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Abstract

Motivation: Advances in experimental and imaging techniques have allowed for unprecedented

insights into the dynamical processes within individual cells. However, many facets of intracellular

dynamics remain hidden, or can be measured only indirectly. This makes it challenging to recon-

struct the regulatory networks that govern the biochemical processes underlying various cell func-

tions. Current estimation techniques for inferring reaction rates frequently rely on marginalization

over unobserved processes and states. Even in simple systems this approach can be computation-

ally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates.

Therefore we will require alternative approaches to efficiently uncover the interactions in complex

biochemical networks.

Results: We propose a Bayesian inference framework based on replacing uninteresting or unob-

served reactions with time delays. Although the resulting models are non-Markovian, recent results

on stochastic systems with random delays allow us to rigorously obtain expressions for the likeli-

hoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate

reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advan-

tages, and potential pitfalls, of the approach using a birth–death model with both synthetic and

experimental data, and show that we can robustly infer model parameters using a relatively small

number of measurements. We demonstrate how to do so even when only the relative molecule

count within the cell is measured, as in the case of fluorescence microscopy.

Availability and implementation: Accompanying code in R is available at https://github.com/

cbskust/DDE_BD.

Contact: josic@math.uh.edu or jaekkim@kaist.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The dynamics of intracellular processes are determined by the struc-

ture and rates of interactions between different molecular species.

However, stochasticity and limitations of experimental methods

make it difficult to infer the characteristics of these interactions

from data. On the single-cell level, different molecular species can

occur in small number, correlate with phenotype, and localize
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within different parts of the cell. The resulting dynamics can thus be

highly variable over time, and across the population. Averaging

over such fluctuations can lead to inaccurate representations of

the underlying biology (Cai et al., 2006), and inference methods

therefore need to account for stochasticity within individual

cells, and variability across the population (Kaern et al., 2005;

Kepler and Elston, 2001; Raj and van Oudenaarden, 2008; Smith

and Grima, 2018).

Different statistical approaches have been developed to fit sto-

chastic models to data from single-cell assays, offering a window

into the dynamical processes within individual cells (Bergmann

et al., 2016; Boys et al., 2008; Choi et al., 2017; Daigle et al., 2012,

2015; Poovathingal and Gunawan, 2010; Zechner et al., 2014;

Zimmer et al., 2015). Among these, Bayesian methods have been

particularly promising. To apply Bayesian techniques, one typically

assumes a model for the network of interactions, postulates a prior

over model parameters, and uses experimental data to determine a

posterior and estimates of unknown parameters (Boys et al., 2008;

Choi and Rempala, 2012; Choi et al., 2017; Golightly and

Wilkinson, 2005). However, Bayesian approaches can suffer from

the curse of dimensionality (Blum et al., 2013), and are thus difficult

to implement directly when the number of parameters is high, or the

network of interactions is large. The problem is exacerbated when

the system is not fully observed, as here one must marginalize over

the unobserved components of the system.

One way to circumvent this problem is to replace uninteresting or

unobserved reactions with time delays (Barrio et al., 2013; Bel et al.,

2009; Gomez et al., 2016; Koren�ci�c et al., 2012; Leier et al., 2014).

For instance, the production of regulator proteins requires on the order

of minutes: Production involves transcription, translation and post-

translational steps such as protein folding, oligomerization and matur-

ation (Golding et al., 2005; Kaern et al., 2005). Rather than model

each step individually (Fritz et al., 2014; Megerle et al., 2008), one can

describe protein production by an effective, random delay that repre-

sents a sequence of noisy biochemical processes with fluctuating com-

pletion times (McAdams and Shapiro, 1995). Related approaches have

been used to derive effective low-dimensional models for oscillations

induced by chain delays (Barrio et al., 2006; Chen et al., 2015; Hussain

et al., 2014; Mather et al., 2009), and in cases where transcription

oscillates stochastically between on and off states (Lewis, 2003).

The theory of stochastic systems with random delays is well-

understood (Gupta et al., 2014; Gupta and Rawlings, 2014). The

Gillespie algorithm, Langevin equations and mean-field models can

be extended to systems with distributed delays, allowing for efficient

sampling at small, intermediate, or high molecule counts, respective-

ly (Brett and Galla, 2013; Gupta et al., 2014; Schlicht and Winkler,

2008). However, using such models involves a compromise: Adding

delay can lead to other challenges, as the resulting models are typic-

ally non-Markovian. In particular, this complicates the derivation of

parameter likelihood functions, making such models more difficult

to analyze and use for parameter inference (Calderazzo et al., 2019;

Heron et al., 2007). Thus, developing a general inference framework

for biochemical reaction networks with distributed delays that

works even when molecule counts are low remains a challenging

open problem. Important progress has been made for certain delay

stochastic differential equations (Heron et al., 2007), and delay lin-

ear noise approximations (Calderazzo et al., 2019). These

approaches rest on the assumption that molecule counts are high

enough to allow delay stochastic differential equations to accurately

capture system dynamics (Gupta et al., 2014). However, one must

frequently deal with low molecule counts when using imaging data

obtained from fluorescent imaging of single cells.

