
DENDRITIC CELL VACCINE THERAPY FOR COLORECTAL 
CANCER

Amanda L. Wooster1, Lydia H. Girgis1, Hayley Brazeale1, Trevor S. Anderson1, Laurence M. 
Wood1, Devin B. Lowe1,*

1Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, 
Texas Tech University Health Sciences Center, Abilene, TX 79601

Abstract

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States 

despite an array of available treatment options. Current standard-of-care interventions for this 

malignancy include surgical resection, chemotherapy, and targeted therapies depending on the 

disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in 

combination with chemotherapy was an important development in improving the survival of 

patients with advanced colorectal cancer, while also helping give rise to other forms of anti-

angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is 

through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, 

leading to cytotoxic immune responses that decrease tumor growth and synergize with other 

systemic therapies. Early generations of such vaccines exhibited protection against various forms 

of cancer in pre-clinical models, but clinical results have historically been disappointing. 

Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive 

FDA approval after significantly increasing overall survival in prostate cancer patients. The 

unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic 

cell vaccines, which will be examined in this review. We also highlight the promise of these 

vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
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INTRODUCTION

In the United States, over 100,000 new cases of colon cancer and 43,000 cases of rectal 

cancer will be diagnosed in 2020 [1]. There will also be approximately 53,200 deaths due to 

colorectal cancer (CRC), making the disease the third most common cause of cancer-related 

incidence and death in the country. Common risk factors for CRC include obesity, smoking, 

poor diet, genetic predisposition (e.g., Lynch syndrome, familial adenomatous polyposis), 

and other medical conditions such as chronic inflammatory bowel disorders. Yet, due in part 

to available screening methods (e.g., colonoscopy) that help detect/remove precancerous 

lesions, CRC incidence and mortality rates have seen dramatic declines in older adults[1, 2]. 

However, the incidence of this cancer type is increasing in individuals younger than the age 

of 55 [3].

CRC first develops in the mucosa of either the colon or rectum in the form of a 

noncancerous polyp (more commonly diagnosed as an adenoma) [4]. Adenomas typically 

grow slowly over time in the inner lining of the large intestine, but the risk of cancer 

increases as adenomas grow larger eventually penetrating the colon/rectal wall and accessing 

nearby tissues or underlying blood and lymphatic vessels that allows spread to the liver, 

lungs, or peritoneum [5]. Early-stage disease (Stage 0-II) that is confined to the bowel is 

usually treated with surgery only and results in an exceptional prognosis (90% 5-year 

survival rate) [6]. Unfortunately, a majority of patients present with either regional or 

metastatic disease (i.e., Stage III and beyond) that requires additional standard-of-care 

treatments such as chemotherapy and targeted drugs to help minimize cancer progression. 

Approximately 22% of CRC patients are found with metastases (designated mCRC) upon 

diagnosis, and 50–60% of individuals will develop metastases during the course of their 

disease [6, 7]. Despite rigorous medical interventions, 5-year survival rates for mCRC are 

only 14%, which clearly supports the need for new and more efficacious strategies once the 

cancer spreads beyond the large intestine [6].

Current standard-of-care treatments for stage IV colon cancer may include surgical resection 

of primary lesions and hepatic/pulmonary metastases (if possible) and systemic regimens 

that combine chemotherapy (e.g., fluorouracil-based) with targeted agents [8]. FDA-

approved first-line targeted therapies include the more commonly used anti-epidermal 

growth factor receptor (EGFR) (cetuximab [Erbitux®], panitumumab [Vectibix®]) and anti-
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vascular endothelial growth factor (VEGF) (bevacizumab [Avastin®]) antibodies [9]. 

However, cancer cells harboring mutations downstream of EGFR signaling such as in 

KRAS, NRAS, BRAF, or PIK3CA, will be unresponsive to EGFR inhibition, and treatment 

options must be adjusted accordingly [10–12]. In fact, CRC patients that do not exhibit wild-

type RAS, will demonstrate reduced progression-free survival and overall survival following 

cetuximab or panitumumab treatment [13, 14]. In cases where cancer progresses following 

first-line treatment, approved second-line targeted options include ramucirumab (Cyramza®) 

(anti-VEGFR2 antibody), regorafenib (Stivarga®) (kinase inhibitor), or ziv− aflibercept 

(Eylea® and Zaltrap®) (multiple angiogenic factor trap). The relative short-term successes of 

all of these treatment options for most advanced CRC patients have previously been reported 

[8, 15–17].

It is not currently clear whether VEGF abrogation is preferred to EGFR inhibition with first-

line chemotherapy, but, historically, the addition of anti-VEGF agents to chemotherapy has 

provided increased survival to mCRC patients [18]. Bevacizumab, in particular, was the first 

angiogenic treatment to be approved by the FDA for the treatment of cancer and works by 

blocking VEGF interaction with cognate VEGF receptors (VEGFRs), helping prevent tumor 

growth by inhibiting tumor angiogenesis [19]. In one pivotal phase III trial, 813 previously 

untreated mCRC patients were randomly assigned to receive a fluorouracil-based 

chemotherapy regimen with/without bevacizumab [20]. The addition of VEGF blockade 

provided superior enhancements in median overall survival (20.3 months v. 15.6 months), 

median progression-free survival (10.6 months v. 6.2 months), and overall response rates 

(44.8% v. 34.8%). As a major development in the treatment of advanced CRC, bevacizumab 

has helped paved the way for expanding anti-angiogenic strategies against vascularized 

tumors such as colon cancer [21].

