
Biostatistics (2020) 21, 2, pp. 269–286
doi:10.1093/biostatistics/kxy046
Advance Access publication on September 10, 2018

Bayesian modeling of dependence in brain
connectivity data

SHUO CHEN∗

Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and
Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of

Medicine, 655 W Baltimore S, Baltimore, MD, USA
shuochen@som.umaryland.edu

YISHI XING

Department of Electrical and Computer Engineering, University of Maryland, 8223 Paint Branch Dr,
College Park, MD 20742, USA

JIAN KANG

Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights,
Ann Arbor, MI, USA

PETER KOCHUNOV, L. ELLIOT HONG

Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of
Medicine, 655 W Baltimore S, Baltimore, MD, USA

SUMMARY

Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes
as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When perform-
ing group-level brain connectivity alternation analyses, it is critical to model the dependence structure
between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters.
However, specifying and estimating dependencies between connectivity edges presents formidable chal-
lenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the
fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with
spatial location information; and (iii) the dependence structure between edges can be related to unknown
network topological structures. Existing methods for large covariance/precision matrix regularization and
spatial closeness-based dependence structure specification/estimation models may not fully address the
complexity and challenges. We develop a new Bayesian nonparametric model that unifies information
from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing
the function of covariance matrix based on the underlying network topological structure. We perform
parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to
resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and
simulated data to demonstrate the performance of our method.
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1. INTRODUCTION

Neuroimaging research is increasingly focused on studying brain connectivity and its relationship with
neuropsychiatric phenotypes (Bullmore and Sporns, 2009; Biswal and others, 2010; Craddock and oth-
ers, 2013; Stam, 2014). Functional brain connectivity measures synchronized activation of brain signals
between neural processing units from distinct brain locations. The brain signals are measured by biomed-
ical techniques including functional magnetic resonance imaging (fMRI), magnetoencephalography, and
electroencephalography. The basic element in these brain connectivity data is the connectivity edge that
connects two brain areas of distinct spatial coordinates (nodes), which is naturally linked to other edges to
form network topology (Simpson and others, 2012; Sporns, 2014; Chen and others, 2015; Simpson and
Laurienti, 2016). Therefore, brain connectivity data are multi-dimensional and characterized by complex
dependence structures reflecting highly sophisticated neurophysiology and organized network topology
(Shou and others, 2014; Ahn and others, 2015; Chiang and others, 2017; Durante and Dunson, 2018; Xia
and Li, 2017).

In brain connectivity studies, our aim is to identify brain connectivity patterns that are associated with
pathological and behavior phenotypes via statistical analyses. However, statistical analyses used in brain
connectivity studies often ignore correlations between the multivariate connectivity edges, which may
lead to inaccurate parameter estimation and statistical testing results. Advanced statistical models may
mitigate these shortcomings by correctly specifying and estimating the dependence between brain imaging
features (Bowman, 2005; Derado and others, 2010).

Statistically, functional brain connectivity data can be formulated by a weighted and symmetric matrix:
Ms

V×V = {M s
i,j} for a subject s (s = 1, · · · , S) , where each entry M s

i,j represents the connectivity mea-
surement between brain areas i and j (i, j ∈ 1, · · · , V ). Thus, Ms represents a graph that consists of V
nodes and E = V (V − 1)/2 weighted edges. The most commonly used metrics for M s

i,j are correlation
coefficient, partial correlation coefficient, and mutual information coefficient among many choices (Kim
and others, 2015). Statistical models have been developed to estimate brain connectivity and test their
association with neuropsychiatric phenotypes (Kim and others, 2014; Lindquist and others, 2014; Ahn
and others, 2015; Zhang and others, 2015; Chen and others, 2016; Han and others, 2016; Qiu and others,
2016; Chiang and others, 2017; Fiecas and others, 2017; Durante and Dunson, 2018; Xia and Li, 2017
among others). Edge-wise statistical inference is desirable because edge-wise findings are localized and
more straightforward to interpret (Zalesky and others, 2010; Craddock and others, 2013; Simpson and
others, 2015). The connectivity edge matrix M s

i,j can be transformed into a vector Zs
1×E with E edges that

follows a multivariate distribution. For example, let Zs
1×E be a vector of commonly used Fisher’s Z trans-

formed correlation coefficients that follow a multivariate normal distribution Zs
1×E ∼ N (XT

s βp×E , �E×E),
where XT

s represents p subject-specific clinical and demographic covariates and �E×E is the covariance
matrix between connectivity edges. Clearly, correctly specifying and estimating dependence structure
between connectivity edges can increase the accuracy of model parameter estimates and statistical tests
on individual edges (Bowman, 2005; Derado and others, 2010).