To address this problem, we describe a systematic way to derive

likelihoods for the parameters in common biochemical reaction

models that include delays. These results allow us to extend MCMC

methods to efficiently estimate reaction rates, and delay distribution

parameters from single-cell assays even when molecular counts are

low. We illustrate the advantages and limitations of our approach

using a delay birth/death process, which provides a simple model of

gene expression. Our method is robust: It allows us to recover the

mean delay even when the delay distribution is misspecified. When

only a relative measure of molecule count is available, such as a

fluorescence trace, delay parameters can be accurately estimated if

the dilution rate can be estimated separately. Our method performs

well on experimental data: We show that given the dilution rate of

YFP (yellow fluorescent protein) estimated directly from observed

cell growth rates, we can infer the time delay of the synthesis of YFP

from multiple cell trajectories measured using quantitative time-

lapse microscopy. Our approach therefore provides a robust basis

for the development of hierarchical networks inference methods that

can be used to characterize biochemical processes across cellular

populations.

2 Materials and methods

2.1 Derivation of the likelihood function
Following Boys et al. (2008) we consider a biochemical reaction net-

work consisting of u species, Y1; . . . ;Yu and v reactions, R1; . . . ;Rv.

Reaction Rk is given by

Rk : pk1Y1 þ pk2Y2 þ � � � þ pkuYu ! qk1Y1 þ qk2Y2 þ � � � þ qkuYu;

where the pkj and qkj are the stoichiometric coefficients. Reaction Rk

is equipped with rate constant hk and reaction initiation propensity

hkðy; hkÞ, where yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; . . . ; yuðtÞÞ represents the number

of molecules of each chemical species at time t.

Suppose that at least one reaction Rk� , once initiated, requires a

random time to complete. Let tinitial and tfinal denote times at which

this reaction initiates and completes, respectively. We call tfinal �
tinitial the (random) delay associated with reaction Rk� . We assume

that delayed reactions only change the state of the system upon com-

pletion, and do not consider consuming reactions (Anderson, 2008;

Cai, 2007). For instance, production of a given protein starts with

the initiation of transcription, but the number of mature proteins in

the system changes only after transcription, translation and post-

translational steps result in a fully functional protein. We leave the

case of delayed consuming reactions, which change the system state

at both their initiation and completion, for future work.

Let gk be the measure supported on ½0;1Þ that describes the

delay distribution associated with reaction Rk. We assume, for the

sake of simplicity, that these distributions do not depend on time or

the state of the system, and that each gk depends on a vector of

parameters Dk ¼ ðDk1;Dk2; . . . ;Dklk Þ. In this setting, Schlicht and

Winkler (2008) have proven the existence of reaction completion

propensities defined by

fkðt; y; hk;DkÞ ¼
ðt

0

hkðyðt � sÞ; hkÞdgkðsÞ; (1)

where y denotes the trajectory of the chemical reaction network

from time 0 to time T. These completion propensities may be under-

stood intuitively by conditioning on the present. Suppose that a reac-

tion of type k completes at time t. Conditioned on this event, gk

describes the probability distribution for the initiation time t – s of
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this reaction. On the level of propensities, one therefore computes fk
by convolving hk with the delay distribution gk.

The completion propensities fk define the effective rates of reac-

tions at time t, and allow us to write the likelihood of the parameters

for an observed sequence of completed reactions in a form analo-

gous to the case without delays (Boys et al., 2008). Integrating the

completion propensities in time, define

Kkðt; y; hk;DkÞ ¼
Ð t
0 fkðs; y; hk;DkÞds;

K0ðt; y; h;DÞ ¼
Xv

k¼1

Kkðt; y; hk;DkÞ;

where h ¼ ðh1; h2; . . . ; hvÞ is the vector of reaction rate constants and

D ¼ fDklg is the collection of parameters that define all of the delay

measures, gk. If the state, yðtÞ; of the chemical reaction network is

known for all t 2 ½0;T�, then the likelihood function for the set of

delay parameters D and the vector of rate constants h is given by

Lðyjh;DÞ ¼
YT�1

i¼0

Yni

j¼1

fkij
ðtij; y; hkij

;Dkij
Þ

2
4

3
5

� expð�K0ðT; y; h;DÞÞ:

(2)

Here ni denotes the total number of reactions that complete over the

time interval ði; iþ 1�, and for 1 � j � ni, we denote the jth reaction

that completes within ði; iþ 1� using the pair ðtij; kijÞ, where reaction

Rkij
completes at time tij. Details of the derivation are provided in

the Supplementary Methods.

