OS Patient Data and Tissue Specimens. Data on 31
patients with OS (19 males and 12 females, 16 metastatic and
15 nonmetastatic, median age: 2 years) were collected from
the Zhujiang Hospital of Southern Medical University
(Guangzhou, Guangdong, China). Informed consent was
obtained from all patients before surgery. All experimental
procedures were conducted following the Code of Ethics of
the World Medical Association (Declaration of Helsinki).

2.12. QRT-PCR. Total RNA was extracted from fresh frozen
tissues using RNAiso plus reagent (Accurate Biotechnology
(Hunan) Co., Ltd., China), and 500ng of total RNAwas reverse
transcribed into cDNA. )e cDNA was diluted five times with
enzyme-free water. One-step qRT-PCR was performed in a
10μL reaction system. )e primers were as follows: GAPDH
forward: 5’-GGAGCGAGATCCCTCCAAAAT-3’, GAPDH
reverse: 5’-GGCTGTTGTCATACTTCTCATGG-3’; ABCG8
forward: 5’-AGCCTCCTTGCTAGATGTGAT-3’, ABCG8 re-
verse: 5’- GTCTCTCGCACAGTCAAGTTG-3’; PDE1B for-
ward: 5’- CTGCGCTACATGGTGAAGCA-3’, PDE1B reverse:
5’- CAAGATTTGCCGTGTCTCATCTA-3’; and LOXL4 for-
ward: 5’- CTGGGCACCACTAAGCTCC-3’, LOXL4 reverse:

5’- CTCCTGGATAGCAAAGTTGTCAT-3’. )e reaction was
performed using the following thermocycling conditions:
initial denaturation at 95°C for 30; followed by 40 cycles of 95°C
for 30 s and 60°C for 30 s. )e relative level of gene expression
was calculated using the 2−ΔΔCq method. Meanwhile, the
patients were divided into two groups according to gene ex-
pression; those whose expression level was higher than the
median were grouped into the high expression group; other-
wise, they were classified into the low expression group.

2.13. Immunohistochemical (IHC) Staining. Paraffin sec-
tions were dewaxed with xylene and rehydrated with
ethanol. Tissue sections were incubated in 0.01 mol/L
sodium citrate buffer (pH 6.0) for 10min and 3% hy-
drogen peroxide for 30min at room temperature to block
endogenous peroxidase. )e slides were washed in
phosphate-buffered saline (PBS), sealed with 5% bovine
serum albumin for 30min, and incubated with primary
antibody overnight in a humidified room at 4°C. Finally,
after three washes with PBS, the secondary antibody
conjugated with horseradish peroxidase (dilution: 1 : 50;
Cat. No. A0208; Beyotime, China) was incubated at room
temperature for 60min, and HRPDAB Kit (Tiangen,
China) was used according to the manufacturer’s agree-
ment. )e main antibodies were ABCG8 (dilution: 1 : 200;
Cat. No. DF6673; affinity, China), LOXL4 (dilution: 1 :
200; Cat. No. ab88186; Abcam, China), and PDE1B
(dilution: 1 : 200; Cat. No. DF9299; affinity, China). )e
images were taken with an orthophoto microscope
(magnification, 200×). )e degree of immunostaining of
the specific protein was assessed and labeled by two in-
dependent observers. Immunohistochemical (IHC)
staining was determined by two parameters, namely,
staining intensity and number of cells stained.
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Figure 1: Regulatory patterns of three hub prognostic genes before and after transcription.
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2.14. Statistical Analysis. All statistical analyses were per-
formed using SPSS statistical software (version 20.0; IBM
Corp.). Student’s t-test was used to evaluate the statistical
significance of the difference in the means between the two
groups. Survival analysis of different genes was performed
using the KM method with the log-rank test. Differences
with P< 0.05 were considered statistically significant.

3. Results

3.1. Differential Gene Expression Analysis. We studied the
high-throughput sequencing data of 88 patients with OS
obtained from TCGA and summarized the characteristics of
the patients (Table 1). )e primary tumor locations of the
patients were grouped to identify clinically significant dif-
ferential gene expression. )e flow chart describing this
study is shown in Figure 2. )e screening thresholds for
mRNA and lncRNA were adjusted P value <0.05 and |log
fold change (FC)|>1. A total of 230 (150 upregulated and 80
downregulated) differentially expressed mRNAs (DEMs)
and 170 (123 upregulated and 47 downregulated) differ-
entially expressed lncRNAs (DELs) were identified. )e top
five genes (in ascending order according to the LogFC) were
selected from the DEMs and DELs to draw the volcano map
(Figure 3).)e univariate Cox regression analysis indicated a
correlation between the expression of 49 DEMs and 30 DELs
(P< 0.05) and OS. Furthermore, using the KM survival
curve analysis, we show that the expression of 27 DEMs and
19 DELs (P< 0.05) is correlated to OS. Overall, we obtained
30 prognostic genes (21 mRNAs, 9 lncRNAs) (Figure 4).

