ORIGINAL ARTICLE

Comparative accounts of probiotic properties of spore and vegetative cells of *Bacillus clausii* UBBC07 and in silico analysis of probiotic function

J. J. Ahire¹ · M. S. Kashikar¹ · R. S. Madempudi¹

Received: 19 December 2020 / Accepted: 27 January 2021 / Published online: 6 February 2021 © King Abdulaziz City for Science and Technology 2021

Abstract

In this study, the spores and vegetative cells of *B. clausii* were independently evaluated for probiotic properties such as acid, gastric juice, bile, and intestinal fluid tolerance, adhesion to solvents/mucin and zeta potential. In addition, in silico identification of genome features contributing to probiotic properties were investigated. The results showed that spores were highly stable at gastric acidity and capable to germinate and multiply under intestinal conditions as compared to vegetative cells. The higher hydrophobicity of spores, compared to vegetative cells, is advantageous for colonization and persistence in the intestine. Furthermore, the presence of F_0F_1 ATP synthase, amino acid decarboxylase, bile acid symporter, mucin/collagen/fibronectin-binding proteins, heat/cold shock proteins, and universal stress proteins suggests that the strain is able to survive stress. In conclusion, the results demonstrate that *B. clausii* UBBC07 spores show significantly higher survival and adhesion in nivitro gastrointestinal conditions as compared to vegetative cells. Besides, this study provides a comparative analysis of the in vitro probiotic properties of spores and vegetative cells of *Bacillus clausii* UBBC07.

Keywords Bacillus clausii UBBC07 · Spores · Vegetative cells · Probiotics properties · Zeta potential

Introduction

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (Hill et al. 2014). To date, *Lactobacillus* and *Bifidobacteria* are the most investigated probiotic cultures as compared to *Bacillus* (Bhushan et al. 2019). As per the recommendations of health institutions of Canada and Italy, the use of 1×10^9 colony forming units (cfu) of these bacteria were permitted per serving for nonstrain-specific claims (Hill et al. 2014). There are several probiotic products on the market, but only a few fulfill criteria of labelled concentration claims at the end of the shelf-life (Vecchione et al. 2018). Besides this, the ability of bacteria to tolerate gastric and intestinal conditions is imperative for the delivery of health benefits to the host (Bhushan et al. 2020). In

☐ J. J. Ahire jayesh@uniquebiotech.com; jjahire@gmail.com comparison to vegetative cells, spores are highly stable at various industrial, environmental, and gastro-intestinal conditions, thus ensuring the delivery of recommended probiotic dose to the gut (Patel et al. 2009; Ahire et al. 2020c).

Comparative probiotic properties of spores and vegetative cells of spore-formers have rarely been investigated (Bernardeau et al. 2017). Cenci et al. (2006) showed the ability of *Bacillus clausii* spores to germinate during gastrointestinal transit and the possibility for vegetative cells to survive in the intestinal tract. Patel et al. (2009) evaluated probiotic properties of a mixture of spores and vegetative cells of *B. megaterium*. Recently, Sharma et al. (2020) characterized the probiotic properties of the ambiguous biotype i.e. spores or vegetative cells of *Bacillus* spp., isolated from fermented food. Moreover, probiotic properties of spores or vegetative cells or mixture.

Bacillus clausii is a Gram-positive, aerobic, sporeforming, motile, rod-shaped, facultative alkaliphilic soil bacterium (Cenci et al. 2006). It is one of the human probiotics, which is able to survive gastrointestinal transit and colonize the gut even in the presence of antibiotics (Duc et al. 2004; Ianiro et al. 2018). Preclinical and clinical studies suggest that *B. clausii* probiotic is effective in

¹ Centre for Research and Development, Unique Biotech Ltd, Plot No. 2, Phase-II, Alexandria Knowledge Park, Hyderabad, Telangana, India

the treatment of diarrhea, recurrent respiratory infections and acute gastroenteritis (Marseglia et al. 2007; Ianiro et al. 2018; Paparo et al. 2020). Currently tested strain, Bacillus clausii UBBC07 (MTCC 5472) is a non-toxic, spore-forming probiotic bacterium available on the Indian market since 2005 (Upadrasta et al. 2016; Lakshmi et al. 2017). A daily dose of 4 billion cfu of UBBC07 spores is recommended to alleviate diarrhea in children and adults (Sudha et al. 2013, 2019). Recently, B. clausii UBBC07 has been reported for the production of lantibiotic clausin and reduction of uremic toxins in acetaminophen-induced uremic rats (Patel et al. 2019; Ahire et al. 2020b). In this study, for the first time, we describe the comparative probiotic properties of spores and vegetative cells of Bacillus clausii UBBC07 and in silico identification of genome features contributing to probiotic properties.

Materials and methods

Preparation of vegetative cells and spores

Bacillus clausii UBBC07 (MTCC 5472) was obtained from the Unique Biotech culture collection, Hyderabad, India. The strain was cultivated aerobically in BHI broth (HiMedia, India) at 37 °C for 24 h and purity confirmed by plating on BHI agar. A single colony was inoculated in 10 ml BHI broth and incubated for 24 h at 37 °C with shaking (180 rpm). Vegetative cells were harvested by centrifugation at $11,000 \times g$ for 10 min at 4 °C (Sorvall Legend XTR, Thermo Scientific, USA) and washed twice with phosphate buffer saline (PBS, pH 7.3). The cell pellet obtained was resuspended in PBS and investigated for probiotic properties. Simultaneously, the strain was cultivated aerobically in BHI broth at 37 °C for 96 h to sporulate. Spores were harvested by centrifugation, washed twice with PBS, and heat-treated at 80 °C for 20 min to kill vegetative cells. The resultant spore suspension was evaluated for probiotic properties.

Survival of spores and vegetative cells under in vitro GIT conditions

Acid tolerance

The 100 μ l of *B. clausii* UBBC07 vegetative cells and spore suspension was inoculated separately in 900 μ l PBS pH (1.0, 2.0 and 3.0) and incubated aerobically at 37 °C for 0, 1, 2 and 3 h (Ahire 2012). Survivability was determined by plating on BHI agar.

Synthetic gastric juice tolerance

Spores or vegetative cells of UBBC07 were diluted 1:10 in filter sterilized (0.2 µm cellulose acetate; Sartorius, Germany) synthetic gastric juice [g 1⁻¹: pepsin (\geq 3000 NFU mg⁻¹), 0.0133; lysozyme (\geq 40,000 U mg⁻¹), 0.1; bile, 0.05; proteose peptone, 8.3; glucose, 3.5; KCl, 0.37; NaCl, 2.05; CaCl₂, 0.11; KH₂PO₄, 0.6; pH 2.5] and incubated aerobically at 37 °C for 3 h (Pedersen et al. 2004). Survival was determined at 0, 30 and 180 min time intervals by plating appropriate dilutions on BHI agar plates.

Bile salt tolerance

The UBBC07 suspension (vegetative cells or spores) was inoculated 1:10 in BHI broth supplemented with 0.1, 0.3, 0.5, 1.0 and 2.0% (w/v) bile (HiMedia, India). The tubes were incubated aerobically at 37 °C for 24 h. Tolerance was evaluated by determining optical density at 600 nm (Ahire 2012).