It has been a long-term challenge to estimate the covariance matrix �E×E between connectivity edges
because: (i) the dimensionality of parameters in �E×E is as high as V (V − 1)/2(V (V − 1)/2 − 1)/2, for
example, when V = 300 the number of parameters in �E×E is greater than 109; (ii) it is difficult to define
the spatial closeness between a pair of edges with four nodes, and the geometric distances between the
four nodes do not predict the correlation/dependency between a pair of edges; and (iii) each connectivity
edge is constrained by two nodes, and a group of correlated edges can be constrained by a small set
of nodes with organized yet latent network topology (Figure 1). The direct estimation of large sample
covariance is not reliable, and it is hard to achieve the inverse calculation that is required for inferences
(Fan and others, 2016).Although numerous methods have been developed to estimate node-based variables
for large precision matrix shrinkage estimation, e.g. glasso (Cai and others, 2011; Fan and others, 2016),



Estimating large covariance matrix of brain connectivity 271

these may not be directly applicable to estimating �E×E because they may not address the impact of spatial
and network topological properties on the covariance between edges. On the other hand, the widely used
spatial modeling strategies that specify dependence structure/parameters via spatial closeness (mainly
used in localized brain activity analysis) (Bowman, 2005; Bowman and others, 2008; Derado and others,
2010; Brown and others, 2014) may not be well suited for connectivity analysis because dependencies
between connectivity edges are not necessarily driven by their spatial closeness but are definitely driven by
the (latent) organized and biologically meaningful network topological structures that are not constrained
by spatial adjacency (see section 3.2). Simpson and Laurienti (2015) proposed a two-part mixed effect
model for whole-brain connectivity data analysis that accounts for covariance among connectivity edges
via the local and global network/graph descriptive statistics. However, the explicit dependence structure
of connectivity edges (which edges are more correlated with each other) in the mixed model is unknown,
and such information may further be incorporated in the mixed model as more specific random effects.

To address these challenges, we propose a Bayesian nonparametric model to estimate �E×E that inte-
grates multiple layers of information including nodes, edges, and correlations between edges by leveraging
the latent network topological information. It has been well documented that brain connectivity data show
organized and biologically meaningful network topological structures (Bullmore and Sporns, 2009; Rubi-
nov and Sporns, 2010; Simpson and others, 2015), and these structures can be related to the covariance
structure (�E×E). Our empirical data analyses on multiple brain connectivity data sets suggest that con-
nectivity edges within organized networks are more correlated than edges outside the networks. These
results are neurophysiologically plausible, because many brain functional networks show synchronized
patterns at activation and resting (Biswal and others, 2010; Craddock and others, 2013; Stam, 2014).

However, it is difficult to identify the latent network structure where the inside network edges are more
correlated. Conventional network detection methods (e.g. Newman 2006) assign nodes into clusters based
on the similarities between nodes.Yet, in our application, these methods cannot be directly used to cluster
edges into networks based on the similarity (correlation) between edges, because edges are constrained
by nodes and a cluster of edges may be randomly distributed in the brain and may not be biologically
meaningful. We develop a new Bayesian nonparametric model to estimate the network structure (assigning
nodes into clusters) based on the sample covariance matrix between connectivity edges. Note that for the
purposes of our model, the term “network" for the covariance matrix is estimated based on the sample
covariance matrix between connectivity edges across subjects, which is different from the commonly used
term “network/graph topological properties or descriptive statistics" (e.g. modularity and small-worldness)
referring to values that are calculated or estimated by using the mean values of edges from the connectivity
matrix of a single subject or the average connectivity matrix across subjects in a study (Bullmore and
Sporns, 2009; Craddock and others, 2013). We develop an efficient Markov chain Monte Carlo (MCMC)
algorithm to estimate the massive parameters and overcome computational challenges involved with the
calculation of inverses and determinants of large matrices. Finally, we demonstrate the use of our proposed
model in an fMRI data set to identify schizophrenia disorder related functional brain connectivity patterns,
followed by simulation studies to evaluate the performance and utility of our proposed method.

2. METHODS

Following a formerly described strategy to estimate parameters of the large covariance matrix of
spatial–temporal imaging data (Bowman, 2005; Derado and others, 2010), we focus on the residual
matrix R0

S×E = ZS×E − XT
S×pβ̂p×E , where β̂p×E can be estimated unbiasedly by using the general

linear model. We calculate H0 = (R0)T R0/(S − p) and separately estimate the correlation matrix
H = (Diag(H0))−1/2H0(Diag(H0))−1/2 and standard deviations Diag(H0)−1/2 by assuming independence
between the two components of the covariance matrix (Barnard and others, 2000). The dimension of
H0 and H is E × E. Our Bayesian non-parametric model takes RS×E = (Diag(H0))−1/2R0 and H as the
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input data, and estimates the correlation matrix �E×E = (Diag(�E×E))−1/2�E×E(Diag(�E×E))−1/2 with a
network topological structure and �̂E×E = (Diag(H0))1/2�̂E×E(Diag(H0))1/2 (Fan and others, 2016).