TUMOR ANGIOGENESIS

Primary (avascular) tumors will generally grow only to a stable size of 1–2 mm3 without a 

sufficient blood system to supply oxygen and nutrients and alleviate waste accumulation 

[22]. During the initial phases of cancer growth, there is a presumed balance between pro-

angiogenic and anti-angiogenic factors, but when this balance is disrupted to favor 

angiogenesis (a threshold referred to as “the angiogenic switch”), the influence of pro-

angiogenic factors is increased and tumor progression continues [23]. A defining trigger of 

the angiogenic switch is a lack of sufficient oxygen within the tumor microenvironment that 

results from unabated cancer cell growth [24, 25]. As a tumor expands, areas within the 

lesion too remote from blood vessel support (typically >100 μM) will experience hypoxia 

that disrupts (via hypoxia inducible factors [HIFs]) normal metabolic processes to instead 

drastically upregulate expression of key angiogenic molecules such as VEGF and platelet-

derived growth factor [26]. Additionally, HIF-dependent angiogenesis can be prompted from 

genomic damage sustained by tumor cells. For example, mutations in tumor suppressor 

genes such as P53 and PTEN are directly linked to HIF accumulation that works to promote 

VEGF expression [27, 28].

The continued development of a tumor lesion’s vasculature is reliant on a wealth of other 

soluble mediators (e.g., cytokines, chemokines, extracellular matrix remodeling factors, and 
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pro-angiogenic molecules) like fibroblast growth factor, angiopoietin-2, placenta growth 

factor, and matrix metalloproteases that are supplied by tumor cells and accessory cells such 

as cancer-associated fibroblasts and immune cells [29]. However, the continued 

overexpression of VEGF binds endothelial cell-derived VEGFR2 to initiate/sustain 

sprouting angiogenesis and vasculogenesis [30, 31]. Overall, the resultant vasculature within 

the tumor microenvironment is phenotypically distinct from blood vessels occurring in 

healthy tissues. Newly formed cancer-derived blood vessels may be deficient in a basement 

membrane and supportive cells such as pericytes and yield abnormalities in length/surface 

area that preclude archetypal blood vessel hierarchies in normal vascularized tissues [32, 

33]. Functionally, this chaotic blood system demonstrates increased vascular permeability 

that sustains hypoxia and permits fluid leak into the surrounding tissue, exacerbating 

interstitial pressure [34]. Those tumor-retained cells that evolved during tumorigenesis will 

also continue to influence angiogenesis in order to further promote cancer progression and 

spread [35, 36].

Although passive infusions of anti-vascular immune agents (e.g., bevacizumab, 

ramucirumab) work to minimize such tumor-promoting networks and have provided mCRC 

patients short-term clinical relief, a conceptual therapeutic improvement relates to instituting 

sustained immune-related activity in the host through vaccination [37, 38] or adoptive cell 

therapy [39, 40]. Given their unique nature, tumor-derived blood vessels are immunogenic 

and can be specifically targeted by immune cells to induce tumor regression and institute 

immunologic memory to help prevent cancer recurrence [41, 42]. One such powerful 

immune cell inducer of anti-tumor immunity that also holds tremendous promise as an 

immunotherapeutic strategy is the dendritic cell (DC).

DENDRITIC CELLS

DCs are professional antigen presenting cells (APCs) that belong to the mononuclear 

phagocyte system and can activate naïve T cells against various host insults including 

cancer. Initially discovered in 1868 by Paul Langerhans, DCs received their name in 1973 

upon the identification of cells in the mouse spleen displaying long cytoplasmic processes 

[43]. The various DC subsets first arise from a unique hematopoietic lineage in the bone 

marrow. Like other leukocytes, DCs develop from bone marrow-derived hematopoietic 

CD34+ stem cells and further differentiate from common myeloid progenitors, although a 

small fraction of DCs can arise from common lymphoid progenitor cells [44, 45]. 

Downstream of the common myeloid progenitors, macrophage/DC progenitor cells serve to 

provide the host a steady supply of monocytes, macrophages, and “classical” DCs. In 

particular to DC development, macrophage/DC progenitors give rise to common DC 

progenitor cells that expand into pre-DCs, which travel to lymphoid and non-lymphoid 

organs to further mature into functional DC subtypes based on intrinsic and/or external 

factors as clarified below [46, 47].

While residing in peripheral tissues, DCs sample the surrounding environment through 

receptor-mediated phagocytosis or macropinocytosis, and, following antigen uptake, migrate 

to draining lymph nodes by responding to the chemokines CCL19 (secreted by mature 

dendritic cells) or CCL21 (secreted by lymphatic vessel-derived endothelial cells) through 

Wooster et al. Page 4

Pharmacol Res. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



upregulation of CCR7 [48–51]. During their trafficking, antigen-bearing DCs assume a 

mature APC phenotype, which is marked by increased expression of surface-molecules such 

as major histocompatibility complex (MHC) class II and CD80/CD86 [52]. DCs then 

engage/present processed antigen to T cells in the lymph node paracortex via the MHC and 

provide the necessary costimulation and cytokine support for T cell activation and 

proliferation [53, 54] (outlined in Figure 1).

