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Abstract

Summary: Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successful-
ly revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was devel-
oped to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality con-
trol (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide
range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics
Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in
case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis,
(vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines,
RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of
imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated dem-
onstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data inter-
pretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user train-
ing tutorials and developer work.
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Availability and implementation: RICOPILI has a flexible architecture to allow for ongoing development and incorpor-
ation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others).
Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The cen-
tral location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home
Contact: sripke@broadinstitute.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) have enabled the discov-
ery of genetic variants underlying a plethora of complex traits
(https://www.ebi.ac.uk/gwas/diagram). GWASs have highlighted
previously unknown biological mechanisms associated with com-
plex diseases and traits (Breen et al., 2016). The Psychiatric
Genomics Consortium (PGC) (http://www.med.unc.edu/pgc) the
largest umbrella organization for psychiatric genetics (Sullivan
et al., 2018)—have made possible to advance the objectives of (i) re-
vealing biological insights of psychiatric illness, (ii) informing clinic-
al practice and (iii) presenting new therapeutic targets through sheer
number of cohorts for GWASs across various psychiatric traits
(Breen et al., 2016; Sullivan et al., 2012). The exponential availabil-
ity of cohorts requires efficient, consistent and standardized
approaches for various aspects of GWAS data management and ana-
lysis. Here, we introduce RICOPILI, the pipeline that automates
rapid GWAS analysis workflow across various PGC workgroups.
The pipeline is state-of-art, constantly incorporating latest available
GWAS computational techniques and methods. With open-sourced
simulated GWAS datasets and training tutorials packaged with the
pipeline, RICOPILI is ideal for those contributing to large-scale gen-
etic studies.

1.1 Comparison with other GWAS quality control and

imputation pipelines
To our understanding, RICOPILI is the only open-sourced GWAS
pipeline allowing secure data management, efficient data processing
and downstream analysis scalable on both desktop and cluster envir-
onment. First, RICOPILI features an integrated quality control
(QC), imputation and association analysis within its framework.
Second, RICOPILI allows more than one imputation approach and
reference panel to be utilized within its framework. Furthermore,
computer intensive imputation can be processed locally within a
closed cluster system. Third, the RICOPILI framework allows scal-
able processing of GWAS data, from a single CPU, to a cluster set
up, or even within the cloud-based systems.

We compare RIOCPILI to existing available GWAS processing
pipelines in Supplementary Table S1. All other tools focus on specif-
ic stages of GWAS analysis and do not provide the comprehensive
features of RICOPILI. In the ensuing sections we will further high-
light and discuss the features and functions of RICOPILI.

2 Design and implementation

2.1 Pipeline description
RICOPILI automates and integrates standard GWAS analysis meth-
ods, allowing for automated cluster submission and parallelization.
The pipeline unifies standard software for its functions and imple-
ments best data analysis practices, provides sensible default settings
while permitting the user to flexibly customize filters, thresholds
and job resources as required. The optimization of cluster resources
allows computations and visualizations to be completed quickly
without significant user intervention. Written predominantly in Perl
and R, the pipeline is organized according to analysis modules. Each
module runs in its entirety via a single command line. The main
module functions include:

• Pre-imputation technical QC;
• Principal components analysis (PCA) and relatedness estimation;

• Genome-wide imputation of genotype probabilities and generation

of best guess genotypes in PLINK format (Purcell et al., 2007);
• Downstream analyses, including GWAS, meta-analysis and poly-

genic risk scoring;
• Harmonizing large imputation reference panels (such as 1000

Genomes and the Haplotype Reference Consortium) to fit the

architecture of RICOPILI.

RICOPILI takes dataset with unfiltered genotype calls, through
trait association analysis, multi-cohort meta-analysis, linkage dis-
equilibrium (LD) score regression (Bulik-Sullivan et al., 2015), con-
ditional analysis, replication analysis and polygenic risk scoring
(Supplementary Fig. S1). Little intermediate interaction is required,
allowing for efficient standardized analysis of genome-wide data
and results. Standardized file naming conventions are designed to
optimize overview and analysis record tracking within large-scale
genetic projects. Publication-ready data visualizations and reports
(in PDF and Excel format) permits easy evaluation of the results.
Simulated datasets are also available with the pipeline for training
and development purposes. In the ensuing sections, we describe the
main components of the pipeline.