2.1. Model specification

First, we let Rs
1×E follow a multivariate normal distribution with zero mean and a unknown dependence

structure �E×E . The correlation matrix is a function of the network structure and the correlation parameters
ρ = (ρ0, ρ1, · · · , ρK). G is the random measure of the network structure (i.e. the network assignment of
brain areas). DP(α, G0) represents a Dirichlet process with base measure G0 and scalar precision α, which
is used to identify the latent K networks (K is unknown).

Rs
1×E|�E×E ∼ N (0, �E×E),

�E×E = f (G, ρ)

G ∼ DP(α, G0)

(2.1)

We specify the network topological structure-based covariance matrix function as

�ei,j ,ei′ ,j′ =
{

ρk , if ωi = ωj = ωi′ = ωj′ = Ck

ρ0, otherwise.
(2.2)

�ei,j ,ei′ ,j′ is an entry of �E×E that denotes the correlation between the edge ei,j (i.e. the brain connectivity
edge connecting brain regions i and j, i �= j) and edge ei′ ,j′ . Let ωi = Ck be an indicator variable for the
network membership of brain region i. For a pair of edges ei,j and ei′ ,j′ , we denote ei,j � ei′ ,j′ ∈ Ck

(ei,j ∈ Ck , ei′ ,j′ ∈ Ck ) if and only if ωi = ωi′ = ωj = ωj′ = Ck and the two edges are in the same network.
Given the network memberships of the nodes, �ei,j ,ei′ ,j′ is determined by the “locations” of these two edges
in the network topology. Formula 2.2 represents a commonly used parametric covariance specification
method in neuroimaging statistics, setting an exchangeable dependence structure for imaging features in
a spatially and/or temporally close “neighborhood” (Bowman, 2005; Derado and others, 2010; Risk and
others, 2016). The assumption of exchangeable dependence structure is often empirically examined by
exploratory data analysis in these applications. Likewise, we validate this assumption using our example
data sets and several other fMRI data sets (not presented here due to the page limit). The results show
distinct distributions of empirical correlations among edges inside vs. outside automatically detected
networks with ρk > ρ0 (see details in Section 3.1 and Figures 2 and 4). Unlike the previous methods where
the “neighborhood” is directly defined based on the spatial and temporal adjacency, the “neighborhood”
networks in our method are automatically detected mainly based on the input data and dependence structure
specification 2.2. Specifically, when we assign each node ωi (instead of each edge) to one network Ck ,
and a connectivity edge ei,j can be therefore assigned to a network based on the memberships of its two
nodes. Therefore, a network structure more accurately reflecting the latent dependence structure leads to
a better-estimated covariance matrix and thus the increased value of likelihood function, and the posterior
sampling procedure will converge when the dependence networks and covariance matrix are optimally
estimated.

By using the above heuristic, we develop a new Dirichlet process model (DPM) to detect underlying
networks. We specify the distributions of parameters in f (G, ρ). As suggested by Neal (2000), a DPM
can be represented by taking the limit as the number of components goes to infinity. Let Discrete(π )
denote a discrete distribution and let each brain area i have probability π = (π1, · · · , πK) of being in
network (C1, · · · , CK ). Let Dirichlet(α, K) be a Dirichlet distribution with parameter α. Then DPM in 2.1
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Fig. 1. Demonstration of calculating covariance matrix between connectivity edges across subjects: (a) a brain con-
nectivity edge is calculated based on two brain areas (nodes) of a study subject, e.g. correlation or partial correlation
metrics; (b) and (c) a connectivity matrix is calculated (90 AAL brain regions and 4005 edges for each subject;
(d) across all subjects, the covariance matrix between edges is a 4005 × 4005 matrix.

is equivalent to the following model.

ωi = Ck |π ∼ Discrete(π), i = 1, · · · , V

π |α ∼ Dirichlet(α/K , · · · , α/K), K −→ ∞ (2.3)

In addition, we assume that ρ0, ρk follow normal distributions with hyperparameters μ0, μk , τ 2
0 , τ 2

k .

ρ0|μ0, τ 2
0 ∼ N(μ0, τ 2

0 )

ρk |μk , τ 2
k ∼ N(μk , τ 2

k ), k = 1, · · · , K
(2.4)