Mouse DCs have been well-classified based on the expression of defining markers such as 

CD4 and CD8α [55]. However, human DCs have only begun to reach a similar level of 

characterization in the last decade, with many details still missing pertaining to the 

phenotypic/functional similarities and differences between human and mouse DC 

populations. Although there may be uncertainty regarding the most appropriate way to 

taxonomically define DC lineages, several iterations of nomenclature have been proposed in 

recent years [56–58]. In particular, human DC subsets that have and continue to be 

extensively studied within the context of therapeutic DC vaccines are conventional DCs 

(cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) (summarized in 

Table 1).

Types of dendritic cells

cDCs specialize in antigen uptake and presentation to naïve T cells and are characterized by 

a CD11c+/CD123− phenotype [59]. cDCs in humans have been further divided into two 

larger groups (cDC1 and cDC2) based on mouse DC work and transcription factor 

dependence. Both subsets can be found in the blood, lymphoid, and non-lymphoid tissues 

[60] and are further defined by CD141+ that is analogous to mouse CD8a+/CD103+ DCs 

[61]. cDC1 development in the bone marrow is driven by IRF8, BATF3, ID2, and Flt3L [62]. 

cDC1s also have high expression of toll-like receptor (TLR) 3, TLR11, and TLR12 but lack 

TLR4 and TLR9 expression, which are observed in their mouse DC counterparts [63]. 

Functionally, cDC1s specialize in antigen cross-presentation to CD8+ T cells and production 

of IL-12 following migration to lymph nodes [64–67]. cDC2s are distinguished by CD1c+ 

expression and their development is dependent on IRF4, KLF4, and Notch2 [68]. The cDC2 

subtype has recently been subdivided further into cDC2A and cDC2B cells as observed in 

mice. Initially, cDC2s were found to have varying levels of CD5 and were loosely divided 

into CD5hi and CD5lo populations [69], but cDC2As are more similar to cDC1s than their 

cDC2B counterparts, as evidenced by a higher expression of CD1c, HLA-DQ, and 

interferon regulatory factors. cDC2Bs more closely resemble monocytes, with higher 

expression of CD14, CD32, CD36, CD163, and MAFB [70]. In mice, cDC2As 

preferentially express TLR1, TLR5, and TLR7, whereas, cDC2Bs express TLR1, TLR2, 

TLR5, TLR6, and TLRs 7–9 [71]. Additionally, recent transcriptional analysis in mice has 

identified cDC2As as T-bet dependent while cDC2Bs rely on RORγt [71]. Generally, cDC2s 

are important for polarizing CD4+ T cells towards Th2, Th9, Th17, and Treg subsets [72]. 

An inflammatory cDC2 subset has also been identified in mice within the context of viral 

infections [73]. Inflammatory-cDC2s developed characteristics such as CD64 and IRF8 

expression, which are usually associated with monocytes and cDC1s, respectively. It remains 

to be seen whether inflammatory-cDC2s are a distinct DC subset or an infection-driven 
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variant of pro-inflammatory cDC2Bs. Since the cDC2A and cDC2B stratification has only 

recently been recognized, further work is needed to validate these findings in humans [74].

pDCs are generally characterized by substantial production of type I interferons (IFNs) upon 

encountering nucleic acids from pathogens and a morphology similar to B cell-differentiated 

plasma cells [75]. pDCs traffic through the blood and accumulate in peripheral tissues 

experiencing inflammation [76], and, upon sensing pathogenic RNA and DNA (through 

TLR7 and TLR9, respectively), secrete IFN-β, most types of IFN-α, and type III IFN 

(among other cytokines and chemokines) to further direct/activate locoregional immune 

responses [77]. pDCs will also upregulate MHC class I/class II expression to directly engage 

T cells during periods of pathogen infection [78]. Like cDCs, pDCs are heavily dependent 

on Flt3L for development [79]. Progenitor cells in the bone marrow are destined to the pDC 

lineage by the transcription factor E2–2, which directs their differentiation via STAT3 [80]. 

pDCs have also been shown to develop from common DC and lymphoid progenitor cells, 

but recent work suggests pDCs derive predominately from an IL-7R+ lymphoid progenitor 

that requires exposure to IRF8 [81].

Monocytes are circulating leukocytes that provide innate immune responses, help modulate 

adaptive immunity, and support the maintenance of tissue homeostasis [82]. Monocytes are 

developmental precursors to both macrophages and moDCs, but they also perform effector 

functions in the blood [83]. Monocytes have been further subdivided into classical, 

nonclassical, and intermediate categories, although heterogeneity has been described even 

within these subtypes (reviewed in detail elsewhere [84, 85]). Classical monocytes are 

CD14++ CD16− and are recruited to areas of inflammation by CCR2 to respond to 

lipopolysaccharide and produce TNF-α/IL-1. Nonclassical monocytes (CD14 low/CD16++) 

primarily survey cells via CX3CR1 to maintain overall homeostasis by performing 

endothelium repair and removing cell debris [86]. Intermediate monocytes (CD14+/CD16+) 

display an inflammatory phenotype similar to classical monocytes but also express CX3CR1 

as seen with the nonclassical subset [87]. Importantly, classical monocytes are capable of 

differentiating into moDCs, especially following recruitment to sites of inflammation that is 

controlled by the transcription factors MAFB and KLF4 [70]. These inflammatory-

stimulated moDCs are typified by expression of HLA-DR+/CD11c+ and a combination of 

DC and macrophage markers (i.e., CD1c, CD1a, CD1b, FcεR1, CD206, CD14, and CD11b) 

[88]. Like the previously discussed DC subsets, moDCs can develop dendrites upon 

differentiation and stimulate T cells [89]. Although much remains to be determined about 

this DC subset in humans, particularly from a functional standpoint, moDCs can secrete 

inflammatory cytokines and induce Th17 polarization in vitro [90]. Lastly, DCs can be 

derived from isolated monocytes in vitro with the cytokines GM-CSF and IL-4 [91] 

(summarized in Figure 2). The discovery of this directed tissue culturing approach has had a 

tremendous influence on the field by providing a suitable supply of DCs for vaccine 

purposes in patients with cancer [92].