When sampling trajectories of a biochemical reaction network,

the ‘forward’ view of delayed chemical kinetics is typically used:

When a delayed reaction initiates, a (random) completion time is

drawn, and the change in the system is postponed until the future

time at which the reaction completes. In contrast, we obtain the like-

lihood function in Eq. (2) by adopting a ‘backward’ view of delayed

chemical kinetics: We assume that we know only the reaction com-

pletion times, and treat the corresponding unobserved reaction initi-

ation times that occurred in the past as random quantities. This

backward view is useful for the inference problem because reaction

initiation times are typically not observed experimentally. By con-

trast, sampling algorithms such as the Gillespie algorithm typically

adopt a ‘forward’ approach, where once a reaction is initiated and

recorded, the corresponding reaction completion time is random.

2.2 Approximate likelihood given observations at

discrete times
Assume now that we only observe the system, y(t), at a discrete set

of times, t ¼ 0;1; . . . ;T � 1;T, yielding a vector of measurements

yd ¼ ðyð0Þ; yð1Þ; . . . ; yðT � 1Þ; yðTÞÞ. These observations can be

used to approximate the exact likelihood given by Eq. (2) using a

s-leaping approach (Gupta and Rawlings, 2014). First we replace

the propensities, fk, defined in Eq. (1) with approximate propen-

sities, f̂ k; that are constant between observations. We obtain f̂ k by

averaging fk over ½i; iþ 1�; and interpolating hk linearly between

measurements (see Supplementary Methods for details):

f̂ kði; yd; hk;DkÞ ¼
Xi

m¼0

ðmþ1

m

ðt

t�1

ðsþ 1� tÞhkðyði�mÞ; hkÞ

þðt � sÞhkðyði�mþ 1Þ; hkÞ dgkðsÞdt;

where 0 � i � T � 1, and Dk denotes the vector of parameters that

define the measure gk as before. Note that we do not discretize the

delay distributions.

Our formula for f̂ k is valid whenever the delay measure gk is

defined by a probability density function. For reactions that do not

involve delay (that is, when gk is a Dirac-delta measure at zero), our

formula for f̂ k reduces to

f̂ kði; yd; hkÞ ¼
hkðyðiÞ; hkÞ þ hkðyðiþ 1Þ; hkÞ

2
:

Using the f̂ k the likelihood in Eq. (2) can be approximated by

(Gupta et al., 2014):

bLðyd jh;DÞ ¼ bLððyð0Þ; yð1Þ; . . . ; yðTÞÞjh;DÞ

¼
YT�1

i¼0

Yv

k¼1

f̂ kði; yd; hk;DkÞrki

rki!

2
4

3
5

� expð�K̂0ðT; y; h;DÞÞ;

(3)

where K̂0ðT; y; h;DÞ ¼
Pv

k¼1

PT�1
i¼0 f̂ kði; yd; hk;DkÞ; and rki denotes

the number of reactions of type k whose completion has been

observed in the interval ði; iþ 1�. When the approximation in Eq. (3)

is valid (for instance when the reaction rates are constant between

observations), then conditioned on system history up to time i, the

number of reactions of type k that have been completed within

ði; iþ 1� follows a Poisson distribution with mean f̂ kði; yd; hk;DkÞ.

2.3 Statistical inference of model parameters using

discrete-time data
We next describe an MCMC algorithm for obtaining the posterior dis-

tribution over the model parameters, (h;D), using the approximate like-

lihood given in Eq. (3) and prior distributions over the unknown

parameters. Bayes’ Theorem and Eq. (3) allow us to express the poster-

ior distribution over model parameters given the observed data as:

pðh;DjydÞ / pðhÞpðDÞbLðydjh;DÞ: (4)

Here pðhÞ and pðDÞ are priors over the rate and delay parameters, re-

spectively. The prior pðDÞ can be chosen depending on the delay distri-

butions. We used gamma distributions for pðhÞ because the support of

each hk is positive. Moreover, for mass action kinetics the propensity

function is separable, so that hkðyðtÞ; hkÞ ¼ hkgkðyðtÞÞ, and hence the

gamma distribution defines a conjugate prior (Wilkinson, 2011).

Samples from the posterior distribution given by Eq. (4) can be

generated given complete trajectories of all species (i.e. ðtij; kijÞ)
using Gibbs sampling (Choi and Rempala, 2012; Smith and

Roberts, 1993). In order to sample h and D from their conditional

posterior distributions, we use the Metroplis-Hastings algorithm

(Tierney, 1994). However, sampling h and D from their conditional

posterior distributions requires knowledge of the number of com-

pleted reactions, rki. Crucially, the discrete-time measurements y(i),

i ¼ 0;1; . . . ;T, do not uniquely determine the number of completed

reactions between observations. We thus need to sample the number

of completed reactions rki during each step of Gibbs sampling.

