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SUMMARY

This article considers Bayesian approaches for incorporating information from a historical model into a
current analysis when the historical model includes only a subset of covariates currently of interest. The
statistical challenge is 2-fold. First, the parameters in the nested historical model are not generally equal
to their counterparts in the larger current model, neither in value nor interpretation. Second, because the
historical information will not be equally informative for all parameters in the current analysis, additional
regularization may be required beyond that provided by the historical information. We propose several
novel extensions of the so-called power prior that adaptively combine a prior based upon the historical
information with a variance-reducing prior that shrinks parameter values toward zero. The ideas are
directly motivated by our work building mortality risk prediction models for pediatric patients receiving
extracorporeal membrane oxygenation (ECMO). We have developed a model on a registry-based cohort of
ECMO patients and now seek to expand this model with additional biometric measurements, not available
in the registry, collected on a small auxiliary cohort. Our adaptive priors are able to use the information
in the original model and identify novel mortality risk factors. We support this with a simulation study,
which demonstrates the potential for efficiency gains in estimation under a variety of scenarios.

Keywords: Bias-variance tradeoff; Combining information; Hierarchical shrinkage; Power prior; Regularized
horseshoe prior.

1. INTRODUCTION

When a statistical model is published, there are often already models for the same outcome. Although the
new model and the existing models may each differ in their target populations, underlying sets of predictors,
or in other ways (e.g. Becker and Wu, 2007), there is usually some historical information available when
the new model was built. In that sense, this framework of sequential but independent model development
is not fully utilizing available historical information. In this article, we propose Bayesian approaches that
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incorporate the posterior distribution from the historical model into a prior for the new model when the
set of historical covariates is strictly nested within the set of the new covariates.

Our motivation for this work is a short-term mortality risk prediction model (“Ped-RESCUERS”) for
pediatric patients receiving extracorporeal membrane oxygenation (ECMO) support using information
on 1611 pediatric patients treated between the years 2009 and 2012 (Barbaro and others, 2016). The
source population was the Extracorporeal Life Support Organization (ELSO), an international registry of
ECMO patients, and the pertinent data are limited to patient clinical characteristics (weight, age, sex, pri-
mary diagnosis, co-morbidities, complications, and pre-ECMO supportive therapies) and ECMO-specific
measurements (blood gas measurements and ventilator settings). In total, Ped-RESCUERS uses eleven
predictors. Patient-specific biometric measurements of renal, hepatic, neurological, and hematological
dysfunction that may be associated with mortality on ECMO are not generally collected in the ELSO
registry. We posited a list of eleven such additional potential risk factors and collected them on a cohort of
178 non-overlapping patients at three ECMO-providing centers. The data consist of both the eleven risk
factors in PED-RESCUERS and eleven biometric measurements not in the registry. We require a model
that potentially includes all 22 covariates as predictors. We report on these new data in Barbaro and others
(2018). However, given the ratio of sample size to number of covariates and the subsequent variability in
estimates, it is more statistically incumbent to make use of the information from the original large cohort
of patients with unmeasured biometric measurements. Yet, the process of doing so may introduce bias,
due to the different predictors included in each model. It is these competing objectives we seek to balance
so as to increase overall efficiency, i.e. decrease root mean squared error (RMSE).

In other cases, there may only be very limited historical information, meaning that the number of
historical predictors is much less than the total number of potential predictors under study. It is reasonable
to expect that incorporating even such limited historical information should result in a model that is non-
inferior to a modeling approach ignoring the historical information entirely. For example, one alternative
to a prior based solely on historical data would be to regularize estimation and prediction with a prior that
shrinks parameters toward zero, as in the Bayesian Lasso (Park and Casella, 2008) and others (Griffin
and Brown, 2005; Armagan and others, 2013). Based on this logic, an ideal strategy combines these
approaches: incorporating whatever historical information is available and, for those parameters about
which it is not informative, controlling variability by shrinking them to zero in the “usual” way.

We achieve this here through an extension of the power prior, which includes the historical data
likelihood, raised to a power 0 ≤ φ ≤ 1 (Ibrahim and Chen, 2000; Ibrahim and others, 2015). Setting
φ = 0 or φ = 1 corresponds, respectively, to ignoring the historical likelihood entirely or a fully Bayesian
update. Using 0 < φ < 1 allows for partial borrowing of the historical likelihood in the presence of
heterogeneity, and this can be made adaptive by considering a hyperprior on φ itself (Duan and others,
2006; Neuenschwander and others, 2009). The novel idea in our approach is to use φ to vary the relative
contributions of the historical prior (φ = 1) and a variance-reducing prior that shrinks to zero (φ = 0).

In the classical power prior, the historical and current models include the same predictors. In one
extension, Chen and others (1999) approach a related problem by constructing a second, artificial historical
likelihood that uses a constant for the outcome and copies of the added covariates from the current data.
This has the effect of shrinking the corresponding regression parameters toward zero and so is actually
more similar to a typical shrinkage-to-zero prior. Ibrahim and others (2002) consider the general setting
of fitting generalized linear models (GLMs) using power priors when values are missing in covariates of
the historical and/or current datasets. Crucially, both the historical and current likelihoods condition on
the same set of covariates, and missingness is ancillary to the main statistical problem.