2.2 Pre-imputation/QC
The pre-imputation/QC module (Supplementary Section S1) consists
of the following general steps (Supplementary Fig. S2):

• Inferring the genotyping chip;
• Standardizing file names and sample identifiers, incorporating

chip information and ensuring that sample IDs across distinct

cohorts are unique while keeping original sample IDs intact;
• Carrying out technical sample and variant QC procedures:

RICOPILI will assign red, yellow and green flags to various QC

parameters to help with the decision if a cohort needs further work

before going into the following modules (Supplementary Fig. S1.1).

Detailed sample and variant filtering reports provide diagnostics
to identify possible QC issues and solutions. Quality controlled
datasets are saved separately for downstream analysis.

2.3 Principal components analysis
The PCA module (Supplementary Section S2) fulfils two objectives
(Supplementary Fig. S3):

• Identify and remove duplicated or related samples for case-

control and trio cohorts;
• Assess ancestral outliers and population stratification with

EIGENSTRAT (Price et al., 2006);
• Principal component scores are computed and could be utilized

for visualization or as covariates to adjust for population struc-

ture in downstream post-imputation GWAS.

2.4 Imputation
RICOPILI automates computationally costly genotype imputation
with an optimized routine for high-performance computing (HPC)
environments (Supplementary Section S3 and Fig. S4). This module
aligns genotype data to the imputation reference, pre-phases haplo-
types and executes imputation. Users have the option to:
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• Impute genotypes to the 1000 Genomes (1000 Genomes Project

Consortium et al., 2015) or Haplotype Reference Consortium

panel (McCarthy et al., 2016);
• Perform pre-phasing with Eagle (Loh et al., 2016) or SHAPEIT

(Delaneau et al., 2011);
• Perform imputation with IMPUTE (Bycroft et al., 2018; Howie

et al., 2009) or Minimac (Das et al., 2016; Howie et al., 2012).

RICOPILI allows for automated data preparation, alignment
and sharing with public imputation servers (https://docs.google.
com/document/d/18dupvU4kw11slREc1TUfwQwhO_eI0n_MeKVp
wi4HLNA/) [e.g. Michigan (https://imputationserver.sph.umich.
edu/index.html#!pages/home), Sanger (https://imputation.sanger.ac.
uk/)], and reintegration of the results back into the RICIOPILI data
structure. This is especially beneficial if an HPC environment is not
accessible, and imputation by third party services has been approved
by the user’s local Institutional Review Board (IRB). More import-
antly with larger reference panels, such as the HRC and TopMed
imputation panels becoming available but not directly accessible,
RICOPILI allows such resources to be utilized.

The imputation output files are a set of genotype probabilities
for all markers and ‘best-guess’ genotype hardcall files filtered on
imputation quality and minor allele frequency. Hard call genotypes
are available in three levels (hardcall with genotype probability
>0.8, otherwise missing): (i) no further filter, (ii) lightly filtered
(missingness <0.02) and (iii) filtered with strict criteria (missingness
<0.01; MAF >5%).

RICOPILI allows the creation of case-pseudo-controls to handle
imputation and association procedures for trios.

2.5 Post-imputation
The post-imputation module (Supplementary Section S4 and Fig.
S5) performs association analysis using imputed dosage files, meta-
analysis via METAL (Willer et al., 2010), conditional analysis, poly-
genic risk scoring, LD score regression (Bulik-Sullivan et al., 2015)
and replication analysis. Covariates (e.g. age, sex, principal compo-
nents from PCA) and alternative phenotypes, including quantitative
traits may be incorporated within the post-imputation module.
Automated ‘clumping’ of genome-wide significant single nucleotide
polymorphisms to facilitate identification of independently associ-
ated genetic loci. Publication-ready reports and visualizations such
as Manhattan plots, QQ-plots, forest plots, annotated region plots
and polygenic risk distributions are generated by the module as well.
It is notable that genome-wide summary statistics as well as input
statistics for various Manhattan and QQ-plots, as well as clumped
summary statistics are automatically made available in the distribu-
tion/folder as part of the pipeline. These could then be utilized for
downstream and follow-on analysis (https://docs.google.com/docu
ment/d/1jiD25BYjPAO-TLRAPkYSspiovn8wiQ29ZmZv9Pe2I2U/)
(e.g. GCTA; Yang et al., 2011, Spredixcan; Barbeira et al., 2018 and
FUSION; Gusev et al., 2016) for the GWAS results.