To do so, we use the block updating method described by Boys et al.

(2008) to sample the number of completed reactions of each type

during each time interval ði; iþ 1� given the observed system states

y(i) and yðiþ 1Þ, using the Metropolis-Hastings algorithm with a

random walk. For the proposal distributions of the number of reac-

tions, we use the Skellam distribution (Boys et al., 2008; Johnson

and Kotz, 1985). Since we formulate the posterior in Eq. (4) using

an approximate likelihood that reflects a s-leaping approach, we do

not consider the specific times at which reactions have been com-

pleted during each time interval ði; iþ 1�; but only the total number

of completed reactions (see Supplementary Methods for details).
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The following algorithm can then be used to generate samples

from the approximate posterior distribution given by Eq. (4).

1. Initialize values for the reaction rates h, parameters for the delay

distributions, D and reaction counts rki for the hidden trajectory.

Use gamma priors for the rates, hk.

2. Sample, in order, hk, k ¼ 1; . . . ; v, from the conditional posterior dis-

tribution, given all other rate constants, hl; l 6¼ k, delay parameters D
and reaction numbers. If y(t) and hk are separable in the propensity

function hkðyðtÞ; hkÞ, then sample hk from the gamma posterior dis-

tribution. Otherwise, use the Metropolis-Hastings algorithm.

3. Sample, in order, Dkl, 1 � k � v and 1 � l � lk, from the condi-

tional posterior, given h and Dk0 l0 for all ðk0; l0Þ 6¼ ðk; lÞ, using the

Metropolis-Hastings algorithm since the conditional posterior

does not follow a known distribution.

4. Sample rki for all k ¼ 1; . . . ; v and i ¼ 0; . . . ;T � 1, given h, D and

the observed trajectory, yd, using the block updating method.

5. Repeat steps 2–4 until convergence is achieved.

In the Supplementary Methods we provide expressions for all the

likelihoods, and illustrate the algorithm in the case of a stochastic

birth–death process with delayed birth.

2.4 Measurement of YFP level and cell area of

individual cells
We tested our algorithm using experimental data from our previous

work (Cheng et al., 2017). Specifically, the PBAD�sfyfp was cloned to

a medium copy-number plasmid, which was later transformed into

E.coli JS006A strain which was, in turn, derived from the JS006

strain (Stricker et al., 2008) by introducing a constitutively express-

ing AraC into the genome. To measure single-cell YFP expression,

we cultured the cells in a custom-designed microfluidic device,

mounted on a Nikon Eclipse Ti Microscope. Phase contrast and

YFP images were taken every 1 min. Background YFP was first

recorded for 12 min, then the medium was switched to include 2%

ARA to trigger YFP expression. After the experiment, phase-

contrast images were segmented and analyzed using custom Matlab

code (https://github.com/alanavc/rodtracker). We analyzed results

of two experimental runs. The fluorescence is considerably lower in

the second experiment which is likely due to the differences in the

heights of the PDMS chip, and conditions of the excitation light

bulb between the two experiments.

2.5 Relating fluorescence and molecular count
To estimate the fluorescence signal per YFP molecule (c), we meas-

ured how the YFP signal of a mother cell is partitioned among two

daughter cells. To measure the partitioning during a decreasing

phase of the fluoresce signal we followed (Rosenfeld et al., 2005).

We used a genetic circuit with PBAD -lacI and Plac/ara-sfyfp, which

forms an incoherent feedforward loop and thus generates a single

pulse of YFP (Cheng et al., 2017). Specifically, during the decreasing

phase after reaching the peak of the pulse, total YFP signals from a

mother cell before a cell division and from two daughter cells after

the cell division were measured.

3 Results

3.1 Delay is estimated accurately and precisely with

sufficient data
We first tested whether our algorithm can be used to identify the

mean, ls and variance, r2
s , of the delay distribution, as well as the re-

action rates of a delayed, stochastic birth–death process:

����!A

s�Cða;bÞ
X����!B

1: (5)

In the generative model, we used gamma distributed delay in the

birth reactions, assuming that creation of protein is the result of a

chain of exponentially distributed monomolecular reaction steps

(Barrio et al., 2013; Leier et al., 2014), approximable by a gamma

distribution (Bel et al., 2009; Calderazzo et al., 2019; Heron et al.,

2007). We generated 500 sample trajectories from the model given

by Eq. (5) using the delayed Gillespie algorithm (Gupta et al., 2014),

and subsampled each trajectory by recording the molecular count at

evenly spaced intervals (Fig. 1a). A considerable number of mole-

cules was produced before the mean delay time (6 min) due to vari-

ability of reaction delays (Fig. 1a inset). Therefore, using either the

earliest detectable signal, or a threshold to estimate delay can lead to

biased estimates of the mean delay, ls.