Dendritic cell vaccines for cancer

The initial success of DC vaccines to combat cancer became evident from pre-clinical 

studies in the late 1980s and early 1990s that demonstrated protective anti-tumor effects 
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afforded by tumor lysate-pulsed DCs [93, 94]. The translation of these experiments then 

culminated into clinical trials where autologous DCs were isolated from patients, modified 

ex vivo with antigen +/− maturation signals, and re-administrated. Pivotal clinical 

observations published in 1996 revealed that a series of infusions of antigen-specific DCs 

(initially obtained by leukapheresis from peripheral blood) were capable of generating anti-

tumor immune responses as well as tumor regressions in a small cohort of patients with B-

cell lymphoma [95]. A similar study in patients with stage IV melanoma exhibited that a 

MAGE-1 peptide-pulsed moDC vaccine could induce antigen-specific cytotoxic T cells, 

although no observable therapeutic benefit was demonstrated [96]. Importantly, these early 

studies helped establish that autologous DC vaccines were overwhelmingly safe following 

infusion in patients [97].

To date, the only DC-associated therapeutic currently approved by the FDA is Sipuleucel-T 

(Provenge®). Approved in 2010, Sipuleucel-T is a preparation of autologous CD54+ APCs 

for the treatment of minimally symptomatic, hormone refractory prostate cancer [98]. Based 

on the preparation method, Sipuleucel-T is not strictly a DC vaccine, as other mononuclear 

cells are also present. However, following collection of peripheral blood mononuclear cells 

via leukapheresis, CD54+ cells are isolated by density gradient centrifugation and co-

cultured with the recombinant protein PA2024, which consists of prostatic acid phosphatase 

fused with GM-CSF that provides APCs both antigen specificity and maturation potential 

[99]. Patients are provided at least 50 million antigen-pulsed CD54+ cells for each vaccine 

treatment that is provided up to 3 times over a period of 4 weeks. Preliminary 

characterizations of the vaccine product demonstrated enhanced APC and T cell activity 

through elaboration of activation-associated cytokines (e.g., IFN-γ, TNF-α) following 

autologous cell infusions [100] as well as antibody and T cell-specific responses against 

PA2024 [101]. In the pivotal stage III IMPACT trial, 512 men with metastatic castration-

resistant prostate cancer were randomized to treatment with Sipuleucel-T or placebo and 

overall survival was assessed as the primary endpoint. IMPACT demonstrated a 4.1 month 

increase in the survival of patients treated with Sipuleucel-T over placebo as well as an 

increase in the long-term benefit of the therapy when assessing 3-year survival rates (31.7% 

for Sipuleucel-T versus 23.0% for placebo). Notably, the effects of Sipuleucel-T were 

consistent even in groups with adverse prognostic factors known to impact patient survival 

such as elevated PSA levels and bone metastases. As seen with earlier DC vaccine trials, few 

serious safety responses were observed, and the most common adverse events from 

Sipuleucel-T included elevated flu-like symptoms (i.e., chills and fever) within 1 day after 

infusion that was likely the result of cytokines released by activated immune cells [101]. It is 

important to note that there are puzzling aspects of the IMPACT trial such as the overall lack 

of effects on PSA level or time-to-tumor progression between the Sipuleucel-T and placebo 

groups. An independent review of internal FDA data (that did not become available until 

after Sipuleucel-T approval) explores these matters at length, but, briefly, post-hoc subgroup 

analyses revealed unexpected correlations between age and overall survival [102]. First, 

effects on median survival could only be seen in patients 65 years or older and seems to 

contrast with the long-standing principle that younger patients develop more robust immune 

responses following immunizations[103]. Second, patients over 65 in the placebo group saw 

shorter overall survival than expected when compared to placebo groups in trials with 
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similar enrollment restrictions. Finally, several major disparities in the processing/reinfusion 

of cells appeared to occur between the Sipuleucel-T and placebo-treated patients and 

included: [i] only a fraction of bulk processed cells were eventually delivered to placebo 

patients, [ii] placebo cells were not incubated with GM-CSF, and [iii] placebo cells were 

first incubated at 2–8 °C for 36–44 hrs that could have facilitated cell death prior to infusion. 

In all, the survival benefits of the IMPACT trial could potentially be a result of study design 

issues adversely impacting older placebo-treated patients. Yet, these alternative analyses/

explanations have also been the subject of intense refute [104–106].

On the whole, though, these aforementioned DC vaccine clinical attempts have 

demonstrated a proof-of-principle that the DC platform can unleash potentially protective 

anti-cancer immune responses in patients. These trials have also helped spur additional work 

to enhance the therapeutic index of the DC vaccine approach for various forms of 

malignancies such as CRC [97].