Intestinal fluid tolerance

The UBBC07 suspension (vegetative cells or spores) was diluted 1:10 in filter sterilized intestinal fluid [1 mg ml⁻¹ pancreatin (amylase 100 U mg⁻¹; lipase 8 U mg⁻¹; protease 100 U mg⁻¹: Sisco Research Laboratory, India) prepared in 0.85% (w/v) NaCl supplemented with 0.3% bile (w/v); pH 8.0], and incubated aerobically at 37 °C for 6 h. Survivability was determined at 0 and 6 h by plating on BHI agar.

Microbial adhesion to solvents

The cell pellet or spores obtained from *B. clausii* UBBC07 were washed twice with PBS (pH7.3) and dissolved in 50 ml 0.1 mol l⁻¹ KNO₃ (pH 6.2). Absorbance of suspensions was measured at 600 as A₀ using a UV–visible spectrophotometer (Thermo Scientific, USA). To every 3 ml of this suspension, 1 ml solvent (xylene, chloroform, and ethyl acetate) was added and left standing for 10 min at 37 °C. Thereafter, the two phases were mixed by vortexing for 2 min and incubated aerobically at 37 °C for 30 min. The aqueous phase was removed and the absorbance (600 nm) measured as A₁ (Ahire et al. 2013). The percentage of microbial adhesion was calculated as $(A_0 - A_1/A_0) \times 100$.

Adhesion to porcine mucin

The 6-well tissue culture plates (Thermo Scientific, Denmark) were coated at 4 °C for 24 h with 100 μ g ml⁻¹ of porcine stomach mucin (Sigma Aldrich, USA) dissolved in 0.05 mol l⁻¹ Na₂CO₃ (pH 9.7). After incubation, the coating solution was discarded and each well was treated with 2 ml PBS containing 1% (w/v) Tween 20 for 1 h. Finally, each well was washed with PBS containing 0.05% (w/v) Tween 20 and inoculated with 2 ml vegetative cells and or spore solution (0.5 OD) prepared in PBS (0.05% (w/v) Tween 20; pH 7.3) buffer. The plates were incubated overnight at 4 °C (Pedersen et al. 2004). After incubation, wells were washed with PBS containing 0.05% (w/v) Tween 20 and visualized using an inverted microscope (CKX53, Olympus, Japan). Adhesion was quantitatively determined by staining the wells with 0.1% (w/v) crystal violet (Ahire et al. 2014). Experiments were performed in triplicate.

Determination of zeta potential

The zeta potential of *B. clausii* UBBC07 (vegetative cells or spores) prepared in PBS (pH 7.3) was measured using the Zetasizer Nano-ZS (Malvern, UK). The DTS1070 capillary cell was used as per the procedure described by Ahire et al. (2020a).

In silico identification of genome features contributing to probiotic properties

Bacillus clausii UBBC07 whole genome (GenBank accession no. LATY0000000) was investigated for the presence of genes or specific domains involved in acid tolerance, bile salt tolerance, adhesion to gut mucosa and environmental stress resistance as described by Khatri et al. (2019). The RAST (Rapid Annotation using Subsystem Technology; Brettin et al. 2015) and SEED (Overbeek et al. 2014) viewer comparative blast search tool was used along with NCBI standard protein BLAST.

Statistical analysis

Statistical analyses were performed using GraphPad Prism (USA). The statistical differences among means were determined using Tukey's multiple comparison test and *t*-test. Data were presented as the mean and standard deviation. The *p*-value of less than 0.05 was considered significant.

Results

Acid tolerance

The exposure of spores (~7.48 log $_{10}$ cfu ml⁻¹) to pH 1–3 for 3 h did not show any significant (p > 0.05) loss in survival (pH 1: 95.93 ± 2.02; pH 2: 94.92 ± 2.31; pH 3: 94.91 ± 2.30; pH 7.3: 94.79 ± 2.31%) as compared control (pH 7.3) (Fig. 1). On the contrary, the exposure of ~9.87 log $_{10}$ cfu ml⁻¹ vegetative cells to pH 1 and 2 significantly (p < 0.0001) reduced survivability within an hour, with

no vegetative cells surviving. At pH 3 the vegetative cells showed significant (p < 0.0001) reduction in survival up to 3 h (1 h: 88.02±1.80; 2 h: 55.62±0.75; 3 h: 38.80±0.70%) (Fig. 1). Similar results were recorded when cells were exposed to pH 7.3, however, the decreased in survivability (1 h: 97.07±0.30; 2 h: 95.57±0.75; 3 h: 91.1±5.56%) was less as compared to pH 3 (Fig. 1). The difference recorded in viability between 0 to 3 h were significant (p < 0.05).

Synthetic stomach juice tolerance

In synthetic gastric juice, the spore count was deceased significantly (p < 0.01) from 0 (7.62 $\pm 0.06 \log_{10}$ cfu ml⁻¹) to 180 min (7.30 $\pm 0.07 \log_{10}$ cfu ml⁻¹) of incubation (Fig. 2a). The percentage survival was determined as 95.75 $\pm 1.00\%$. Survival of vegetative cells were significantly (p < 0.0001) reduced to zero during the incubation (0 min: 9.7 ± 0.05 ; 30 min: 8.2 ± 0.09 ; 180 min: 0 log ₁₀ cfu ml⁻¹) in gastric juice (Fig. 2a).

Bile salt tolerance

Increasing concentrations of bile salts showed no adverse effects on the survivability of spores (bile 0.1%: 91.93 ± 3.76 ; 0.3%: 100.24 ± 3.05 ; 0.5%: 109.05 ± 1.70 ; 1.0%: 112.95 ± 5.13). In addition, 2.0% bile salt levels enhanced growth ($147.43 \pm 3.89\%$; p < 0.01) (Fig. 2b). Survivability of vegetative cells decreased (bile 0.3%: 72.56 ± 0.78 ; 0.5%: 51.80 ± 2.30 ; 1.0%: 41.04 ± 0.52) significantly (p < 0.01) when bile salt concentration was increased from 0.1% (Fig. 2b). No significant (p > 0.05) changes in survivability was recorded at 0.1% bile as compared with the control.

Intestinal fluid tolerance

In synthetic intestinal juice, the spore count increased significantly (p < 0.0001) from 0 (7.69 ± 0.08 log₁₀ cfu ml⁻¹) to 360 min (8.51±0.07 log₁₀ cfu ml⁻¹) of incubation (Fig. 3a). The survival was recorded as 110.66±0.94%. On the contrary, the vegetative cell counts decreased significantly (p < 0.0001) from 7.59±0.11 log₁₀ cfu ml⁻¹ (0 min) to 5.77±0.07 log₁₀ cfu ml⁻¹ (360 min) (Fig. 3a). Moreover, the vegetative cells showed 76.05±0.96% survivability.

Microbial adhesion to solvents

Bacillus clausii UBBC07 spores had higher adhesion to chloroform (98.33 \pm 0.57%) and ethyl acetate (94.66 \pm 0.58%) as compared to xylene (65.66 \pm 2.51%) (Fig. 3b). Whereas vegetative cells adhered greater to chloroform (50.33 \pm 2.08%) as compared with xylene (22.66 \pm 4.72%) and ethyl acetate (25.66 \pm 4.16%) (Fig. 3b).