The community network structure is widely used and well-documented in brain connectivity network
studies and infinite mixture models with a stochastic block structure are often used for statistical modeling
(Pavlovic and others, 2014; Sporns, 2016; Bryant and others, 2017). However, the underlying covariance-
related network structure is difficult to estimate, and neither infinite mixture model nor DPM can be directly
applied, because they are conventionally used to estimate node community memberships based on the
similarities between nodes. Nor can we directly cluster edges into network communities based on the
sample edge covariance matrix (similarities between edges), because this may yield clusters of edges that
are distributed in the brain without any network topological structure (without the constraint of clustered
nodes) and are thus not biologically meaningful. Therefore, our proposed Bayesian nonparametric model
is novel and learns network structure (node allocation) by using the sample covariance (adjacency) matrix
among edges as input data.
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Fig. 2. (a) Histogram of 8 018 010 correlations between all 4005 edges. (b) Reflects our estimated network topology
and correlation matrix in that �E×E = f (ω, ρ), and the correlations between edges in the same networks are more
correlated than correlations between edges not in the same community. (c) and (d) Inferences with dependence
structure between edges vs. inferences with independence assumption: the disease-related connectivity network is
larger when accounting for dependence structure between edges and agrees better with findings in previous studies.
Each entry in the heatmaps is—log transformed P-value of an edge between the column and row nodes and a hotter
point indicates more significant difference between diagnosis groups. We order the brain regions by listing regions in
the diagnosis group related-network first.

Given the prior distributions of community structure ω = (ω1, · · · , ωV ), ρ and function f , the posterior
probability of �E×E can be written as:

p(�E×E|RS×E , G, ρ)p(G)p(ρ) ∝ |2π�E×E|−S/2 exp(−1/2
∑

s

RT
s (�E×E)−1Rs)p(G)p(ρ)

= exp{−S/2(log |(�E×E)−1| + tr(H(�E×E)−1))}p(G)p(ρ).

(2.5)

The value of likelihood function changes substantially when moving a node from one community k to
another k ′ because the covariance entries of Vk − 1+Vk ′ edge pairs change correspondingly in �. This
property ensures that the posterior sampling of DPM can quickly converge.

The parametric dependence structure specification in 2.2 is widely used and practically effective for
multivariate imaging features (Bowman, 2005; Derado and others, 2010), and 2.2 is more flexible because
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the “neighborhood” structure is learned via DPM instead of using assumptions (e.g. spatial smoothness).
One alternative strategy is to specify the prior distribution of each entry of the covariance matrix to
follow a normal distribution �ei,j ,ei′ ,j′ |ωi = ωj = ωi′ = ωj′ = Ck ∼ N (ρk , ς 2

1 ) (Khondker and others,
2013). However, this may lead to the problematic inversion of �E×E and difficulty in MCMC calculation,
and an intractable number of parameters. In contrast, the model specification of �E×E = f (ω, ρ) in 2.2
ensures that the covariance matrix is positive definite (see proof in the supplementary material available
at Biostatistics online).

2.2. Posterior computation

We implement the posterior computation of ω and ρ by MCMC. Specifically, we have the full conditional
distribution of ωi = Ck given ω−i = (ω1, · · · , ωi−1, ωi+1, · · · , ωV ), ρ and data RS×E:

p(ωi =Ck |ω−i, ρ, RS×E)

∝ exp{−S/2(log(det(f ((ω−1, ωi = Ck), ρ))) + tr(Hf ((ω−1, ωi = Ck), ρ)−1))}
× m−ik

V − 1 + α

(2.6)

where m−ik = ∑
j �=i I (ωj = Ck) represents the number of nodes in community k , and

p(ωi �=ωj for all j �= i|ω−i, ρ, RS×E)

∝ exp{−S/2(log(det(f ((ω−1, ωi = CK+1), ρ))) + tr(Hf ((ω−1, ωi = CK+1), ρ)−1))}
× α

V − 1 + α
.

(2.7)

The calculation of (�E×E)−1 is implemented using the Sherman–Morrison formula (Press, 2007):

f (ω, ρ)−1 = (�E×E)−1 = (A + √
ρ01E×1(

√
ρ01E×1)

T )−1

= A−1 − ρ0A−11E×EA−1

1 + ρ01T
E×1A−11E×1

.
(2.8)

A = �E×E −ρ01E×E is block diagonal and each block is compound symmetric, and thus the calculation is
straightforward. Similarly, the determinant can be calculated by the matrix determinant lemma (Harville,
1998): det(�E×E) = (1+ρ01T

E×1A−11E×1) det(A). By applying these results, the posterior can be efficiently
sampled.

The full conditionals of ρ are given by

p(ρ0|ω, H, ρ−0) ∝ exp{−S/2(log(det(f (ω, ρ0, ρ−0))) + tr(Hf (ω, ρ0, ρ−0)
−1))} × p(ρ0|μ0, τ 2

0 ) (2.9)

where μ0, τ 2
0 are selected based on the empirical distribution of the entries in H.

p(ρk |ω, H, ρ−k) ∝ exp{−S/2(log(det(f (ω, ρk , ρ−k))) + tr(Hf (ω, ρ0, ρ−k)
−1))} × p(ρk |μk , τ 2

k ) (2.10)

where μk , τ 2
k are selected based on the empirical distribution of the entries in H. The Metropolis–Hasting

algorithm is used for posterior sampling for ρ.
Alternatively, ρ can be estimated based on the empirical distribution of the entries in H given the

estimated network topology ω, and then ω is updated based on ρ. This iterative procedure often converges

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
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quickly because the network topology estimation is very robust to the numeric values of ρ , which can
greatly improve the computational efficiency and yield similar results. Last, we calculate the covariance

matrix between edges �̂E×E = (H0)1/2�̂E×E(H0)1/2 and the inversion �̂
−1

E×E by using the Sherman–
Morrison formula.