3.2. Analysis of mRNA and lncRNA Coexpression. )e ex-
pression between lncRNAs and mRNAs was determined by
Pearson correlation, using the expression profiles of the 9
prognostic lncRNAs and 21 prognostic mRNAs. Our
analysis found nine lncRNA-mRNA coexpression pairs
(Figure 5). We believe that there is a regulatory relationship
between the coexpression of lncRNAs and mRNAs, and
mRNAs are the target of coexpression of lncRNAs.

3.3. Construction of the ceRNA Network. Based on the
coexpression relationship between mRNA and lncRNA,
lncRNA (RP11-357H14.16, RP11-284N8.3, RP11-629G13.1,
RP11-336K24.5) and their combined miRNAs were ob-
tained using the miRcode database. For mRNA with
lncRNA-mRNA coexpression relationship, an online data-
base was used to yield miRNAs related to mRNAs (ABCG8,
ALDH1A1, LOXL4, PDE1B, FAM166B). Based on the
consistent combination of miRNAs with lncRNAs and
mRNAs, the ceRNA network was constructed using 4
mRNAs (ABCG8, ALDH1A1, LOXL4, PDE1B), 24miRNAs,
and 3 lncRNAs (RP11-357H14.16, RP11-284N8.3, RP11-
629G13.1) (Figure 6). We found that lncRNAs regulate
mRNAs through combined miRNAs.

3.4. Prognostic Ability of the ceRNA Network. )e KM sur-
vival analysis of genes in the ceRNA network is shown in

Figure 7. Next, the optimal model for predicting prognosis was
determined by the multivariate Cox proportional risk regres-
sion analysis, which introduced nodes in the ceRNA network.
We found that the results of the multivariate Cox regression
model were all mRNAs. We identified ABCG8, LOXL4, and
PDE1B as risk evaluation genes in the overall survival model
and were considered hub prognostic genes (Figure 8(a)).
)e mRNA model risk score for overall survival was
(0.3787×ABCG8)+ (0.1611× LOXL4)+ (−0.3870×PDE1B).
Our analysis showed that the 5-year overall survival rates were
39.3% or 83.4% for the high- or low-risk groups, respectively
(Figure 8(b)). In the ROC curve analysis, the area under the
curve (AUC) values for the five-year survival rate based on the
gene model was 0.816 (Figure 8(c)). )e data robustly dem-
onstrate that our model is a powerful prognostic indicator for
OS metastasis. A series of risk curve analyses showed that, as
the patient’s risk value increased, the survival rate significantly
decreased (Figures 8(d) and 8(e)). )e principal component
analysis showed that patients in different risk groups were
distributed in two directions by the constructed model cohort
(Figure 8(f)).

3.5. Regulation of TFs of Hub Prognostic Genes. Prediction of
hub prognostic mRNA-binding TFs obtained 361TFs
(Figure 9). Further coexpression analysis shows that NFE2
and OTX2 play regulatory roles following ABCG8 tran-
scription (Figure 10). Coexpression of LOXL4 and TFs
(MEF2C, FOXI1, FOS, and ESX1) indirectly proves an in-
tersection between their regulatory mechanisms. )ere is
also a strong correlation between PDE1B and DBP. We
believe that these TFs coexpressed with genes not only
combine with genes upstream to regulate gene expression
but also may play a very important role.

3.6. Analysis of Single Gene GSEA Enrichment of Hub Prog-
nostic Genes. As stated in the results of the analysis, we
observed that gene expression levels extensively influence

Table 1: Clinical characteristics of 88 osteosarcoma patients in-
cluded in this study.