Fig. 1 Acid tolerance of spores and vegetative cells of *Bacillus clausii* UBBC07. Panel **a** pH 1.0; **b** pH 2.0; **c** pH 3.0; **d** pH 7.3 (control). The primary *y*-axis indicates vegetative cell count and

secondary y-axis for spores. All data are represented as mean \pm SD. *p < 0.05; ****p < 0.0001: significant difference compared to initial or 0 time point

Adhesion to porcine mucin

Spores had significantly (p < 0.01) higher crystal violet optical density readings (0.084 ± 0.004) as compared to vegetative cells (0.065 ± 0.005) . Figure 4 describes the adhesion of spores and vegetative cells to mucin-coated wells.

Determination of zeta potential

Spores had significantly (p < 0.05) higher zeta potential $(-28.3 \pm 1.04 \text{ mV}; 7.95 \pm 0.04 \log_{10} \text{ cfu ml}^{-1})$ as compared to vegetative cells $(-23.4 \pm 2.23 \text{ mV}; 8.01 \pm 0.05 \log_{10} \text{ cfu ml}^{-1})$.

In silico identification of genome features contributing to probiotic properties

The in silico analysis of *B. clausii* UBBC07 genome revealed the presence of 10 domains for acid tolerance, three for bile tolerance, 11 for adhesion to gut mucosa, and 15 for environmental stress resistance (Table 1).

Discussion

The ability of probiotics to reach the gut in sufficient numbers is imperative in order for cells to confer health benefits. As per recommendations, most probiotic products contain billions of cells and the benefits they confer is dependent on the strains ability to survive transit through the gut. There are several factors which contribute to the success of probiotic, such as the stability at various industrial processes and tolerance to the gastrointestinal tract stress (Ahire 2012). The use of spore probiotic is advantageous over the vegetative cells since spore's unique intrinsic makeup (dipicolinic acid, proteins, lipids, and carbohydrates) and extremely low permeability provides high tolerance to the stomach acidity, bile salt and intestinal conditions (Bernardeau et al. 2017). In this study, the Bacillus clausii UBBC07 spores demonstrated high resistance to acidic conditions (pH 1, 2, and 3) and synthetic gastric juice (pH 2.5) as compared to vegetative cells. These in vitro results suggests that spores are probably able to survive and deliver prerequisite quantities to the small intestine. Cenci et al. (2006) has shown that B. *clausii* spores tolerated pH 2 and vegetative cells $pH \le 4$. Recently, the in vitro investigation of B. clausii spore germination in the Simulator of Human Intestinal Microbial

Fig.2 a Synthetic gastric juice; **b** bile salt tolerance of spores and vegetative cells of *Bacillus clausii* UBBC07. The primary *y*-axis indicates optical density for vegetative cell and secondary *y*-axis for spores. All data are represented as mean \pm SD. **p < 0.01; ****p < 0.0001: significant difference compared to initial or 0 time point for gastric juice and 0% concentration for bile

Ecosystem (SHIME) indicated the survival of spores and accompanied vegetative cells under SHIME-fed stomach simulations (Ahire et al. 2020b). Besides this, none of the studies evaluated the comparative probiotic properties of spore and vegetative cells.

Bile acid is the major component of bile, which acts as an emulsifier to facilitate the digestion of lipids and lipidsoluble-vitamins in the intestine. In higher concentrations, the bile acid is toxic to the bacterial cells by causing membrane damage, protein denaturation, and oxidative damage to the DNA (Prete et al. 2020). Therefore, the investigation of probiotic bacteria to survive bile acids is important to predict their persistence in the gut. In this study, the bile tolerance observed in UBBC07 spores was higher than the vegetative biotype, which is due to the intrinsic resistance of spores to the bile. However, the increased \log_{10} cfu ml⁻¹ from *B*. clausii spores at higher bile levels suggested bile-induced spore germination (Giel et al. 2010). The capabilities of B. clausii spores to germinate under fed and fasted in vitro intestinal-SHIME-conditions have recently been reported (Ahire et al. 2020b). Ghelardi et al. (2015) showed that the B. clausii spores germinate and undergoes multiplication

Fig. 3 a Intestinal fluid tolerance; **b** Adhesion to solvents of spores and vegetative cells of *Bacillus clausii* UBBC07. All data are represented as mean \pm SD. ****p < 0.0001: significant difference compared to initial or 0 time point

under stimulated in vivo human intestinal environments. Moreover, bile tolerance is a strain-specific trait (Hyronimus et al. 2000).

The tolerance of probiotics to the intestinal fluid containing pancreatin and bile under alkaline conditions is a good model to estimate their survivability in the gut. In the present investigation, B. clausii spores replicated in simulated intestinal conditions as compared with vegetative cells. This finding indicates the germination and multiplication ability of B. clausii spores in the intestinal fluid. The 76% viability of vegetative cells to the intestinal fluid assures the persistence of the strain in the gut. Furthermore, it has been reported that B. clausii survival and persistence in alkaline conditions might be due to the alkaliphilic nature of this species (Nielsen et al. 1995; Vecchione et al. 2018). Overall, these results corroborate well with previous in-vitro and -vivo findings that B. clausii spores germinate and multiply in human intestinal conditions (Cenci et al. 2006; Ghelardi et al. 2015; Ahire et al. 2020b).

Like stomach and intestinal stress tolerance, the adhesion of probiotics is an important property for successful colonization in the gut. In the present study, we investigated the

Fig. 4 Representative image of adhesion of spores and vegetative cells of *Bacillus clausii* UBBC07 to mucin. Panel **a** Control; **b** Spores; **c** Vegetative cells after crystal violet strain

adhesion of spores and vegetative cells of *B. clausii* using adhesion to -solvents, -mucin and zeta potential. In adhesion to solvents, the adhesion to xylene is an indication of hydrophobic surface properties (Bellon-Fontaine et al. 1996). The high percent affinity of spores to xylene as compared with vegetative cells indicated higher surface hydrophobicity of spores. This may be due to the relative abundance of protein in the outer coat or exosporium of spore compared with peptidoglycan on the vegetative cell surface (Jindal and Anand 2018). High adhesion of spores to chloroform and ethyl acetate as compared with vegetative cells indicated the electron-donating and electron-accepting properties of biological surfaces (Bellon-Fontaine et al. 1996). The strong adhesion of spores to porcine mucin and significantly higher net negative zeta potential value over vegetative cells further confirmed the findings. Overall, these results show that spores are highly hydrophobic and more capable of adhering to gut epithelial lining as compared to vegetative cells.

In another investigation, we have analyzed the whole genome sequence of *B. clausii* UBBC07 to identify the genome features contributing to probiotic properties. The presence of F0F1 ATP synthase complex indicated the ability of bacteria to resist the acidic environment of the stomach by maintaining H⁺ homeostasis (Cotter and Hill 2003; Azcarate-Peril et al. 2004; Khatri et al. 2019). The ornithine/lysine/arginine decarboxylase family proteins catalyze the decarboxylation of amino acids resulting in the alkalinization of the cytosol and generation of a proton motive force, which can be exploited for acid resistance and/or the production of ATP (Romano et al. 2013). The sodium bile acid symporter family proteins contribute to bile resistance and adaptation to the gut environment (Price et al. 2006). Besides this, the proteins detected for mucus, collagen, and fibronectin-binding along with sortase, flagellin, and triosephosphate isomerase ensures adhesion to the intestinal mucosal layer and persistence of bacteria to the intestine. Furthermore, B. clausii UBBC07 harbors proteins for universal-, oxidative-, hyperosmoticstress, heat resistance, cold and heat shock, Clp protease, and chaperonins (GroEL and GroES) for survival and growth under environmental stress. Overall, these results corroborate well with the previous reports on in silico analysis of proteins involved in probiotic properties of B. clausii Enterogermina[®] (Khatri et al. 2019).