We inferred the two production and degradation rates, A, B, as

well as the delay distribution parameters, a; b; using the MCMC al-

gorithm described in the Section 2 and Supplementary Methods.

Although we used non-informative priors for all parameters, the re-

action rates could be accurately estimated from a single subsampled

realization of the process (orange trajectory in Fig. 1a, and posterior

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Estimation of the delay distributions using multiple trajectories is ac-

curate and precise. (a) Simulated trajectories of a delayed stochastic birth–

death process (Eq. 5) with rate parameters A¼30 min–1, B¼0.05 min–1 and

delay s � Cð18=5; 3=5Þ, i.e. ls ¼ 6 min and r2
s ¼ 10 min2. We assumed that

X ð0Þ ¼ 0. Trajectories used for inference were sampled at 1 min intervals. (b–

d) MCMC generated samples from the posterior distributions over parame-

ters using a single trajectory (orange) or 40 trajectories (blue). While the rate

parameters, A, B, can be estimated well using a single trajectory (b), estima-

tion of the delay s � Cða; bÞ requires multiple trajectories (c and d). Here, the

sample values were normalized by dividing with the true parameter values.

(e) Box plots of 100 posterior means using an increasing number of trajecto-

ries. Subsets of between 5 and 40 trajectories were chosen randomly and re-

peatedly from a set of 500 simulations. Estimates were normalized by

dividing by the true parameter values. (f) Increased sampling rate leads to

more accurate estimation. Note that sparser measurements, at intervals of 2

and 6 min, still allowed for reasonably accurate and precise estimates of all

parameters, as long as a sufficient number of trajectories was used (40 in this

case). (Color version of this figure is available at Bioinformatics online.)
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distribution in Fig. 1b). However, the posterior distribution over the

delay parameters revealed a strong correlation between the two

(Fig. 1c), making the delay mean and variance difficult to estimate

concurrently (Fig. 1d). Increasing the number of sampled trajectories

in the estimation to 40 resulted in a precise estimate of all parame-

ters (Fig. 1b–d). The precision of posterior mean estimates increased

with the number of trajectories used for estimation (Fig. 1e).

Furthermore, as we increased the sampling rate, the approximate

likelihood (Eq. 3) became more accurate, and, as a result, the accur-

acy of estimates improved (Fig. 1f). We thus expect that a sufficient

number of trajectories and a sufficiently high sampling rate are

needed for precise and accurate estimation, respectively. More data

(i.e. a larger number of trajectories/a higher sampling rate) is needed

as the noise level of the system increases (see Supplementary Fig. S1

for details). However, with a sufficiently large number of trajecto-

ries, even sparsely sampled data can provide reasonably accurate

estimates of all model parameters. This is true even when the time

between observations equals the mean delay time (Fig. 1f).

3.2 Mean delay can be estimated when the underlying

time delay distribution is misspecified
We next asked whether delay mean and variance can be estimated

even when the delay distribution is misspecified. To do so we gener-

ated sample trajectories with delays that followed a beta and inverse

gamma distribution with equal mean and variance (see Fig. 2a).

While the gamma distribution assumed in the estimation algorithm

has infinite support and decays exponentially, the beta distribution

has compact support, while the inverse-gamma distribution has a

heavy tail.

Given sufficiently many observed trajectories, our algorithm pro-

vided accurate and precise estimates of the rates, and mean delay

(Fig. 2b). However, the estimate of delay variance, r2
s ; was biased

when the delay distribution was misspecified, with a systematic

underestimate when the true delay followed an inverse-gamma dis-

tribution, and overestimate when the true delay followed a beta

distribution.

3.3 With relative molecular level measurements

estimation of delay requires separate estimates

of dilution rate
Frequently we cannot measure the actual molecular count within a

cell directly. For instance, measurements of fluorescence reporter in-

tensity are approximately proportional to the absolute species

number, but the proportionality constant cannot always be deter-

mined precisely, and hence estimates of molecular number from

such measurements can be noisy (Cai et al., 2006; Rosenfeld et al.,

2005, 2006; Yu et al., 2006).

We next asked how such errors in the estimates of absolute pro-

tein numbers affect delay distribution inference. To address this

question we scaled the sample trajectories in Figure 1a to mimic a

twofold error in the estimate of the proportionality constant used to

convert fluorescence to molecular counts. Such scaling changes the

mean and the variance of the signal differently (Fig. 3a) distorting

the level of intrinsic fluctuation, as measured by the coefficient of

variation. In turn, a mis-scaling can lead to biases in estimation of

all parameters including the mean, ls; and variance, r2
s ; of the delay

(Fig. 3b). Thus inaccurate measurements of molecular levels can dis-

tort delay estimates.