3. APPLICATION TO INVESTIGATE ALTERED FUNCTIONAL CONNECTIVITY PATTERNS BY SCHIZOPHRENIA

We applied the proposed method to the analysis of the resting state fMRI data. The study recruited 30
individuals with schizophrenia (age = 39.73 ± 13.79 years) and 30 matched healthy controls (age = 39.73
± 14.16 years) matched on age (t=0.27, P=0.78) and sex ratio (χ 2=0.09, P=0.77). All participants were
evaluated using the Structured Clinical Interview for the DSM-IV diagnoses. The fMRI data acquisition
and preprocessing steps are included in supplementary material available at Biostatistics online. The
preprocessed brain images was divided into 90 anatomical automatic labeling (AAL) regions as nodes,
and each region-wise time series was calculated based on weighted average of voxels within a 10 mm
sphere around the centroid of each region. Fisher’s Z-transformed correlation coefficients were calculated
between time series of all region pairs as metrics for edges (Tzourio-Mazoyer and others, 2002, Kim and
others, 2015).

3.1. Estimating network-based covariance matrix between edges

Each of the 60 subjects had a connectivity matrix of 4005 edges connecting the 90 nodes. We applied
the proposed Bayesian model to estimate the 4005 × 4005 covariance matrix between all edges. We
first calculated the residual matrix RS×E and correlation matrix H = RT R/(S − p). The Bayesian non-
parametric model was implemented to identify the latent network topological structure and the covariance
matrix based on the input data H. We set the hyperparameters based on the empirical analysis of distribution
of all entries in H, and let μ0 = 0.02, τ0 = 0.03 and μk = 0.25, τ0 = 0.9 expressing a reasonable prior
belief that ρ0 is likely around 0 and the value of ρk depends on the network structure. We set the initial
value of K = 1 and performed MCMC sampling for 5000 iterations with 1000 burn-in.

The MCMC converged quickly and the infinite mixture model suggested K = 12, with two large
communities of 37 and 16 nodes, respectively. We found that edges in the community networks were more
correlated. The 8 018 010 = 4005 × (4005 − 1)/2 correlations between all 4005 edges are demonstrated
in the normalized histogram in Figure 2a. We further compared the distributions of correlations between
edges (entries in H) within the same networks and otherwise; as shown in Figure 2b edges within the
same networks were more correlated than edges not in the same network. We also found that the posterior
distributions of ρ1 and ρ2 are similar (with posterior mode values of 0.28 and 0.29). We also compared
models with ρ1 = ρ2 and ρ1 �= ρ2 using likelihood ratio test based on estimated network structure,
and the results (P = 0.73) indicated that the correlations of edges in the two networks were similar. In
contrast, the empirical distribution of correlations between edges not in the same covariance network was
close to the null distribution (Figure 2b). We further formally tested whether the distribution of correlations
among outside network edges differed from the null distribution using the strategy outlined by Schäfer and
Strimmer (2005). We performed local fdr analysis on the Fisher’s Z-transformed correlation coefficients
of outside network edges. None of the correlations had a q value < 0.2 and non-null components were not
detected (Efron, 2004). Therefore, the non-null component of correlations between connectivity edges can
be mostly explained by edges inside networks. These results further verify that our dependence structure
specification of �E×E = f (ω, ρ) in equation 2.2 is sound and that the Bayesian model is effective to
identify the latent network structure. Prior research (e.g. Power and others, 2010) reveals that brain
connectome show network-based development, which further supports the network-based covariance
structure specification.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
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The major hyperparameter that is subject to user’s choice in our model is the Dirichlet process con-
centration parameter α, while μ0 and μk are determined by the empirical data statistics. We evaluated the
model performance by letting α equal to 0.1, 1, 10, and 100. The results indicated that our model is robust
to the choices of α as we obtained similar results of edge-dependence networks (the two large networks
were unchanged, see supplementary material available at Biostatistics online). The computational time
using an i7 3.4G HZ CPU and 64 G RAM desktop was roughly 3.5 h.