In conclusion, *Bacillus clausii* UBBC07 spores demonstrated excellent gastro-intestinal resistance as compared with vegetative biotype. No loss in viability, good adhesion, and spore germination under simulated in vitro human intestinal conditions ensures the delivery of the recommended amount of probiotics to the gut. Moreover, in silico analysis revealed the presence of proteins involved in probiotic properties in *B. clausii* UBCC07 genome. Therefore, we recommend that spores of *B. clausii* UBBC07 be used to deliver probiotic to the human and or animal gut where they germinate and colonise to confer intended health benefits.

Table 1	Distribution of proteins	s involved in probiotic	properties in B. cla	ausii UBCC07 genome
---------	--------------------------	-------------------------	----------------------	---------------------

Acid tolerance F0F1 ATP_synthase KK185936 ATP synthase subunit A KK185898 ATP synthase subunit C KK185899 ATP synthase subunit B KK185890 ATP synthase defti (OSCP) subunit KK185901 ATP synthase subunit alpha KK185901 ATP synthase subunit alpha KK185902 ATP synthase subunit agamma KK185902 ATP synthase subunit agamma KK185903 ATP synthase subunit painon KK185903 ATP synthase subunit cpsilon KK185904 ATP synthase subunit cpsilon Amino acid decarboxylase KK185796 OrnLys/Arg decarboxylase Bile tolerance Sodium bile acid symporter KK185526 Bile acid sodium symporter KK186648 Sodium transporter KK186648 Sodium transporter KK186648 Sodium transporter KK186648 Sodium transporter KK186506 Sortase KK187777 F0pA Sortase KK187560 Sortase KK184941 Sortase KK18754 Sortase KK184941 Sortase KK187574 Sortase Flagellin_N Flagellin KK184853 Cp10 Chaperonins Grof5 KK18485	Category	Probiotic feature	Accession numbers	Identified-domain
KKI8589 ATP synthase subunit C KKI8580 ATP synthase subunit B KKI8500 ATP synthase subunit apha KKI8500 ATP synthase subunit beta KKI8500 Maginar/Sinderwalka Bile acid symporter KKI8502 Bile acid solum symporter KKI8500 Solum tansporter KKI8502 Solum bile acid solum symporter KKI8500 Solum bile acid solum protein * Gran_os_anchor Athesion to gut mucosa Mucus binding protein KKI87776 Solare KKI8707 Sortase KKI8777 Sortase Figellin KKI8777 Sortase Solase KKI84781	Acid tolerance	F0F1 ATP_synthase	KKI85936	ATP synthase subunit A
KKI8589 ATP synthase subunit B KKI8500 ATP synthase subunit Jah0 KKI8501 ATP synthase subunit Jah0 KKI8502 ATP synthase subunit Jah0 KKI8503 ATP synthase subunit Jah0 KKI8504 ATP synthase subunit Jah0 KKI8505 Bile acid soum symporter KKI8505 Bile acid Soum symporter KKI8504 Solum bile acid Symporter KKI8505 Bile acid Soum symporter KKI8505 Solum bile acid family transporter KKI8506 Gollagen binding protein † Protoccin binding protein † KKI87200 Sortase KKI87107 Solagelin_A KKI8707 Sortase KKI8707 Solagelin_A KKI8707 Sortase KKI8707 Sortase KKI8707 Solagelin_A KKI8707 Solagelin_A KKI8707 Solagelin_A			KKI85898	ATP synthase subunit C
KK18500 ATP synthase delta (OSCP) subunit KK18501 ATP synthase subunit apha KK18500 ATP synthase subunit beta KK18500 ATP synthase subunit beta KK18500 ATP synthase subunit beta KK18500 ATP synthase subunit pasilon KK18501 ATP synthase subunit beta KK18502 ATP synthase subunit pasilon Bile tolerance Sodium bile acid symporter KK18502 Bile acid sodium symporter KK18504 Sodium bile acid family transporter KK18505 Sodium bile acid family transporter KK18504 Sodium bile acid family transporter KK18505 Sortase Adhesion to gut mucosa Mucus binding protein * Collagen binding protein * Collagen_bind KK18770 FbpA Sortase KK187126 Sortase KK1870 Sortase KK18707 FbpA KK18707 FbpA FbpA KK18707 FbgBellin_N Sortase KK18708 Sortase Coll sock protein KK18707 Fiosephosphate isomerase KK187126<			KKI85899	ATP synthase subunit B
KK185001 ATP synthase subunit aghma KK185002 ATP synthase subunit gamma KK185003 ATP synthase subunit gamma KK18504 ATP synthase subunit epsilon KK18505 Arr synthase subunit epsilon KK18505 Bita exit asodium symporter Bitle tolerance Sodium bile acid symporter KK18505 Bita exit asodium symporter KK18505 Bita exit asodium symporter KK18505 Bita exit asodium symporter KK18505 Gram_pos_anchor Adhesion to gut mucosa Mucus binding protein * Collagen binding protein * Collagen_bind Fibronectin binding protein * Collagen_bind Fibronectin binding protein * Sortase KK18706 Sortase Sortase KK18707 FbpA Sortase Fibronectin binding protein * Sortase KK18706 Sortase Sortase KK18707 Sortase Sortase Fibronectin binding protein * Sortase KK18707 Sortase Sortase KK18707 Flagellin_C Sortase Coll aper binding protein KK18707 Flagellin_C KK18707 Flagellin_C			KKI85900	ATP synthase delta (OSCP) subunit
KKI8502 ATP synthase subunit gamma KKI8503 ATP synthase subunit beta KKI8504 ATP synthase subunit beta KKI8506 OrrLys/Arg decarboxylase KKI8506 OrrLys/Arg decarboxylase Bile tolerance Sodium bile acid symporter KKI8506 Sodium transporter KKI8507 Bile acid family transporter KKI8506 Sodiam transporter KKI8507 Sodiage binding protein KKI8507 Sortase Sortase KKI87126 Sortase Sortase KKI8606 Sortase Flagellin KKI8707 Trasphosphate isomerase KKI8707 KKI8708 Chaperonins GroEL Chaperonins GroEL KKI8708 Chaperonins GroEL KKI84848 Cold sho			KKI85901	ATP synthase subunit alpha
KKI85903 ATP synthase subunit beta KKI85504 ATP synthase subunit epsilon KKI85504 ATP synthase subunit epsilon KKI85536 Ora/Lys/Arg decarboxylase KKI85536 Ora/Lys/Arg decarboxylase KKI85536 Sodium transporter KKI85546 Sodium bile acid symporter KKI85546 Sodium bile acid family transporter KKI86556 Sodium bile acid family transporter KKI8657 Sodiam transporter Collagen binding protein * Fibronectin binding protein KKI8777 Fibronectin binding protein KKI87176 Sortase KKI87260 Sortase Sortase KKI8707 Sortase KKI8717 Sortase Fagellin KKI87176 Fagellin KKI87176 Sortase KKI87176 Fagellin KKI87176 Fagellin, N Sortase KKI87499 Flagellin, N Cilaperonins GroEL KKI8420 Cilaperonins GroEL KKI8420 Cilaperonins GroEL KKI8420 Cilaperonins GroEL KKI8420 Cila shock protein KKI8712 KKI8790 Cilaperonica GroE KKI8740 Cilaperota			KKI85902	ATP synthase subunit gamma
KKI8504 Arrino acid decarboxylase KKI85796 Orn/Lys/Arg decarboxylase KKI85796 Orn/Lys/Arg decarboxylase Bile tolerance Sodium bile acid symporter KKI8505 Bile acid sodium symporter KKI85546 Sodium transporter KKI85546 Sodium bile acid family transporter KKI85546 Sodium bile acid family transporter Adhesion to gut mucosa Mucus binding protein * Collagen_bind Fibronectin binding protein * Collagen_bind Collagen_bind Fibronectin binding protein * Sortase Sortase KKI87126 Sortase Sortase KKI8710 Sortase KKI87540 Sortase Sortase KKI8710 Sortase Flagellin KKI8754 Sortase Sortase KKI8754 Sortase KKI8710 Flagellin_C Environmental stress resistance Chaperonins GroEL KKI84820 ClP_protease KKI8778 ClP_protease KKI8779 ClP_protease KKI8779 ClP_protease KKI8740 Sortase Environmental stress resistance KKI8402 ClP_protease KKI8740 Clageronins GroEL KKI84837 ClP_protease KKI8797 ClP_protease <td< td=""><td></td><td>KKI85903</td><td>ATP synthase subunit beta</td></td<>			KKI85903	ATP synthase subunit beta