Characteristic Females (%) Males (%) Total (%)
Age (years) 13.01± 3.59 16.73± 5.08 15.16± 4.86
Race

Asian 4 (4.55%) 3 (3.4%) 7 (7.95%)
Black 4 (4.55%) 3 (3.4%) 7 (7.95%)
White 19 (21.60%) 33 (37.5%) 52 (59.1%)
Unknown 10 (11.36%) 12 (13.64%) 22 (25%)

Vital status
Alive 23 (26.14%) 34 (38.64%) 57 (64.77%)
Dead 14 (15.91%) 15 (17.05%) 29 (32.96%)
Unknown 0 (0%) 2 (2.27%) 2 (2.27%)

Metastasis
Nonmetastatic 25 (28.41%) 41 (46.59%) 66 (75%)
Metastatic 12 (13.64%) 10 (11.36%) 22 (25%)

Primary tumor site
Leg/foot 33 (37.5%) 47 (53.41%) 80 (90.91%)
Arm/hand 4 (4.55%) 2 (2.27%) 6 (6.82%)
Pelvis 0 (0%) 2 (2.27%) 2 (2.27%)
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Figure 2: Flow chart of the process of analysis.
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some pathways to inhibit or promote tumorigenesis and
development, thereby revealing the role of hub prognostic
genes in OS. Our GSEA of three genes (ABCG8, LOXL4,
and PDE1B) revealed that ABCG8 may be related to cel-
lular energy, metabolism, and autophagy, while LOXL4
may be involved in ossification, immunity, and meta-
bolism. PDE1B may be involved in immunity, cell adhe-
sion, methylation, cell cycle, cell metabolism, and TF
regulation (Figure 11).

3.7. Correlation Analysis of Drug Sensitivity. To further
elucidate gene expression and drug sensitivity, which are
beneficial to clinical treatment, we obtained drugs that are
related to the expression of hub prognostic genes based on
previous screening criteria (Supplemental Figure S1).
Meanwhile, we searched for the drug most closely related to
gene expression and found that PDE1B expression showed a
robust positive correlation with nelarabine. LOXL4 has a
strong negative correlation with docetaxel, which suggests
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that the expression of LOXL4 may be related to the unsat-
isfactory chemotherapy effect in OS patients (Figure 12).

3.8. qRT-PCR Verification. To ensure the reliability of our
results, we performed qRT-PCR analysis.)e results showed
that the expression levels of ABCG8 and LOXL4 significantly

increased, while those of PDE1B significantly decreased
(Figure 13).

3.9. IHC verification. )e protein expression of genes in the
prognosis model was evaluated by IHC to provide inde-
pendent validation of our findings. Compared with metastatic
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tumor tissues, the expression of ABCG8 and LOXL4 was
higher, whereas that of PDE1B was lower, which was con-
cordant to our findings using the TCGA database (Figure 14).

3.10. Validation of Clinical Prognosis. Differentially
expressed genes were identified using qRT-PCR. To deter-
mine whether the expression of hub prognostic genes is
correlated to the prognosis of patients with OS, the KM curves
of patients with OS with low and high gene expression were
analyzed. )e results showed that the expression of ABCG8
and LOXL4 was closely related to the survival of patients.)is
is concordant with our previous results.)e survival curves of
PDE1B demonstrated a trend toward improving, although the
difference was not statistically significant (Figure 15).

4. Discussion

OS metastasis is common in children and is associated with
high death rates [28]. )erefore, in-depth exploration of the

etiology and the pathogenesis of OS, as well as the devel-
opment of prognostic tools and new treatment regimens, is
required. Our study aimed to better understand the
mechanisms of metastatic OS in children. Here, we iden-
tified 4 mRNAs, 24 miRNAs, and 3 lncRNAs and then
constructed a lncRNA-miRNA-mRNA ceRNA network. A
better understanding of the intricate interactions among the
nodes in the ceRNA network might lead to significant in-
sights into gene regulatory networks, thus influencing cancer
treatment. To date, a few studies have evaluated the rela-
tionship between ceRNA and OS prognosis. Additionally,
rare, yet reliable lncRNAs or mRNA-based biomarkers for
OS development are available. To further explore the clinical
role of ceRNA, we applied multivariate Cox proportional
hazards regression analysis to build a prognostic survival
model and determined that three hub prognostic genes
(ABCG8, LOXL4, and PDE1B) can reliably predict OS
prognosis. Because of metastasis, the prognosis of OS pa-
tients will reduce the five-year survival rate to 20%–30%
[29]. Our model shows that the five-year survival rate of

Figure 9: Construction of the TF-gene network. Blue nodes represent genes, and yellow nodes indicate TFs.
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patients in the high-risk group is as low as 39.3%, while that
in the low-risk group is as high as 83.4%. )is suggests that
these three genes play a very important role in the prognosis
of patients, and further exploration of the three genes will be
of clinical significance.