3.2. Implications of covariance networks

We next explored the detected community networks based on the covariance between edges with a focus on
the two large community networks. The first network consists of 37 nodes (Table 2 in the supplementary
material available at Biostatistics online), including the medial prefrontal cortices, posterior cingulate
cortices, inferior parietal lobules, lateral temporal cortices, and the precuneus (Figure 3). Interestingly, the
first network largely overlapped with the default mode network (DMN), which is a well-known network of
interacting brain regions when experimental subjects are at wakeful rest (Greicius and others, 2003; Stam,
2014). Our new finding, by applying the proposed model, is that edges in the DMN are more correlated
with each other than other edge pairs. Network two is illustrated in Figures 3c and 3d, which mainly
includes brain areas in the occipital cortices, cuneus left and right, three temporal and one inferior frontal
brain region (Table 3 in the supplementary material available at Biostatistics online). The interactive
regions in the second network are mainly related to the visual function. The rest of the 10 networks were
relatively small, consisting of only three or four spatially adjacent nodes. The correlations of the edges in
these networks have a little impact on the 4005 × 4005 covariance matrix estimation.

Figure 3e shows the mean functional connectivity metrics (Fisher’s Z-transformed correlation coeffi-
cients) across all subjects. A large proportion of edges tend to show higher connectivity strengths (edge
mean values) within the covariance networks, although the networks were identified only using the sample
covariance between edges (independent of the mean values). Note that clustering/community detection
results based on mean values of the connectivity matrix may extract different networks, and edges in those
networks may not be correlated.

We also found that correlation between a pair of edges was not related to the spatial closeness of the
four coordinates in our example data. We used the minimum distance sum between four nodes of a pair
of edges as a measure of distance between edges, and the correlation between spatial distance and edge
correlation was 0.13. On the other hand, many pairs of edges in the DMN are distant in space yet highly
correlated. If edges in a cluster of spatially close nodes are more correlated, our Bayesian model can
also identify these nodes as a network (e.g. a network of regions within the frontal lobe), because the
likelihood function for �E×E = f (ω, ρ) is greater when the network is correctly estimated. Therefore,
our proposed model is more general, flexible, and data-driven and is capable of capturing the spatial and
network topological property of a brain network.

3.3. Results: connectivity patterns associated with Schizophrenia

We calculated �̂E×E using mode values of ρ and stable ω and the inverse matrix for statistical inferences
on individual connectivity edges testing θ = cβ. For this case study, our aim was to examine whether
connectivity patterns are associated with diagnostic group. Following the strategy by Derado and others
(2010), we incorporated the estimated covariance matrix (“neighborhood” information) into the general
linear model to account for dependencies of connectivity edges . The analysis results provide a vector of
test-statistics (and corresponding P-values) for all 4005 edges that are subject to multiple-test control. Since
edges are correlated and constrained by nodes and network topology, the conventional false discovery rate
(FDR) control method may not be applicable. Thus, we applied the network based inference tools to adjust

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
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Fig. 3. (a) and (b) Three-dimensional demonstration of the first network of DMN are shown. (c) and (d) Three-
dimensional demonstration of the second network of DMN are shown. The width of an edge is proportional to the
mean connectivity strength across all subjects. (e) A heatmap shows the average brain connectivity matrix across all
experimental subjects with the networks based on edge covariance matrix estimation. The correlated edges in the
covariance networks show higher mean value.
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multiple comparisons of the testing results, for example, those described by Zalesky and others (2010)
and Chen and others (2015). These tools are an extension of the most commonly used cluster-extent based
multiple comparison correction methods in neuroimaging studies (Woo and others, 2014), which define a
cluster as a set of topologically connected connectivity edges showing group-wise difference. Zalesky and
others (2010) identifies a cluster of the maximally connected component in the thresholded connectome
map by greedy search, while Chen and others (2015) implements shrinkage on cluster sizes and taking in
to account the number and effect sizes of edges in the cluster. Permutation tests are then performed based
on the cluster extent/information to achieve corrected statistical inference.

The hypothesis testing results based on our estimated dependence structure identified 292 edges with P-
values < 0.05 verses 213 edges for the model with the general linear model (P < 0.05 is not used for final
inferences). We claim that our method accounting for dependencies between edges improves the power of
statistical tests because, not only more small P-value edges were detected by our method, but these edges
showed more organized network topological structure in the following analyses. We applied network-level
inference adjusting for multiple tests as described by Chen and others (2015) to the vector of testing results
and Figure 2c shows one significant brain connectivity network of 21 nodes that is associated with diag-
nostic group by using our estimated covariance matrix (P < 0.001). The disease-related brain connectivity
network includes the medial premotor, cingulate and parietal cortex, precentral and postcentral cortex,
occipital association cortex, and left superior frontal, superior temporal, and insular cortices (see Table 4
in the supplementary material available at Biostatistics online). Connectivity strengths were reduced in
the schizophrenic group. The results strongly coincide with the edge-wise findings in well-documented
precedent studies of functional connectivity and schizophrenia Lynall and others (2010) (although Lynall
and others, 2010 only reported a handful of disease-related connections between region pairs without
an organized subnetwork). The overall network level inferential results show reduced interconnections
between DMN, the salience network, and the executive network in patients with schizophrenia. Therefore,
we are the first to report schizophrenia-related connectivity patterns in topologically organized networks,
thereby synchronizing isolated previous findings of individual edges into a well-organized network. In
contrast, Figure 2d shows a smaller significant brain connectivity network (nodes) that is associated with
diagnosis group based on the general linear model (without considering the covariance between edges)
analysis results. In summary, the proposed approach can assist in detecting the underlying true phenotype
related brain connectivity networks by providing more powerful statistical tests on edges.