Dendritic cell vaccine experience in the treatment of colorectal cancer

Currently, the majority of ongoing clinical trials investigating DC vaccines for CRC involve 

administrating DCs pulsed with autologous tumor lysates since this methodology has 

historically induced tumor-specific immune responses in patients [107, 108] (detailed in 

Table 2). Although this strategy ensures patients receive a personalized vaccine (by way of 

presenting unique tumor antigens), vaccine development is dependent on retrieval of an 

adequate amount of resected tumor that contains immunogenic material. Alternatively, DCs 

may be pulsed with exogenous tumor-associated peptides such carcinoembryonic antigen 

(CEA), which is expressed broadly by most colon cancer specimens [109]. Results of several 

early-phase clinical trials demonstrated that a CEA DC vaccine for CRC is effective at safely 

generating anti-CEA specific responses; however, overall survival or progression-free 

survival benefit has not been realized for a majority of patients [110–112]. An ongoing 

Phase I/II clinical trial is utilizing a DC vaccine loaded with CEA and the frameshift 

neoantigens caspase-5 and TFG-βRII in treating patients with microsatellite instability 

(MSI) CRC or as a preventative measure for germline mismatch repair (MMR) mutation 

carriers (Clinicaltrials.gov Identifier: NCT01885702). As Sipuleucel-T demonstrated 

improved efficacy in patients with reduced tumor burden, a preventative vaccine course may 

be an acceptable application for individuals at high-risk for developing CRC [113]. 

Relatedly, two clinical trials are exploring the usefulness of a DC vaccine to prevent relapse 

in either surgically resected stage I/II hypermutated or stage IV CRC where curative 

resection had been performed (NCT03730948, NCT02919644). In both scenarios, DC 

vaccines would be expected to inspire immune surveillance against microlesions that 

escaped initial detection.

It is clear that immune responses to CRC targets can be generated following DC vaccination, 

but improved clinical parameters (such as overall survival) are typically not observed in 

most patients. Obviously, this immunotherapeutic strategy holds tremendous potential (given 

the importance of DCs to fuel cytotoxic immune responses), but further research is required 

to enhance the approach for malignancies such as CRC. Major areas of continued 

development include identifying suitable patient subsets where DC vaccine treatment would 
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provide the most benefit, improving ex vivo culturing techniques and inoculation routes, 

determining synergistic therapies best suited for use alongside DC vaccination, and 

predicting/characterizing CRC-associated antigens (e.g., neoepitopes, vascular targets) for 

DC processing/presentation [114].

IMPROVING THE DC VACCINE PLATFORM

Dendritic cell subsets

Since blood-derived DC populations exist only in small numbers, moDCs have preferentially 

dominated the majority of DC vaccine clinical studies. There is evidence, though, that 

peripheral DCs (namely cDCs and pDCs) may be superior DC subsets for migration and 

antigen cross-presentation purposes, given their biological roles in the host (see the “Types 

of DCs” Section). A first-in-human trial of an allogeneic pDC line that was irradiated and 

loaded with melanoma antigens (MLANA, MAGEA3, PMEL, TYR) was able to 

significantly increase the number of antigen-specific T cells in 4 of 9 metastatic patients 

experiencing some period of stable disease up to 48 weeks [115]. While the small study size 

and prior treatment record obscure the seeming cause of clinical benefit, the pDC vaccine 

was safe and able to induce T cell expansion without causing neutralizing immune responses 

to the vaccine. A separate study comparing pDC and cDC2 vaccines in melanoma patients 

also revealed that pDCs produced higher levels of CXCR3/CCR5 ligands (promoting 

cytolytic immune cells) and attracted greater numbers of CD8+ T cells in skin biopsies 

while cDC2s expressed elevated levels of chemokines binding CXCR1/CXCR2 (yielding T 

cell priming properties) [116]. These findings suggest that a combined pDCs and cDC2 

vaccine might effectively provide chemoattractive and anti-cancer properties to T cells.

Altogether, although underutilized for vaccine purposes, other peripheral DC subsets may 

provide alternative (or additional) strengths to the standard route of infusing patients moDCs 

for therapeutic use. However, based in part on current deficiencies in cell isolation and 

culturing techniques, major challenges to incorporating this method include purifying 

sufficient numbers of peripheral DCs for ex vivo maturation/expansion purposes, especially 

in patients who have previously received immunosuppressive chemotherapeutic regimens. 

For example, cDC1s hold great appeal for use as a DC vaccine due to an enhanced ability to 

cross-present exogenous antigen to CD8+ T cells. Unfortunately, the low percentage of 

cDC1s in circulation (approximately 0.03% of human peripheral blood mononuclear cells) 

and lack of an appropriate clinical-grade reagent for cell isolation have excluded their use in 

the clinic [117].

Inoculations

Even though Sipuleucel-T is administered intravenously other DC inoculation routes are 

being explored to potentially improve DC localization to lymph nodes for T cell activation. 

In mouse models, intradermally administered DC vaccines only result in the delivery of 2–

4% injected material to tumor-draining lymph nodes intravenously administrated DCs 

largely traffic to vascularized organs such as the spleen, liver, and kidneys [118, 119]. A 

study comparing intranodal versus intradermal administrations in advanced melanoma 

patients also revealed that intranodal injections resulted in higher numbers of DCs migrating 
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to local lymph nodes, but intradermal injection provided a superior induction of T cells 

responding to tumor associated-antigens [120]. Additionally, intratumoral injection seems 

relatively efficacious since patients with metastatic disease exhibited an increased infiltration 

of CD8+ T cells in 5 out of 12 resected kidney tumors [121]. Despite the uncertainty of 

whether one injection scheme is superior overall, there is likely room for further 

optimization in this area. For example, the total number of DCs and timing of doses are 

likely critical for achieving maximal anti-tumor benefits in patients [122].