We studied the regulatory activities of TFs in tumori-
genesis.We analyzed the expression profiles between the TFs

and the genes in the transcriptome. )e construction of the
TF network could further reveal the central prognostic
genes, thus showing the cause of metastatic OS. Besides,
GSEA analysis revealed that mRNAs may play different roles
in OS development. Moreover, the analysis of drug sensi-
tivity strengthened the clinical significance of our research
and has a direct effect on the clinical guidance of OS.
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Figure 11: Gene set enrichment analysis.
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)e protein encoded by ABCG8 is a member of the
adenosine triphosphate- (ATP-) binding cassette transporter
superfamily. Previous studies have demonstrated that
ABCG8 directly or indirectly regulates cholesterol absorp-
tion and serum cholesterol level, as well as mediating bone
formation. )erefore, the expression of ABCG8 is related to
various bone diseases [30, 31]. )e upregulation of ABCG8

plays a pivotal role in tumor development and defines
disease prognosis [32]. Before transcription, TFs (NFE2 and
OTX2) may affect ABCG8 transcription by binding to the
upstream sequence of ABCG8. Mechanistically, following
transcription, RP11-358H14.16, by acting as a sponge, binds
to miRNA, thereby affecting the ABCG8 transcription. It
also can be concluded that the effects of ABCG8 on cellular
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metabolism and autophagy are closely related to OS
metastasis.

LOXL4 encodes a member of the lysyl oxidase gene
family, which can affect the production of the extracellular
matrix. It has been confirmed that the expression of LOXL4
in OS affects cell adhesion; however, data on its extensive
biological roles remain limited [33]. LOXL4 regulates tumor
metastasis through the FAK/Src pathway to regulate liver
cancer angiogenesis and cell-matrix adhesion, resulting in
poor prognostic effects [34]. In our study, four TFs (MEF2C,
FOXI1, FOS, and ESX1) bind and regulate LOXL4 tran-
scription. Following the transcription, RP11-629G13.1
prevents miRNAs from degrading LOXL4 transcription
products by competing with mRNAs in binding miRNAs.
Interestingly, the results of GSEA show a similar but more
extensive perspective. GSEA analysis shows that the effects
of LOXL4 on ossification, immunity, and cellular meta-
bolism are closely related to OS metastasis. Drug sensitivity
analysis reveals that the expression of LOXL4 is negatively
correlated to survival; similarly, the expression of drugs and
LOXL4 is negatively correlated, which suggests that the
resistance of chemotherapy drugs to OS may be related to
the expression of LOXL4. )e main adjuvant
chemotherapy regimens for OS include ifosfamide, adria-
mycin, and cisplatin. However, for patients with refractory
OS recurrence and metastasis, the combination of docetaxel
and gemcitabine is most commonly used [35]. However, the

efficacy of docetaxel in the treatment of OS is still not
satisfactory [36]. Our current study may explain this. )ere
is a significant negative correlation between the expression
of docetaxel and LOXL4, which suggests that patients with
high LOXL4 expression may not be sensitive to docetaxel
treatment. Correspondingly, patients with low expression of
LOXL4 may have a better therapeutic effect with docetaxel,
which provides a new explanation for the adjuvant che-
motherapy regimen for clinical patients.

Cell invasiveness and angiogenesis in malignancy appear
to have a relationship with PDE1B [37]. For PDE1B, we have
a reason to speculate that DBP regulates PDE1B before
transcription. Expression of RP11-284N8.3 competes with
mRNAs in binding miRNAs, thereby antagonizing the effect
of miRNAs on the inhibition of PDE1B expression. )us,
PDE1B can affect the development of OS by regulating
immunity, cell adhesion, methylation, cell cycle, cell
metabolism, and TFs. It is worth mentioning that PDE1B is
the target of FDA-approved drugs, and we also get targeted
therapy drugs related to PDE1B gene expression. We further
investigated the correlation between PDE1B expression and
drug sensitivity and found that PDE1B may be potentially
used as a therapeutic target. Nelarabine, a purine analog, has
been approved by the FDA for the clinical treatment of
lymphoblastic leukemia and lymphoma. It can induce ap-
optosis and kill tumor cells by destroying DNA synthesis in
rapidly dividing cells. Our analysis included the possibility
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Figure 15: )e Kaplan–Meier survival curve of ABCG8, LOXL4, and PDE1B.
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and desirability of nelarabine for the treatment of OS, thus
broadening the range of clinical treatment options for OS.

Our research not only found three new mRNAs related
to the prognosis of OS for the first time but also identified
three novel lncRNAs.

Our findings provide insights into OS prognosis and
might be used for personalized follow-up and treatment
strategies in the future.

5. Conclusions

In summary, we identify and validate a prognostic signature
that predicts survival in patients with OS. Our findings have
potential applications in the clinical management of OS.
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