2.6 Additional utility modules
RICOPILI allows for additional features and modules (see
Supplementary Information). Including, (i) reference builder: builds
reference data for genotype imputation from publicly accessible ref-
erence panels (Supplementary Fig. S6), (ii) replication of GWAS:
using external summary data or those generated by RICOPILI and
(iii) polygenic leave-one-out analysis: where each input dataset is
used as a hold out and polygenic risk prediction is done iteratively
across hold out data. All helper scripts and modules are saved in a
centralized location specified by the user within a folder called
rp_bin/and logging files with *_info suffix are also available.

2.7 Availability of simulated GWAS data
To allow new users to familiarize themselves with RICOPILI and
experienced users to develop new functionality for the pipeline, we
simulated freely available GWAS data using HAPGEN (Su et al.,
2011) (Supplementary Section S6). The dataset comprises 6200

‘individuals’ across �600 000 markers based on the Illumina
OmniExpress, a widely used genotyping platform. For training and
development purposes, population stratification, cross-sample re-
latedness and technical errors were introduced to the simulated
data. The sample is separated into five datasets ‘HapGen5’ packaged
with RICOPILI (https://docs.google.com/document/d/1ux_Fbwnv
SzaiBVEwgS7eWJoYlnc_o0YHFb07SPQsYjI/). Data description
and results are described in further detail in Extended Data Analysis
and User Guide.

2.8 Cluster portability
RICOPILI is portable (https://docs.google.com/document/d/14aa-
oeT5hF541I8hHsDAL_42oyvlHRC5FWR7gir4xco/) to various
LINUX-based HPC environments {e.g. BSUB (https://docs.google.
com/document/d/1fNFnC3-rBZkmtH47Je_yUfGatB9qhDGi9HtMSA3_
MPw/), QSUB (https://docs.google.com/document/d/1oY5IA4a6yG_
pmbvWJC8A6MTzjYoGzVlqQ_aXUwWCl8I/), SLURM, GCP [Google
Cloud Platform (https://docs.google.com/document/d/115NAaH6c8_
C6Gn7D5JTldfW0CMGwUOMhxqd1Sthku-E/)]} (Supplementary
Section S7). Support for Docker (https://hub.docker.com/r/bruggerk/
ricopili; https://github.com/vtrubets/ricopili_docker) implementation
of RICOPILI is also underway. In the absence of an HPC environ-
ment, RICOPILI can use the full potential of multi-core machines
with parallel optimization. Regular updates and maintenance of the
pipeline are carried out to incorporate the latest advances in genetic
association methods. Ongoing support includes an active user forum
(https://groups.google.com/forum/#!forum/ricopili-user-group), sup-
port website (https://sites.google.com/a/broadinstitute.org/ricopili/
home) and detailed tutorials written by current RICOPILI analysts
(consult footnotes).

2.9 RICOPILI web app
RICOPILI is now usable via browser on a cluster backed by Google
Cloud: http://34.74.48.153. Here the user does not need any UNIX
knowledge. Naturally the user needs to make sure that IRB allows
for uploading genotype data to third party computer environments.

3 Discussion

RICOPILI has supported the analytical capability of the PGC,
encompassing over 800 investigators internationally. The consor-
tium is a testament to collaborative science that has unified much of
the field and collated data collections, and enabled rapid progress in
uncovering the genetic and biological basis of psychiatric disorders.
RICOPILI addresses the need for a rapid computational pipeline for
GWAS that integrates leading bioinformatics resources and produ-
ces publication-ready outputs. The PGC has reported GWAS studies
in high-impact publications, most of which featured RICOPILI as
the main analysis pipeline—including the seminal report identifying
108 GWAS loci for schizophrenia (Ripke et al., 2014). The pipeline
has been adapted across various consortia, with 112 analysts per-
forming rapid computation for GWAS to date. For this reason, we
introduce RICOPILI to an audience of principal investigators, aca-
demics, analysts and all personnel tasked with determining the com-
mon variation underlying complex, heritable diseases and traits.
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