Combinations

A major factor, thus far, in the disappointing clinical performance of DC vaccines is an 

inability to overcome immunosuppressive properties of the tumor-microenvironment. 

Therefore, treatment combinations of DC vaccines with other immunomodulatory therapies 

is likely a positive way forward to achieve durable anti-tumor responses in patients. DC 

vaccines have frequently been administered alongside cyclophosphamide in order to 

suppress regulatory T cells [123–125], but success (in terms of patient responses) has still 

been limited, as regulatory T cells are not the only barrier to DC function within the tumor 

[92, 124, 126]. Other promising treatments that may have synergistic effects with DC 

vaccines include immune checkpoint inhibitors (ICIs), immunogenic cell death (ICD) 

inducers, and anti-angiogenic therapeutics.

The unprecedented success of ICIs has heralded a new era of immunotherapeutic promise 

for cancer in general. While clinical successes have been demonstrated with ICIs in select 

patients with tumors such as metastatic melanoma and MSI-high CRC, therapeutic efficacy 

as a single agent is still limited on a broader scale [127]. In the context of mCRC, FDA 

approval has only been granted for anti-PD-1 antibodies (nivolumab and pembrolizumab) in 

patients with MSI-high or MMR CRC subtypes [128, 129]. Yet, even with approved 

indications for immune checkpoint blockade, individuals may not respond, exhibit resistance 

(developed or inherent), or experience hyperprogression as a result of treatment [130]. In 

recent years, a crucial connection between ICIs and DCs has become evident, with the 

potential for these antibodies to boost the downstream effects of DC immunization. 

Vaccination with DCs loaded with autologous tumor lysates in 16 patients with metastatic 

melanoma revealed that patients with a significant increase in tumor-infiltrating CD8+ T 

cells also experienced upregulation of tumoral PD-L1 expression, indicating that concurrent 

PD-1/PD-L1 inhibition may improve immune-driven effects against immunosuppressive 

tumors [131, 132]. Conversely, timing of ICI administration severely alters immune 

responses to DC vaccines. A recent study of patients who received an autologous melanoma-

specific DC vaccine reported that individuals provided immune checkpoint blockade after 

vaccine administration had considerably increased numbers of melanoma-specific CD8+ T 

cells in circulation, whereas, ICIs given prior to DC vaccination did not translate into 

improved cytotoxic T cell responses (by way of increased IFNy expression) [133]. PD-L1 

abrogation may also instigate direct effects on DC function. For example, a patient sample 

analysis suggests that DCs could be suitable targets for anti-PD-L1 treatment by blocking 

PD-L1/B7.1 cis interactions on DCs, thus, freeing B7.1 to ligate CD28 and co-stimulate 

anti-tumor T cells [134]. Maturation of DCs with pro-inflammatory cytokines and TLR 
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ligands tends to upregulate PD-L1 surface expression, perhaps making DC vaccines 

themselves a prime target for ICIs during ex vivo manipulations [135, 136].

While certain anti-cancer cytotoxic therapies are known to be immunosuppressive, several 

chemotherapeutics (e.g., doxorubicin, fluorouracil, and oxaliplatin [137]) or physical 

interventions such as radiotherapy could be employed to promote ICD [138]. The discrete 

actions of ICD are generally engaged following target cell production of reactive oxygen 

species or endoplasmic reticulum stress that releases (usually hidden) internal components to 

the extracellular environment. These secreted or cell surface-expressed molecules then 

stimulate immune cell activity by interacting most prominently with pattern-recognition 

receptors on APCs [139, 140]. Some potential ICD pathways involve the surface appearance 

of calreticulin on dead/dying target cells, which encourages phagocytosis by APCs like DCs 

[141]. ATP may also be secreted from dying cells and serve as a “find me” signal for DC 

precursors [142]. Additionally, HMGB1 is released from cells in late stages of apoptosis and 

binds TLR4 on DCs [143, 144]. Ultimately, the ICD process can be harnessed (i.e., as an 

endogenous adjuvant) for DC vaccines since it creates an environment rich in inflammatory 

mediators that stimulates DC activation. As one example, in a preclinical study, mice 

received DCs loaded with doxorubicin-treated neuroblastoma tumor cell lysates, and, when 

given prophylactically, generated superior tumor protection versus DCs exposed to untreated 

neuroblastoma cell lysates [145]. Therapeutically, the DC/doxorubicin vaccine regimen was 

further augmented when a CXCR4 agonist was also delivered to mice.