Amino acid decarboxylase KKI85796 Orn/Lys/Arg decarboxylase KKI84553 Arginine/lysine/ornithine decarboxylase Bile tolerance Sodium bile acid symporter KKI85026 Bide acid sodium symporter KKI85026 Sodium transporter KKI85026 Sodium transporter Adhesion to gut mucosa Mucus binding protein * Gram_oos_anchor Collagen binding protein KKI87777 BpA BpA Sortase KKI877260 Sortase Sortase KKI87260 Sortase KKI87760 Sortase Fagellin KKI87770 Bpa Bilm_O KKI87260 Sortase KKI87760 Sortase Fagellin KKI87770 Biagellin_C Sortase Fagellin KKI87760 Sortase Sortase Fagellin KKI87760 Sortase Sortase Fagellin KKI87770 Biagellin_C Sortase Fagellin KKI87760 Sortase Sortase Fagellin KKI87760 Sortase Sortase			KKI85904	ATP synthase subunit epsilon
Bile tolerance Sodium bile acid symporter KKI8553 Arginine/lysine/omithine decarboxylase Bile tolerance Sodium bile acid symporter KKI8502 Bile acid sodium symporter KKI8554 Sodium tansporter KKI8502 Sodium tile acid family transporter Adhesion to gut mucosa Mucus binding protein * Collagen_binding Collagen_binding Fibronectin binding protein * Collagen_binding Collagen_binding Collagen_binding Fibronectin binding protein KKI8777 BpA Sortase Sortase KKI8756 Sortase Sortase KKI8750 Sortase KKI8750 Sortase Fagellin KKI87510 Bagellin_C KKI87510 Bagellin_C Toisephosphate isomerase KKI87507 Hagellin_C Sortase Environmental stress resistance Chaperonins GroEL KKI87302 Cp10 Sortase Cly protease KKI8737 Cl_protease Cl Sortase Sortase Environmental stress resistance Chaperonins GroEL KKI84884 Cl_protease Cl		Amino acid decarboxylase	KKI85796	Orn/Lys/Arg decarboxylase
Bile tolerance Sodium bile acid symporter KKI85025 Bile acid sodium symporter KKI85546 Sodium transporter KKI85546 Sodium bile acid family transporter Adhesion to gut mucosa Mucus binding protein * Gram_pos_anchor Collagen binding protein * Collagen_bind Fibronectin binding protein * Collagen_bind Fibronectin binding protein KKI87777 FbpA Sortase KKI87126 Sortase KKI87404 Sortase Sortase KKI87404 Sortase KKI8720 KKI87404 Sortase Sortase KKI87404 Sortase KKI8720 Flagellin KKI87404 Sortase Triosephosphate isomerase KKI87490 Flagellin_N Environmental stress resistance Chaperonins GroEL KKI88100 Chp_protease Clp protease KKI87492 CLP_protease KKI87492 CSD CSD Heat shock protein KKI87492 CSD KKI87492 CSD Sortase KKI87492 CSD SO Heat shock protein KKI87492 CSD KKI87492 CSD SO Heat resistance KKI87492			KKI84553	Arginine/lysine/ornithine decarboxylase
KKI85546 Sodium transporter KKI86848 Sodium bile acid family transporter KKI86848 Sodium bile acid family transporter Adhesion to gut mucosa Mucus binding protein * Gram_pos_anchor Collagen binding protein * Gram_pos_anchor Fibronectin binding protein KKI87777 FbpA Sortase KKI87777 FbpA Sortase KKI87260 Sortase KKI87260 Sortase KKI8764 Sortase KKI87260 Sortase KKI87260 Sortase KKI8754 Sortase KKI8754 Sortase KKI8754 Sortase KKI8767 Flagellin KKI8777 Flagellin_N Triosephosphate isomerase KKI85107 Flagellin_N Chaperonins GroEL KKI84884 Cpn00_TCP1 Chaperonins GroES KKI84784 CLP_protease KKI87126 Cplotase KKI87492 CSD <	Bile tolerance	Sodium bile acid symporter	KKI85025	Bile acid sodium symporter
Adhesion to gut mucosa Mucus binding protein * Gran_pos_anchor Collagen binding protein † Collagen_bind Fibronectin binding protein † Collagen_bind Fibronectin binding protein KKI87777 FopA Sortase KKI87126 Sortase Sortase KKI87260 Sortase KKI87260 Sortase KKI87260 Sortase KKI87260 Sortase Flagellin Sortase KKI87499 Flagellin_N Triosephosphate isomerase KKI87499 Flagellin_N Environmental stress resistance Chaperonins GroEL KKI84885 Cp10 Clp protease KKI8787 CLP_protease Cold shock protein KKI84782 CspC Heat shock protein KKI84885 GrpE Heat resistance KKI84983 DnJ <td></td> <td>KKI85546</td> <td>Sodium transporter</td>			KKI85546	Sodium transporter
Adhesion to gut mucosa Mucus binding protein * Gram_pos_anchor Collagen binding protein * Collagen_bind Fibronectin binding protein KI87777 FbpA Fibronectin binding protein KK1877260 Sortase Sortase KK187260 Sortase KK187260 Sortase KK187260 Sortase KK187260 Sortase KK187260 Sortase Sortase KK184941 Sortase Sortase Flagellin KK184754 Sortase Flagellin KK187379 Flagellin_C Triosephosphate isomerase KK185379 Flagellin_N Environmental stress resistance Chaperonins GroEL KK18485 Cpn0_TCP1 Claperonins GroES KK18485 CLP_protease KK187787 CLP_protease KK187379 Cold shock protein KK18485 CLP_protease KK187492 CSD Claperonins GroEL KK184787 Cold shock protein KK184787 CLP_protease KK187492 CSD Claperonins GroEL KK184787 Cold shock protein KK184983 DnaJ Heat shock protein KK184983 DnaJ Heat shock protein KK184983 Dn			KKI86848	Sodium bile acid family transporter
Collagen binding protein†Collagen_bindFibronectin binding proteinKK187777FbpAFibronectin binding proteinKK187777FbpASortaseKK187126SortaseKK1872601SortaseKK1872601KK1847541SortaseKK184754FlagellinKK184754SortaseFlagellinKK185107Flagellin_NTriosephosphate isomeraseKK18379TIMEnvironmental stress resistanceChaperonins GroELKK184885Cpn00_TCP1Chaperonins GroESKK184885CLP_proteaseClip proteaseKK185387CLP_proteaseCold shock proteinKK185485CLP_proteaseCold shock proteinKK184482CspCHeat shock proteinKK184485GripEHeat resistanceKK184985DnalOxidative stressKK184983DnalOxidative stressKK184787UspKK18500Universal StressKK185106UspKK18708UreVen	Adhesion to gut mucosa	Mucus binding protein	*	Gram_pos_anchor
Fibronectin binding protein KK18777 FbpA Sortase KK187126 Sortase KK187260 Sortase KK187260 Sortase KK184911 Sortase KK184914 Sortase KK184754 Sortase Flagellin KK184754 KK184754 Sortase Flagellin KK184754 Sortase KK184754 Plagellin_C KK184754 Chaperonins GroEL KK184754 Chaperonins GroES KK18485 ClP_protease CLP_protease Clog shock protein KK184754 KK18778 CLP_protease Cold shock protein KK184062 Cold shock protein KK184062 Heat shock protein KK184985 GryE Hpypersomotic stress KK18407 PMSR Universal Stress KK18477 Universal Stress KK18477 Universal Stress KK18477	-	Collagen binding protein	†	Collagen_bind
SortaseKK187126SortaseKK187260SortaseKK187260SortaseKK184941SortaseKK184941SortaseKK186106SortaseKK18754SortaseFlagellinKK18754Flagellin_CKK187499Triosephosphate isomeraseKK185107Flagellin_NTimosephosphate isomeraseChaperonins GroELKK18484Chaperonins GroESKK18485Clp proteaseKK184682Clp proteaseKK18779KK187787CLP_proteaseCld shock proteinKK187492KK187492CSDHeat shock proteinKK18485Heat resistanceKK184985GrpEHyperosmotic stressKK186288PMSRHyperosmotic stressKK186288PMSRUniversal StressKK188101UspKK18708Urp		Fibronectin binding protein	KKI87777	FbpA