Advances in lapse imaging techniques are making it easier to esti-

mate cell growth rates, and resulting dilution rates, B, directly

(Megerle et al., 2008; Norman et al., 2013; Taheri-Araghi et al.,

2015). We therefore assumed next that the dilution rate, B, can be

estimated separately, and set to their true value. Once we did so we

were able to accurately and precisely estimate delay distribution

parameters, even with incorrectly scaled data (Fig. 3c). This indi-

cates that identifying the timescale of the birth–death process by cor-

rectly estimating the dilution rate, B, can overcome biases due to

incorrectly scaled data. Thus our algorithm can be used to effective-

ly infer delays even when only relative molecular levels are known,

or when the conversion of fluorescence to protein counts is not

accurate.

Furthermore, we found that having access to a separate estimate

of the dilution rate, B, can resolve unidentifiability issue when only

partial data is available. For instance, as their number increases,

cells in microfluidic traps can become crowded and their growth can

slow as a result (Delarue et al., 2016; Volfson et al., 2008). To en-

sure measurements under minimal strains on the cells, sometimes we

use only the initial fluorescence measurements before crowding can

impact gene expression (e.g. the first 25 min in Fig. 1a). The initial

part of the fluorescence trajectory, before saturation, but after YFP

maturation, is approximately linear with slope �A=B. As a conse-

quence only A/B is identifiable from data. However, if the dilution

rate, B, can be estimated separately, the growth rate, A, can be esti-

mated even from partial data (Supplementary Fig. S2). Importantly,

the delay parameters, ls and r2
s ; can also be accurately estimated

from partial data (Supplementary Fig. S2). We therefore conclude

(a) (b)

Fig. 2. The mean, but not the variance of the delay can be accurately and pre-

cisely estimated when the delay distribution is misspecified. (a) Three types

of delay distributions: Cð18=5; 3=5Þ, Inverse-Cð28=5; 138=5Þ and 12 � Bð1:3; 1:3Þ.
For all distributions ls ¼ 6; and r2

s ¼ 10. (b) A box plot of 100 posterior mean

estimates. As in Fig. 1, parameters were estimated using 40 sample trajecto-

ries randomly and repeatedly chosen from a set of 500 trajectories generated

assuming one of the three delay distributions shown in panel (a). Here the

estimates were normalized by dividing with their true values

(a) (b)

(c)

Fig. 3. Measurements of dilution rate allow for accurate estimation when only

relative molecular levels measurements are available. (a) The average

(dashed) and variance (solid) of the 500 simulated trajectories in Figure 1a,

scaled by 0.5, 1 and 2. The average and variance of the scaled trajectories

were scaled by different amounts (blue and green). (b) Using scaled trajecto-

ries to estimate delays leads to large biases. Here, we show box plots based

of 100 posterior means, each estimated using 40 subsampled trajectories. (c)

When the dilution rate, B, is known, the delay distribution can be accurately

and precisely estimated even with incorrectly scaled data. (Color version of

this figure is available at Bioinformatics online.)
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that a separate measurement of the dilution rate, B, allows for suc-

cessful estimation of time delays from limited, and misscaled data.

3.4 Estimation of time delay in transcriptional and

translational regulation
We next tested our algorithm on experimental data obtained using

time-lapse fluorescence microscopy. As protein synthesis is not in-

stantaneous, there can be considerable delay between gene activa-

tion and the formation of functional proteins (Fig. 4a). To estimate

this delay, we used a PBAD reporter-only circuit, which we con-

structed previously by placing a YFP gene under control of the PBAD

promoter in E.coli (Cheng et al., 2017). In this circuit the addition

of Arabinose (ARA) promotes the rapid activation of AraC, which

promotes the constitutive transcription of YFP (Fritz et al., 2014;

Megerle et al., 2008). Once the translated YFP protein matures, it

generates a fluorescence signal. YFP synthesis rate is not strongly

affected by cell growth (Austin et al., 2006; Fritz et al., 2014;

Megerle et al., 2008). On the other hand, as cells grow, YFP is

diluted. As YFP is a relatively stable protein (Andersen et al., 1998),

and is not enzymatically degraded in this system, dilution is the

main reason for the decrement in protein number within a cell.