Lastly, tumor-derived blood vessels may serve to inhibit the collective effects of DC 

vaccines. Sustained tumor-produced VEGF can mediate detrimental effects to DC function 

through mechanisms that include inducing PD-L1 expression on myeloid DCs, impairing 

mature DC mobility, and suppressing expression of MHC class II and other costimulatory 

molecules [146–150]. Although anti-angiogenic agents such as VEGF-specific antibodies 

(e.g., bevacizumab) and small molecule drugs (e.g., axitinib, dasatinib, sunitinib) have been 

approved for some time, resistance to these monotherapies develops quickly in patients due 

to tumor blood vessels adopting compensatory reliance on other growth factors [151]. Yet, 

VEGF blockade in combination with other drugs such as chemotherapy [152], ICIs [153], or 

mTOR inhibitors [154] have shown improved anti-tumor effects. One possible explanation 

for such synergy involves the “vascular normalization” hypothesis, which proposes that in 

addition to causing limited vascular destruction, anti-angiogenic drugs transform the chaotic 

tumor vasculature into a more normal arrangement that allows co-applied drugs to 

effectively distribute and function throughout the tumor [155]. Ultimately, while DC 

vaccines alone may have a limited ability to catalyze T cell infiltration and immune cell 

cytotoxicity within the tumor microenvironment based on the aberrant and 

immunosuppressive properties of the tumor lesion, vascular normalization strategies could 

help unleash the ability of DCs to induce superior anti-tumor immunity by restoring blood 

flow dynamics and minimizing immune-defeating properties like hypoxia, acidosis, and 

downregulation of leukocyte adhesion molecules (e.g., ICAM-1, VCAM-1, E-selectin, and 

CD34) [156–159]. To further support this concept, in mouse models of melanoma, DC 

vaccines were capable of instituting superior antigen-specific tumor protection when animals 

were first sensitized to anti-angiogenic drugs like axitinib or dasatinib [160, 161].
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Vascular dendritic cell targets

The relative clinical success of bevacizumab (and other FDA approved anti-angiogenic 

agents) has helped attract attention to furthering the development of immunotherapeutic 

strategies such as vaccines that target the tumor vasculature. In many cases, DC-inspired 

immune responses against the underlying endothelium (by way of CD8+ T cell cytotoxicity, 

for example) would be favored to induce poly-specific immunity and immunological 

memory (Figure 1).

To maintain vaccine safety, the ideal vascular target is one that is overexpressed within the 

tumor but not found or only evident at low levels on healthy endothelium to avoid 

disruptions to normal physiological processes such as wound healing [162]. Abrogating 

tumor-derived VEGF/VEGFR dynamics has been extensively studied in the clinic, 

particularly from a standpoint of infusing CRC patients blocking antibodies such as 

bevacizumab (anti-VEGF) or ramucirumab (anti-VEGFR2). Patients may experience dose-

dependent hypertension following antibody infusions but such issues can be clinically 

manageable [163]. Since VEGF maintains roles in physiological angiogenesis, a vaccine-

inspired immune response against VEGF/VEGFR also raises concerns about adverse events 

occurring outside of the tumor microenvironment. In one scenario, a vaccine consisting of 

recombinant human VEGF in combination with an adjuvant derived from Neisseria 
meningitides was assessed in a multi-center phase I clinical trial (CENTAURO-2) [154]. 

Dosing schemes resulted in 75% seroconversion in patients exhibiting anti-VEGF blocking 

antibody responses while still maintaining an acceptable safety profile. The placental 

endothelial cell vaccine ValloVax™ has also been utilized as a whole cell vaccine to 

immunize patients against naturally occurring blood vessel components [164]. Early clinical 

experience indicates that all patients vaccinated elicited enhanced antibody responses against 

vascular antigens such as VEGFR1, VEGFR2, CD105, and FGFR without mediating 

abnormal safety responses [165]. Ultimately, such examples give some degree of assurance 

that immunologic responses can be generated in individuals against self-vascular targets 

without inspiring unmanageable off-target toxicities in healthy tissues.

In relation to engaging DC activity, DNA and peptide-based vaccines have also been 

formulated against tumor-derived angiogenic factors such as bFGF, FGFR-1, avB3, 

angiomotin, CD105, survivin, Robo4, Tie-2, EGFR, HP59, PDGFRβ, TEM1, and TEM8 

[166]. The goal of a tumor associated peptide vaccine is to conform MHC class I or II 

binding requirements so that an APC like a DC will present the administered peptide and 

activate CD8+ T cells or CD4+ T cells, respectively, against target cells. DNA vaccines 

function in a similar manner by essentially directing the expression/presentation of targets of 

interest in cells such as DCs upon plasmid DNA uptake [167]. Unfortunately, peptide and 

DNA vaccines, overall, have notoriously fallen flat in clinical trials, despite preclinical 

successes [167–169]. However, one encouraging DC preparative approach utilizes the 

unique properties of the intracellular bacterium Listeria monocytogenes (Lm) to direct DC 

antigen-specificity. Lm is a gram-positive bacterium that readily infects APCs, through 

expression of phospholipases and cytolysins, and can escape phagolysomal destruction and 

gain entry to the cytosol where it replicates prior to infecting a nearby cell [170, 171]. Once 

in the cytosol, the bacterium facilitates proteasomal processing, MHC Class I presentation, 
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and robust induction of cytotoxic T lymphocyte responses against protein antigens that it 

secretes [172, 173]. As such, Lm-based therapeutic vaccines have been designed to express 

and secrete tumor associated-antigens of interest, and, upon DC infection, induce DC 

maturation and antigen presentation for CD8+ T cell activation, even at mucosal surfaces 

[174–176]. Due to the ability to break immunologic tolerance to self-antigens, Lm-based 

vaccines are ideal for targeting both tumors directly and the tumor-associated vasculature 

[177–180]. In fact, Lm-based vaccines targeting vasculature-associated antigens such as 

VEGFR2, HMWMAA, and CD105 have been able to generate both protective and 

therapeutic cytotoxic T lymphocyte responses in pre-clinical models of melanoma and breast 

cancer [179, 180]. The general clinical outlook for Lm-based vaccines is promising with 

numerous studies demonstrating significant efficacy in addition to high tolerability and 

safety in patients [181]. While Lm-based vaccines have advanced to phase III clinical trials, 

recent publication of phase II clinical trial results demonstrated that cervical cancer patients 

receiving an Lm-based vaccine targeting HPV16 E7 had clinically relevant tumor responses 

and prolonged survival in a select population, outperforming historical standards [182]. 