KI87260 Sortase KI84941 Sortase KI86106 Sortase KI86106 Sortase KI84754 Sortase Flagellin KI85107 Flagellin_C KI87499 Flagellin_N Triosephosphate isomerase KK185379 TIM Chaperoning GroEL KK184884 Cpn60_TCP1 Chaperoning GroES KK184885 Cpn0 Clp protease KK185377 CLP_protease Clog shock protein KK185387 CLP_protease KK18778N CLP_protease KK18798 Cold shock protein KK185462 SpC Heat shock protein KK184482 CspC Heat shock protein KK185463 Grup Heat shock protein KK184985 Grup Heat shock protein KK184983 DnaJ Migneric stress KK186288 PMSR Migneric stress KK186176 Usp Migneric stress KK186187 Usp KK188047 Usp Jand KK18810 Usp Jand		Sortase	KKI87126	Sortase
KI84941 Sortase KI86106 Sortase KI84754 Sortase Flagellin KK184754 Sortase Triosephosphate isomerase KK185107 Flagellin_N Triosephosphate isomerase KK184379 TIM Environmental stress resistance Chaperonins GroEL KK184884 Cpn60_TCP1 Chaperonins GroES KK184885 Cp100 Cl2protease Cl2 protease KK184850 CL2-protease KK18787 CL2-protease CL2 KK187878 CL2-protease KK187492 Heat shock protein KK184482 CsD Heat resistance KK18493 JnaJ Heat resistance KK184983 JnaJ Mider verses KK186288 PMSR Mider verses KK18770 Usp Mider verses KK18770 Usp KK187008 Usp Stress			KKI87260	Sortase
KKI86106SortaseFlagellinKKI84754SortaseFlagellinKKI85107Flagellin_CTriosephosphate isomeraseKKI85379TIMEnvironmental stress resistanceChaperonins GroELKKI8484Cpn60_TCP1Chaperonins GroESKKI8488Cpn10ClChaperonins GroESKKI8485Cl_PoroteaseChaperonins GroESKKI8485Cl_PoroteaseClop roteaseKKI8482Cl_PoroteaseClod shock proteinKK18482CspCHeat shock proteinKK18482GspCHeat resistanceKK184985GrpEHeat spock proteinKK184985GrpEQuidaive stressKK184983DnaJHuppersmotic stressKK184983DnaJUniversal StressKK186288MSRHuiversal StressKK18770UspKK18770KUspLip			KKI84941	Sortase
KI84754SortaseFlagellinKK185107Flagellin_CTriosephosphate isomeraseKK185179TIMEnvironmental stress resistanceChaperonins GroELKK18484Cpn60_TCP1Chaperonins GroESKK18485Cpn10Clp proteaseKK184682CLP_proteaseClp proteaseKK185387CLP_proteaseCold shock proteinKK18482CspCHeat shock proteinKK18485GSDHeat resistanceKK18985GrpEHeat resistanceKK184985GrpEOxidative stressKK184983DnaJOxidative stressKK186288PMSRUniversal StressKK18777UspKK187402UspKK187470Universal StressKK187470UspKK187405UspKK187405KK187405UspKK187405KK187405UspKK187405KK187405UspKK187405KK187406Usp			KKI86106	Sortase
FlagellinKKI85107Flagellin_CKKI87499Flagellin_NTriosephosphate isomeraseKKI85379TIMEnvironmental stress resistanceChaperonins GroELKKI8488Cpn00_TCP1Chaperonins GroELKKI8485Cpn10Chaperonins GroESKKI8485CLP_proteaseClp proteaseKKI85387CLP_proteaseCold shock proteinKKI8482CSDHeat shock proteinKKI8482CSDHeat resistanceKKI84985GrpEHeat resistanceKKI84985DnalHyperosmotic stressKKI8402SPCKKI86288PMSRMSRUniversal StressKKI84787UspKKI87870UspKKI84787KKI87408UspJandKKI87408UspJandKKI87408UspJandKKI87408UspJandKKI87408UspJandKKI87408UspJandKKI87408UspJand			KKI84754	Sortase
KKI87499Flagellin_NTriosephosphate isomeraseKKI85379TIMEnvironmental stress resistanceChaperonins GroELKKI84884Cpn60_TCP1Chaperonins GroESKKI84885Cpn10Clp proteaseKKI84682CLP_proteaseKKI85387CLP_proteaseKKI87788CLP_proteaseCold shock proteinKKI87492CSDHeat shock proteinKKI84885GrpEHeat resistanceKKI84985GrpEHyperosmotic stressKKI86288PMSROxidative stressKKI86288PMSRUniversal StressKKI84787UspKKI8510UspKKI8510UspKKI87408Usp		Flagellin	KKI85107	Flagellin_C
Triosephosphate isomeraseKKI85379TIMEnvironmental stress resistanceChaperonins GroELKKI84884Cpn60_TCP1Chaperonins GroESKKI84885Cpn10Clp proteaseKKI84885CLP_proteaseClp proteaseKKI85387CLP_proteaseKKI87878CLP_proteaseCold shock proteinKKI84482CspCKKI87492CSDHeat shock proteinKKI85866HSP33Heat resistanceKKI84985GrpEHyperosmotic stressKKI86288PMSROxidative stressKKI84787UspUniversal StressKKI84787UspKKI8510UspKKI8510			KKI87499	Flagellin_N
Environmental stress resistance Chaperonins GroEL KKI84884 Cpn60_TCP1 Chaperonins GroES KKI84885 Cpn10 Clp protease KKI84682 CLP_protease KKI85387 CLP_protease KKI87878 CLP_protease Cold shock protein KKI84482 CspC Cold shock protein KKI8546 HSP33 Heat shock protein KKI85846 HSP33 Heat resistance KKI84985 GrpE Hyperosmotic stress KKI84983 DnaJ Oxidative stress KKI86288 PMSR KKI8047 PMSR Universal Stress KKI84787 Usp		Triosephosphate isomerase	KKI85379	TIM
Chaperonins GroES KK184885 Cpn10 Clp protease KK184682 CLP_protease KK185387 CLP_protease KK187878 CLP_protease Cld shock protein KK184482 CspC Cold shock protein KK184482 CSD Heat shock protein KK18546 HSP33 Heat resistance KK184985 GrpE Hyperosmotic stress KK184983 DnaJ Oxidative stress KK184983 DnaJ Oxidative stress KK184983 DnaJ Oxidative stress KK184983 Usp	Environmental stress resistance	Chaperonins GroEL	KKI84884	Cpn60_TCP1
Clp protease KK184682 CLP_protease KK185387 CLP_protease KK187878 CLP_protease Cold shock protein KK18482 CspC Cold shock protein KK184482 CSD Heat shock protein KK185846 HSP33 Heat resistance KK184985 GrpE Hyperosmotic stress KK184983 DnaJ Oxidative stress KK184983 DnaJ Oxidative stress KK186288 PMSR KK188047 PMSR Universal Stress KK184787 Usp KK185810 Usp		Chaperonins GroES	KKI84885	Cpn10
KKI85387CLP_proteaseKKI85387CLP_proteaseKKI87878CLP_proteaseCold shock proteinKKI84482KKI87492CSDHeat shock proteinKKI85846Heat resistanceKKI84985Heat resistanceKKI84985Hyperosmotic stressKKI84983Oxidative stressKKI86288PMSRUniversal StressKKI84787UspKKI85810UspKKI87408Usp		Clp protease	KKI84682	CLP_protease
KKI87878CLP_proteaseCold shock proteinKKI87878CLP_proteaseCold shock proteinKKI84482CspCHeat shock proteinKKI87492CSDHeat resistanceKKI84985GrpEHyperosmotic stressKKI84983DnaJOxidative stressKKI86288PMSRUniversal StressKKI84787UspKKI85810UspKKI87408Usp			KKI85387	CLP_protease
Cold shock proteinKKI84482CspCKKI87492CSDHeat shock proteinKKI85846Heat resistanceKKI84985Heat resistanceKKI84985Hyperosmotic stressKKI84983Oxidative stressKKI86288PMSRUniversal StressKKI84787UspKKI85810UspKKI87408Usp			KKI87878	CLP_protease
KKI87492CSDHeat shock proteinKKI85846HSP33Heat resistanceKKI84985GrpEHyperosmotic stressKKI84983DnaJOxidative stressKKI86288PMSRUniversal StressKKI84787UspKKI85810UspKKI87408Usp		Cold shock protein	KKI84482	CspC
Heat shock proteinKKI85846HSP33Heat resistanceKKI84985GrpEHyperosmotic stressKKI84983DnaJOxidative stressKKI86288PMSRUniversal StressKKI84787UspKKI85810UspKKI87408Usp		-	KKI87492	CSD
Heat resistance KK184985 GrpE Hyperosmotic stress KK184983 DnaJ Oxidative stress KK186288 PMSR Universal Stress KK188047 PMSR Universal Stress KK184787 Usp KK185810 Usp		Heat shock protein	KKI85846	HSP33
Hyperosmotic stress KK184983 DnaJ Oxidative stress KK186288 PMSR KK188047 PMSR Universal Stress KK184787 Usp KK185810 Usp		Heat resistance	KKI84985	GrpE
Oxidative stress KK186288 PMSR KK188047 PMSR Universal Stress KK184787 Usp KK185810 Usp		Hyperosmotic stress	KKI84983	DnaJ
KK188047 PMSR Universal Stress KK184787 Usp KK185810 Usp KK187408 Usp		Oxidative stress	KKI86288	PMSR
Universal Stress KK184787 Usp KK185810 Usp KK187408 Usp			KKI88047	PMSR
KK185810 Usp KK187408 Usp		Universal Stress	KKI84787	Usp
			KKI85810	Usp
KKI07400 USP			KKI87408	Usp