4. SIMULATIONS

In the simulation study, we generated brain connectivity data showing that edges within the latent network
community are more correlated across subjects. We focused on examining whether our Bayesian model
could identify the latent network topology of covariance and correctly specify the dependence structure
between edges, using the sample covariance matrix as the input data. Specifically, we simulated a brain
connectivity data set with a moderate sample size (S = 30), and assumed a latent stochastic block
model with the total number of nodes V = 90 (E = 4005), which includes three blocks with sizes
V1 = 40, V2 = 30, and V3 = 20. Then ω in the covariance function �4005×4005 = f (ω, ρ) is determined
by the above stochastic block model, and we further set ρ0 = 0 and ρ1 = ρ2 = ρ3 = 0.5. Last, we
generated the connectivity data Zs

1×E = Rs
1×E +XT

1×pβp×E , where Rs
1×E ∼ N (0, �4005×4005). We calculated

H4005×4005 = RT R/(S − p) as the input data as demonstrated in Figure 4. Note that the sample covariance
matrix H is the input matrix for large covariance and precision matrix methods (e.g. glasso). We then
tuned ρ from 0.3 to 0.7 and repeated each setting for 20 times to evaluate the performance of our model
at different levels of ρ.

We applied our Bayesian non-parametric model to the sample covariance of brain connectivity data H to
identify the latent network topology and estimate the dependence structure. The results show satisfactory

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
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Fig. 4. (a) and (b) The simulated connectivity data and input data correlation H are demonstrated.(c) Log likelihood
of the first 5000 samples of the MCMC, which converges quickly as well. (d) Distributions of entries in H based on
estimated network topology.

performance of our model. When ρ1 > 0.3, the accuracy of latent network topology detection was 100%,
decreasing to 94.1% and 72.6% for ρ1 = 0.3 and ρ1 = 0.2 respectively. With accurately estimated ω,
the dependence structure of �4005×4005 = f (ω, ρ) can be estimated efficiently. We also note that MCMC
converges very quickly after a few iterations (See Figure 2 in the supplementary material available at
Biostatistics online). The reason is that moving one node from one network to another changes the
covariance between many edges, and the likelihood value undergoes a relative large change. Figure 4
shows the network topology identification along the MCMC iterations for two initial settings: (i) all nodes
belong to one network and (ii) each node is a singleton network. In both settings, the MCMC sampling of
our model can quickly allocate the nodes to the true networks, and the likelihood approaches the maximum
in the first couple of hundred iterations based on �̂435×435 = f (ω̂, ρ̂) (Figure 4c). Figure 4d shows the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy046#supplementary-data
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distributions of entries in H with network topology information and the two distributions. Clearly, the
simulated data sets mimic the data example well. Like the data example, our results are not affected by
the choice of α from 0.1 to 100.

In addition, our method is robust to the deviation of estimated ρk . For instance, at the starting iterations
of posterior samples ρ̂k > 0.3 (when ρk = 0.3), the true community network structure can still be
accurately detected by DPM. Then, ρ̂k will converge to the true value and the covariance matrix can be
precisely estimated. Therefore, a more efficient alternative MCMC algorithm is: (i) first, to estimate the
covariance network topology and ω with reasonable initial values of ρ from the empirical data; (ii) next,
to update the estimates of ρ based on ω̂; and (iii) finally to iterate until convergence. In practice, we found
the performance of these two algorithms to be very similar, because ω̂ is estimated equivalently.

Last, we compared our method with two commonly used methods that estimate covariance between
high-dimensional variables: glasso and constrained l1 minimization for inverse matrix estimation
(CLIME) (Cai and others, 2011). There are 303 810, 94 395, 17 955, inside network edge pairs in the
three networks with ρk > 0, which are considered positive correlations between edges. We used false
positive (FP)

∑
I (�̂ei,j ,ei′ ,j′ = 1|�ei,j ,ei′ ,j′ = 0) and false negative (FN)

∑
I (�̂ei,j ,ei′ ,j′ = 0|�ei,j ,ei′ ,j′ = 1)

as evaluation metrics instead of Frobenius norm. In practice, the FP and FN metrics are more important
than the Frobenius norm, because the FP and FN metrics indicate whether edges borrow strength from
each other correctly for statistical inferences in the regression model. For instance, ei,j, ei′ ,j′ can borrow
strength from each other if �ei,j ,ei′ ,j′ = 1 and thus ei,j, ei′ ,j′ are “neighbors” (Derado and others, 2010).
For glasso and CLIME, the non-zero entries of the estimated edge precision matrix are considered as
estimated positive dependence entries. For our Bayesian model, we consider inside network edge pairs as
estimated positive dependence entries.