Further, the anti-tumor efficacy of Lm-based vaccines is enhanced when administered in 

combination with other interventions such as ICIs and radiation, suggesting a promising 

future for this therapy on improving patient survival [183–185].

Similar to Sipuleucel-T, directly infusing ex vivo matured DCs into patients likely holds the 

best route for securing immunity against tumor-derived targets but requires the necessary 

infrastructure to deal with cell isolation, maturation/expansion, and infusion. In pre-clinical 

models, adoptive therapy of DC vaccines encoding the tumor blood vessel antigens DLK1, 

EphA2, HBB, NRP1, PDGFRB, RGS5, or TEM1 resulted in the regression of MC38 or B16 

subcutaneous tumors in HLA-A2 transgenic mice. CD8+ T cells were specifically invoked 

against tumor-derived blood vessel antigens that resulted in long-term inhibition of tumor 

growth. Importantly, no adverse immune responses were observed against healthy 

vascularized tissues or impairment to wound healing [186]. This strategy has also translated 

to the clinical for treatment of patients with melanoma (NCT01876212) or breast 

(NCT02479230) cancer and is awaiting further action.

CONCLUSIONS

Despite the number of mCRC treatments coming to market over the last two decades, the 

disease still remains deadly in its later stages. DC vaccines have historically performed 

poorly in clinical trials for cancer, but renewed interest in this immunotherapeutic strategy 

has been sparked by the relative success of Sipuleucel-T for prostate cancer and advent of 

immunomodulatory agents that may synergistically improve DC function. However, further 

research advancements are required in order to establish DC vaccines as a clinically 

efficacious approach for advanced CRC. Typical vaccine characteristics such as DC subtype, 

administration, timing, and dosage still require heavy research investment. Additionally, 

reasonable improvements in DC-elicited immune responses could be expected through 

rational combinations that might include immune checkpoint blockade and/or anti-

angiogenic therapies. Lastly, tumor blood vessel-derived antigens represent an exciting area 

for DC vaccination purposes in order to trigger cytotoxic CD8+ T cell responses against the 

underlying blood vessel network of CRC. As bevacizumab has helped pave the way for anti-
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angiogenic treatments against the disease, further success is possible by instilling durable 

and broad T cell responses against the tumor vasculature.
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Figure 1. 
General overview of directing dendritic cell vaccines against colorectal cancer-derived blood 

vessels. Abbreviation used: dendritic cell (DC). Created with Biorender.com.
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Figure 2. 
Standard ex vivo approach for generating dendritic cell vaccines for patient infusion. 

Abbreviation used: dendritic cell (DC). Created with Biorender.com.
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Table 1.

Human dendritic cell subsets

DC type Major function Selective markers Transcription factor 
dependence

cDC

 cDC1 Antigen cross-presentation to CD8+ T cells CD11c, Clec9, CD141 IRF8, BATF3, ID2,

 cDC2A CD4+ T cell polarization; antiinflammatory 
phenotype

CD1c, CLEC4A IRF4, KLF4, Notch2

 cDC2B CD4+ T cell polarization; pro-inflammatory 
phenotype

CD14, CD32, CD36, CD163, 
CLEC10A

RORγT, ZEB2

pDC

Type I IFN production upon encountering pathogens CD123, BDCA-2, BDCA-4 Flt3L, E2–2, STAT3

moDC

T cell stimulation; inflammatory cytokine secretion CD11c, CD1c, CD1a, CD1b, 
FcεRl, CD206, CD14, CD11b

MAFB, KLF4

Abbreviations used: conventional DC (cDC), dendritic cell (DC), plasmacytoid DC (pDC), monocyte-derived DC (moDC), interferon (IFN)

Pharmacol Res. Author manuscript; available in PMC 2022 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wooster et al. Page 28

Table 2.

Representative colorectal cancer clinical trials utilizing dendritic cell vaccines

Clinicaltrials.gov identifier 
(Estimated completion year)

Phase CRC indication Treatment

NCT01885702 (2020) I/II Adjuvant DC vaccine for MSI-positive CRC/
preventative DC vaccine for germline MMR-

gene mutation carriers

Autologous DC vaccine loaded with CEA, 
and frameshift-derived neoantigens

NCT02503150 (2020) III Metastatic CRC with no previous therapy for 
metastatic lesions

Autologous DC vaccine loaded with 
autologous tumor lysate in combination with 

modified FOLFOX-6

NCT03152565 (2020) I/II MSS metastatic CRC treated with at least two 
forms of chemotherapy

Autologous DC vaccine in combination with 
avelumab

NCT03730948 (2021) I Surgically resected stage I and II hypermutated 
CRC

Autologous DC vaccine with mutated 
peptides

NCT02919644 (2024) II Curative resection of stage IV CRC Autologous DC vaccine with autologous 
tumor lysate followed by IL-2 injection

Abbreviations used: carcinoembryonic antigen (CEA), colorectal cancer (CRC), dendritic cell (DC), mismatch repair (MMR), microsatellite 
instability (MSI), microsatellite stable (MSS)
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