*Located on LATY01000009 with locus tag WZ76_RS06065 †Located on LATY01000017 with locus tag WZ76_RS12025

Author contributions JJA contributed to the study conception, design, acquisition and analysis of data, drafting and critically revising the manuscript. MSK carried out the material preparation and data collection. RSM contributed to the study conception and review. All authors approved the final submitted manuscript.

Funding No external funding was received. The financial support for the research described in the manuscript was provided by Unique Biotech Limited, Hyderabad, India.

Data availability The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

Page 7 of 9 **116**

Compliance with ethical standards

Conflict of interest JJA, MSK and RSM are employed by Unique Biotech Limited, India, which is a manufacturer of probiotics. This does not alter our adherence to journal policies on sharing data and materials.

Ethics approval The research conducted for this article did not involve studies on humans or animals.

References

- Ahire JJ (2012) Studies on probiotic microorganism(s) and its biogenic metabolite(s). Dissertation, North Maharashtra University, India.
- Ahire JJ, Dicks LM (2014) 2, 3-Dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 58:2098– 2104. https://doi.org/10.1128/AAC.02397-13
- Ahire JJ, Mokashe NU, Patil HJ, Chaudhari BL (2013) Antioxidative potential of folate producing probiotic *Lactobacillus helveticus* CD6. J Food Sci Tech 50:26–34. https://doi.org/10.1007/s1319 7-011-0244-0
- Ahire JJ, Kashikar MS, Lakshmi SG, Madempudi R (2020a) Identification and characterization of antimicrobial peptide produced by indigenously isolated *Bacillus paralicheniformis* UBBLi30 strain. 3 Biotech 10:112. https://doi.org/10.1007/s13205-020-2109-6
- Ahire JJ, Kashikar MS, Madempudi RS (2020b) Survival and germination of *Bacillus clausii* UBBC07 spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production. Front Microbiol 11:1010. https://doi.org/10.3389/ fmicb.2020.01010
- Ahire JJ, Neelamraju J, Madempudi RS (2020c) Behavior of *Bacillus coagulans* Unique IS2 spores during passage through the simulator of human intestinal microbial ecosystem (SHIME) model. LWT-Food Sci Technol 124:109196. https://doi.org/10.1016/j. lwt.2020.109196
- Azcarate-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR (2004) Identification and inactivation of genetic loci involved with *Lactobacillus acidophilus* acid tolerance. Appl Environ Microbiol 70:5315–5322. https://doi.org/10.1128/ AEM.70.9.5315-5322.2004
- Bellon-Fontaine MN, Rault J, van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electronacceptor or Lewis acid-base properties of microbial cells. Colloids Surf B 7:47–53. https://doi.org/10.1016/0927-7765(96)01272-6
- Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P (2017) Importance of the gastrointestinal life cycle of *Bacillus* for probiotic functionality. J Food Sci Technol 54:2570–2584. https://doi. org/10.1007/s13197-017-2688-3
- Bhushan B, Singh BP, Saini K, Kumari M, Tomar SK, Mishra V (2019) Role of microbes, metabolites and effector compounds in host– microbiota interaction: a pharmacological outlook. Environ Chem Lett 17:1801–1820. https://doi.org/10.1007/s10311-019-00914-9
- Bhushan B, Sakhare SM, Narayan KS, Kumari M, Mishra V, Dicks LM (2020) Characterization of riboflavin-producing strains of *Lactobacillus plantarum* as potential probiotic candidate through *in vitro* assessment and principal component analysis. Probiot Antimicro Prot. https://doi.org/10.1007/s12602-020-09696-x
- Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA III, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm

for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

- Cenci G, Caldini TF (2006) Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of *Bacillus clausii*. J Appl Microbiol 101:1208–1215. https://doi.org/10.11 11/j.1365-2672.2006.03042.x
- Cotter PD, Hill C (2003) Surviving the acid test: responses of Grampositive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453. https://doi.org/10.1128/mmbr.67.3.429-453.2003
- Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of *Bacillus* probiotics available for human use. Appl Environ Microbiol 70:2161–2171. https://doi.org/10.1128/ AEM.70.4.2161-2171.2004
- Ghelardi E, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S (2015) Survival and persistence of *Bacillus clausii* in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J Appl Microbiol 119:552–559. https://doi. org/10.1111/jam.12848
- Giel JL, Sorg JA, Sonenshein AL, Zhu J (2010) Metabolism of bile salts in mice influences spore germination in *Clostridium difficile*. PLoS ONE 5:e8740. https://doi.org/10.1371/journal.pone.00087 40
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi. org/10.1038/nrgastro.2014.66
- Hyronimus B, Le Marrec C, Sassi AH, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197. https://doi.org/10.1016/s0168 -1605(00)00366-4
- Ianiro G, Rizzatti G, Plomer M, Lopetuso L, Scaldaferri F, Franceschi F, Cammarota G, Gasbarrini A (2018) *Bacillus clausii* for the treatment of acute diarrhea in children: a systematic review and meta-analysis of randomized controlled trials. Nutrients 8:1074. https://doi.org/10.3390/nu10081074
- Jindal S, Anand S (2018) Comparison of adhesion characteristics of common dairy sporeformers and their spores on unmodified and modified stainless steel contact surfaces. J Dairy Sci 101:5799– 5808. https://doi.org/10.3168/jds.2017-14179
- Khatri I, Sharma G, Subramanian S (2019) Composite genome sequence of *Bacillus clausii*, a probiotic commercially available as Enterogermina[®], and insights into its probiotic properties. BMC Microbiol 19:307. https://doi.org/10.1186/s12866-019-1680-7
- Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS (2017) Safety assesment of *Bacillus clausii* UBBC07, a spore forming probiotic. Toxicol Rep 4:62–71. https://doi.org/10.1016/j.toxrep.2016.12.004
- Marseglia GL, Tosca M, Cirillo I, Licari A, Leone M, Marseglia A, Castellazzi AM, Ciprandi G (2007) Efficacy of *Bacillus clausii* spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag 1:13–17. https://doi. org/10.2147/tcrm.2007.3.1.13
- Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic *Bacillus* strains: proposal for nine new species. Microbiol 141:1745–1761. https://doi.org/10.1099/13500872-141-7-1745
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226
- Paparo L, Tripodi L, Bruno C, Pisapia L, Damiano C, Pastore L, Canani RB (2020) Protective action of *Bacillus clausii* probiotic strains in an *in vitro* model of *Rotavirus* infection. Sci Rep 10:12636. https ://doi.org/10.1038/s41598-020-69533-7

- Patel AK, Ahire JJ, Pawar SP, Chaudhari BL, Chincholkar SB (2009) Comparative accounts of probiotic characteristics of *Bacillus* spp. isolated from food wastes. Food Res Int 42:505–510. https://doi. org/10.1016/j.foodres.2009.01.013
- Patel C, Patel P, Acharya S (2019) Therapeutic prospective of a spore forming probiotic-*Bacillus clausii* UBBC07 against acetaminophen-induced uremia in rats. Probiot Antimicro Prot 12:253– 258. https://doi.org/10.1007/s12602-019-09540-x
- Pedersen C, Jonsson H, Lindberg JE, Roos S (2004) Microbiological characterization of wet wheat distillers grain, with focus on isolation of lactobacilli with potential as probiotics. Appl Environ Microbiol 70:1522–1527. https://doi.org/10.1128/ AEM.70.3.1522-1527.2004
- Prete R, Long SL, Gallardo AL, Gahan CG, Corsetti A, Joyce SA (2020) Beneficial bile acid metabolism from *Lactobacillus plantarum* of food origin. Sci Rep 10:1165. https://doi.org/10.1038/ s41598-020-58069-5
- Price CE, Reid SJ, Driessen AJ, Abratt VR (2006) The *Bifidobacte*rium longum NCIMB 702259T ctr gene codes for a novel cholate transporter. Appl Environ Microbiol 72:923–926. https://doi. org/10.1128/AEM.72.1.923-926.2006
- Romano A, Trip H, Lolkema JS, Lucas PM (2013) Three-component lysine/ornithine decarboxylation system in *Lactobacillus*

saerimneri 30a. J Bacteriol 195:1249-1254. https://doi. org/10.1128/JB.02070-12

- Sharma S, Devi PB, Ragul K, Shetty PH (2020) Probiotic potential of *Bacillus* strains isolated from an acidic fermented food Idli. Probiot Antimicro Prot 12:1502–1513. https://doi.org/10.1007/ s12602-020-09650-x
- Sudha MR, Bhonagiri S, Kumar MA (2013) Efficacy of *Bacillus clausii* strain UBBC-07 in the treatment of patients suffering from acute diarrhoea. Benef Microbes 4:211–216. https://doi.org/10.3920/ BM2012.0034
- Sudha MR, Jayanthi N, Pandey DC, Verma AK (2019) Bacillus clausii UBBC-07 reduces severity of diarrhoea in children under 5 years of age: a double blind placebo controlled study. Benef Microbes 10:149–154. https://doi.org/10.3920/BM2018.0094
- Upadrasta A, Pitta S, Madempudi RS (2016) Draft genome sequence of *Bacillus clausii* UBBC07, a spore-forming probiotic strain. Genome Announc 4:e00235-e316. https://doi.org/10.1128/genom eA.00235-16
- Vecchione A, Celandroni F, Mazzantini D, Senesi S, Lupetti A, Ghelardi E (2018) Compositional quality and potential gastrointestinal behavior of probiotic products commercialized in Italy. Front Med 5:59. https://doi.org/10.3389/fmed.2018.00059