The results in Table 1 show that our method outperforms the competing models. The possible reasons
are (i) that our method utilizes the latent network topology to guide the construction of the large covariance
matrix between connectivity edges, and thus correlations between edges in the network can borrow strength
from each other to reduce the FP and FN findings and (ii) that it does not rely on the sparsity assumption.

5. DISCUSSION

In neuroimaging statistics, addressing dependence structures between multivariate imaging features is a
fundamental issue. Various well-established theories and methods exist to model spatial and temporal
dependence between localized brain activations and node variables (Bowman and others, 2008; Derado
and others, 2010; Brown and others, 2014; Eloyan and others, 2014; Sweeney and others, 2016). However,
there has been a lack of statistical methods to model the dependence between brain connectivity (edge-
based) features.

In the statistical literature, the dependence structure of multivariate imaging variables are often pre-
specified by leveraging biologically plausible assumptions. For example, the spatial and temporal closeness
is used to specify the parametric covariance structure and the correlation between any two imaging features
is determined by a function of the spatial and/or temporal distance between them (higher correlations
between features closer to each other). In that, the massive number of parameters in the large covariance
matrix are reduced to a handful of parameters in the covariance-distance function (Derado and others,
2010). However, the dependence structure of connectivity edges cannot be directly specified by the spatial
closeness between edges. We propose a more flexible framework that assumes the dependence structure
between edges is related to an unknown network structure, and jointly estimates the latent network structure
and model parameters using a Bayesian model. The application of Bayesian non-parametric model is also
novel because we estimate the network structure (the allocation of nodes) based on the sample covariance
matrix between edges, which is distinct from conventional community detection algorithms and assigns
nodes to communities based on the similarity between nodes. The model is scalable because a correctly
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specified network structure tends to substantially increase likelihood functions, which facilitates efficient
MCMC sampling of DPM and quick convergence. The proposed method outperforms existing large
covariance/precision matrix estimation (regularization) methods by leveraging the network properties of
brain connectivity data. In some applications, the covariance network structure may not exist, and then the
MCMC iterations tend not to converge and the posteriors of ρ vary around zero, and thus the parametric
covariance model is not available and the general linear model can be applied for inference.

Nodes and edges. The definition of nodes and edges is important for brain connectivity analysis. In
our application, we choose AAL as the brain atlas because it has been the most commonly used brain
atlas (Stanley, 2013) and is compatible to the findings of previous connectivity studies in schizophrenia
research (Lynall and others, 2010; Fornito and others, 2012). Since our network detection is based solely
on correlations among connectivity edges, comparing our results to the documented networks can assist in
model validation. For the same reason, we chose the most commonly used correlation coefficients as the
connectivity metric, although other metrics (e.g. partial correlation) have similar patterns of correlations
between edges. To ensure the reliability of the connectivity edges, we recommend using an fMRI time
sequence longer than 12 min (Birn and others, 2013).

The results of case study reveal two networks where edges are more correlated. The first network mainly
consists of nodes in the DMN and the second network is related to the visual function.Although similar net-
works (biologically meaningful) have been reported and discussed, we are the first to report edges within
those networks are more correlated with each other. We further utilize the network topology-oriented
covariance structure to analyze the association between brain connectivity patterns and the neuropsychi-
atric phenotype. The results also show interesting findings that interconnections between three important
well-known networks DMN, Salience network, and executive network are altered in patients.

In summary, the proposed Bayesian non-parametric model provides a viable means to model depen-
dence between edge-based brain connectivity variables by learning latent network topology from the
sample edge covariance matrix. Our model assumption that edge pairs within networks are more cor-
related is validated by empirical data analyses and is neurophysiologically plausible (for example,
the DMN in the data example is well justified). The proposed method demonstrates accurate and
robust performance in our simulation study and empirical data. Modeling dependence between con-
nectivity edges can increase the relative efficiency of statistical inferences, which will often lead to
more powerful statistical tests and reveal neuropsychiatric phenotype-related brain connectivity net-
works with higher accuracy. In this article, we focus on inter-region connectivity, which is mostly
used in current brain connectivity analysis and network research. Yet, it can be naturally integrated
with previous work (e.g. Chen and others, 2016) to link voxel-level connectivity to region-level con-
nectivity using a hierarchical model. The software package of the proposed method is available at
https://github.com/shuochenstats/Bayes-Nonpara-Network.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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