Thus, the dynamics of YFP concentration, which is determined by

time delayed constitutive synthesis and linear degradation, is well

described by Eq. (5).
Previously, we performed, and reported on, two independent

experiments using time-lapse fluorescence microscopy to measure

the YFP trajectories from individual cells in a growing population

after induction (Fig. 4b and c) (Cheng et al., 2017). In both experi-

ments, the fluorescence signal from matured YFP was recorded from

each cell at 1 min intervals. After measuring background fluores-

cence levels for 12 min, we added 2% ARA to the media to promote

YFP synthesis (Fig. 4b and c). We tracked the total fluoresce signal

in each cell (Fig. 4b and c), to obtain a timeseries of YFP molecule

number within a unit area. To do so we first tracked changes in area

of individual cells using time–lapse images (Fig. 4d and e). When a

cell divided, the area of a mother cell was added to the area of a

daughter cell. By fitting the observed volume growth trajectories to

an exponential function, we estimated the dilution rates of individ-

ual cells in the population (Fig. 4f), which were consistent with pre-

vious estimates (Megerle et al., 2008).
Next, we estimated the fluorescence signal per YFP molecule (c)

by estimating the ratio between the square difference of measured

fluorescence between two daughter cells (ðY1 � Y2Þ2) and the

(f) (g)

(h) (i)

(j) (k) (l) (m)

(a)

(b) (c)

(d) (e)

Fig. 4. Robust estimation of the time delay distribution of YFP synthesis after induction. (a) When ARA is added to the media, AraC promotes the synthesis of

YFP. The synthesis process involves transcription, translation, protein folding and maturation which result in a delay between YFP gene activation, and the obser-

vation of the fluorescence signal generated by mature YFP. (b, c) Time-lapse images of YFP expression from two independent experiments, performed previously

(Cheng et al., 2017). At 12 min after measurement was started, 2% ARA was added to the media, promoting the constitutive transcription of YFP. (d, e) The lineage

of each cell was identified via manual segmentation of images, and the change in individual cell areas was tracked [39 cells in (d) and 29 cells in (e)]. When a

mother cell divided into two daughter cells, the area of the mother cell was added to the area of the daughter cell. (f) We estimated dilution rates by fitting an ex-

ponential function to the cell growth data. The average dilution rate of the 39 cells from the first, and the 29 cells from the second experiment are 0.015 6 0.005

and 0.016 6 0.005 min–1, respectively. (g) A conversion constant from YFP signal level to the number of YFP molecules (c) was estimated by measuring the bino-

mial error in partition of total YFP signal (Ytot) at cell division to two daughter cells (Y1 and Y2). The constant c was estimated as described in the text. (h, i) We esti-

mated YFP molecule number per unit area by dividing the total fluorescence level of each individual cell (b, c) with its total area (d, e), and with the estimated

scaling factor c (g). (j–m) Using our inference algorithm with these trajectories, and fixing the dilution rate at the estimated value, B¼0.015, we obtained 104 pos-

terior samples for the remaining parameters (j, l). Due to the higher molecular numbers in (h) than (i), the estimated birth rate, A and delay variance, r2
s ; were

higher and lower, respectively, in (j) than (l): 35.4 6 0.4 and 23.1 6 0.5, and 7.4 6 0.7 and 13.4 6 1.4. However, the estimated mean delay time, ls; was similar in the

two cases: 6.6 6 0.1 min (j) and 7.5 6 0.2 min (l). Estimation of the delay mean and variance was robust to the twofold change in c (j and l) and B (k and m)
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measured fluorescence of a mother cell (Ytot ¼ Y1 þ Y2) (Fig. 4g).

This approach is based on the assumption that proteins from the

mother cell are partitioned independently, and without bias between

the two daughter cells [see Rosenfeld et al. (2005, 2006) for details].

Then, by dividing the intensity of the total fluoresce signal in each

cell (Fig. 4b and c) by our estimate of c; and the cell’s area (Fig. 4d

and e), we obtained an estimate of the timecourse of YFP molecules

per unit area for each of 39 cells in the first, (Fig. 4h) and 29 cells in

the second experiment (Fig. 4i).

In neither experiment did the YFP signal saturate before the end of

the experiment, and we thus only obtained partial trajectories in both

cases. To address this problem, we fixed the dilution rate, B¼0.015

(Fig. 4f) which we estimated from the observed rate of growth and div-

ision while estimating the remaining parameters, A, ls and r2
s from

the partial trajectories. The difference in the total fluorescence levels

between the two experiments (Fig. 4h and i) resulted in a higher esti-

mated production rate, A, in the first experiment (Fig. 4j). Without

investigating further, we could not tell whether this difference in pro-

duction rates was real, or whether discrepancies in the experimental

setup caused a difference in the strengths of the recorded signal.

Despite the difference in the inferred rates, the estimated mean

delay times, ls; were similar: 6.6 6 0.1 min (Fig. 4j) and 7.5 6 0.2 min

(Fig. 4l), in the first and second experiment, respectively. The esti-

mated time delay is similar to the time to maturation of YFP variant

VENUS (762:5) measured using real-time monitoring of a single mol-

ecule (Yu et al., 2006), supporting the accuracy of our algorithm.

The inferred proportionality constant, c ¼ 0:09; (Fig. 4g) depends

on the camera setting, and can vary between experiments (Fig. 4h and

i). We thus examined the impact of varying the constant c on the esti-

mated parameters. Even in the presence of a twofold change in c, the

estimates of delay mean, ls; and variance, r2
s ; changed little (Fig. 4j

and l). Thus our conclusions about the robustness of the inference al-

gorithm when the dilution rate is known extend to experimental data

(Fig. 3c). Furthermore, as the dilution rate, B, can differ between cells

(Fig. 4f), we also investigated the sensitivity of our inference method

to changes in the exact value of this constant. Even a twofold change

in the dilution, resulted in only a small changes in the estimate of

mean delay time, ls (�5%; see Fig. 4k and m), providing a further in-

dication that our approach is robust.

4 Conclusion

We have introduced a principled approach to extending Bayesian in-

ference techniques that allows for parameter estimation in biochem-

ical reaction networks with delays. We have shown that the method

can be used to estimate both reaction rates and delay distribution

parameters from experimentally obtainable observation of gene regu-

latory networks. Although the method has some limitations, we have

shown that they can be addressed by proper experimental design.

We considered a simple birth–death process with a small number

of parameters in order to understand the advantages and limitations

of the proposed method. Nevertheless, our approach is scalable: The

derivation of the likelihood function for the different parameters, and

the experimental design principles we discussed can be extended to

systems with many biochemical species, multiple delays and complex

dynamics. Examples include networks of interacting birth–death

processes with nonlinear delayed protein synthesis, and systems that

oscillate due to delayed negative feedback loops (Chen et al., 2015;

Cheng et al., 2017). Importantly, replacing unobserved or uninterest-

ing reaction pathways with time delays in large biochemical reaction

networks can significantly reduce the number of model parameters.

We thus expect that an equivalent algorithm to the one we presented

can then be used to infer rates and characterize delays in the resulting

reduced networks. The identifiability of time delay in more complex

models is a challenge that we will address in future work.

When molecular counts are sufficiently high, chemical master

equations can be approximated by analytically tractable reductions

such as delay stochastic differential equation (SDEs), and linear

noise approximations (LNAs) (Brett and Galla, 2013; Gupta et al.,

2014; Kim et al., 2014; Thomas et al., 2012). Previous work has

leveraged these approximations for Bayesian parameter inference.

Specifically, Heron et al. (2007) have developed a Bayesian algo-

rithm using SDE models containing distributed delay, with particu-

lar emphasis on oscillations generated by delayed negative feedback

loops (Monk, 2003). Recently, a filtering approach based on LNAs

has been developed to infer distributed delays (Calderazzo et al.,

2019). An interesting avenue for future research is to develop hybrid

models, and combine our method with previous SDE or LNA

approaches to gain both in computational speed and accuracy.

While delay distributions were difficult to infer from a single trajec-

tory, a relatively small number of trajectories allowed for efficient infer-

ence of all parameters. An important caveat is that when we used

multiple cell trajectories for inference, we assumed that all recorded cells

were identical. Thus, our algorithm at present does not take into ac-

count cell-to-cell variability in YFP expression due to differences in

growth rates, plasmid copy numbers, asymmetric partition of proteins

at division and other factors. In particular, heterogeneity in ARA uptake

rates is known to cause considerable cell-to-cell variation in time delay

(Megerle et al., 2008). However, the 2% ARA in the media we used in

our experiments was sufficiently high to ensure that uptake occurred

rapidly, and minimized cell-to-cell variability. This at least partly justi-

fies our assumption that cell-to-cell differences in time delay are mainly

due to measurement, and intrinsic noise. Indeed, our estimates of time

delay are consistent with those obtained using real-time monitoring of a

single molecule (Yu et al., 2006). The robust performance of our

method with relatively small number of measurements suggests that it

can be extended to hierarchical models which take into account cell-to-

cell variability and extrinsic noise sources (Zechner et al., 2014).

The delayed reactions we have treated in this work are of the

non-consuming type: The system state only changes upon reaction

completion. It would be interesting to extend our inference method-

ology to handle consuming reactions (delayed reactions that alter

system state at both initiation and completion). Forward Gillespie-

like algorithms that generate sample paths have been developed in

this context (Anderson, 2008; Cai, 2007). However, it is challenging

to rigorously derive both likelihoods and SDE reductions for systems

that include consuming reactions, because initiation and completion

for such reactions are not independent. Path integral approaches

may shed light on these challenges (Brett and Galla, 2015).

In sum, we have presented a method to characterize reduced

models of biochemical networks with delays. Our approach is flex-

ible, and the robustness of the method suggests that it can be

extended to more complex biochemical reaction networks, and hier-

archical models allowing us to shine a light on complex processes

within cells, and populations.
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