Beyond the power prior, there exist alternative approaches for incorporating historical information. A
meta-analysis statistically combines univariable or multivariable associations from multiple studies based
upon each analysis’variance or covariance matrix (Walker and others, 2008; Chen and others, 2012; Jack-
son and Riley, 2014). The main advantage of a meta-analysis is its simplicity, even when combining more
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than two models, because only summaries statistics are required. Among other assumptions, however,
all models to be combined must include the same predictors. Recently, several authors have proposed
strategies for incorporating summary-level historical information via constraints on the likelihood (Chat-
terjee and others, 2016; Grill and others, 2017; Cheng and others, 2018). Antonelli and others (2017)
propose Bayesian approaches for borrowing information from the dataset with additional covariates to
improve estimation of the average causal effect in the dataset with fewer covariates. Relative to previous
important work in this area, we highlight two distinctive features of our approach. First, we account for
the underlying uncertainty in the historical information by using the posterior variance from the historical
model as the prior variance for the current model. Second, we explicitly ignore any historical information
about the intercept, which, in the case of a binary outcome, borrows information, while still allowing for
differences in the underlying true prevalence between the historical and the current models.

The proceeding sections develop the ingredients of our approach that combines historical-based prior
shrinkage and shrinkage to zero. Section 2 reviews the “regularized horseshoe prior” (Carvalho and others,
2009, 2010; Piironen and Vehtari, 2015, 2017a, 2017b), which is the shrinkage-to-zero prior that we use.
Section 3 outlines the construction of two historical-based priors derived from models fit to a subset of the
current set of covariates under consideration. Section 4 proposes how to adaptively combine the historical
information with the shrinkage prior. Sections 5 and 6 demonstrate our methods with a simulation study
and analysis of the motivating ECMO mortality risk prediction model, respectively. Section 7 concludes
with a discussion.

2. SHRINKAGE-TO-ZERO PRIORS

Let g(·) denote the link function of a GLM and π(·|·) and π(·) denote conditional and marginal distri-
butions, respectively. We will use the prior/posterior nomenclature to indicate whether conditioning is
on data. Capital and lowercase letters, respectively, indicate random data and observed data; all types
of Greek letters will be reserved for parameters. Standard font will be used for scalar or vector valued
quantities, and boldface font will be reserved for matrix-valued quantities.

A GLM for an outcome Y is fit to a length-p+q vector of covariates X , g(E[Y |X = x]) = x�β, using n
datapoints, {y, x}. The covariates x are standardized to their empirical mean and empirical standard devia-
tion. We do not distinguish between the first p and the final q elements of β yet (these identify the original
and added elements, respectively) but will do so in subsequent sections. The vector β = {β1, . . . , βp+q} is of
primary interest. Given the likelihoodπ(y|β) and priorπ(β|θ)π(θ), with θ a vector of hyperparameters that
is conditionally independent of y given β, the posterior is π(β, θ |y) ∝ π(y|β)π(β|θ)π(θ). Often, the prior
π(β|θ)π(θ) is selected to regularize parameters by shrinking estimates toward zero, reducing variance at a
cost of some bias, thereby increasing efficiency. Many such shrinkage priors can be written as products of
conditionally independent normal priors on βj: e.g., θ = {θ1, . . . , θp+q} and π(β|θ) = ∏

j N (βj|0, θ 2
j ). For

example, if each θ 2
j is independently inverse-gamma distributed with a common shape and scale parameter

equal to k/2, each βj is marginally Student-t distributed with k degrees of freedom (e.g. Gelman and oth-
ers, 2014). A different choice of π(θ) conferring more adaptive shrinkage properties is the “regularized
horseshoe” (Carvalho and others, 2009, 2010; Piironen and Vehtari, 2015, 2017a, 2017b). Given con-
stants c, d and hyperparameters τ , λ = {λ1, . . . , λp+q}, the hyperprior is π(θ) ≡ π(τ)

∏p+q
j=1 π(λj), where

π(τ) = C+(τ |0, 1), π(λj) = C+(λj|0, 1) for j = 1, . . . , p + q, and C+ indicates the positive half-Cauchy

distribution. Letting θj ≡ (
1/d2 + 1/[c2τ 2λ2

j ]
)−1/2

, the conditional prior for β is then

πSZ(β|θ) =
p+q∏
j=1

N (βj|0, θ 2
j ), (2.1)
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The SZ subscript indicates “shrinkage to zero”. The hyperparameter τ globally shrinks β, while the λjs
multiplicatively offset τ and thus admit large individual variance components. The original horseshoe
(Carvalho and others, 2009) implicitly used c = 1 and d = ∞, i.e. θj = τλj, and others have since
generalized it. First, Piironen and Vehtari (2017a) suggested considering alternative values of c, which
scales the global shrinkage, by linking its value to an implicit assumption about the a priori effective number
of non-zero parameters in the model, say ξeff. The relationship is given by ξeff ≈ ∑

j

(
1 + [σ/

√
n]2θ−2

j

)−1
,

where σ is the dispersion. So, for example, if p + q = 20, n = 500 and σ = 2, under the original
horseshoe, the prior mean of ξeff is E[ξeff] ≈ 17.1. If instead c = 0.01, then E[ξeff] ≈ 3.3. Typically,
using c = 1 codifies a prior belief that most of the p + q parameters are non-zero, which is unlikely
when p + q itself is large. Further, the expression for ξeff highlights that the choice of c ought to scale
with σ/

√
n, all other things being equal. Larger sample sizes warrant smaller values of c. Based on this,

the authors recommend selecting ξ̃eff = E[ξeff] and then, assuming σ−2 is fixed, numerically solving

ξ̃eff = E
[∑

j

(
1 + [σ/

√
n]2θ−2

j

)−1
]

for c (θj is a function of c), where the expectation is taken with respect

to π(θ). The result will usually be c 
 1.
Subsequent work by Piironen and Vehtari (2017b) argued that the original horseshoe tends to under-

shrink large elements of β, which can also result in numerical difficulties, known as “divergent transitions”,
as a result of a stochastic search through heavy tails (Piironen andVehtari, 2015).As a solution, they suggest
to soft-truncate its tails with a diffuse normal prior with variance d2. Choosing a finite-valued d results in
the regularized horseshoe prior. Our strategy for choosing the hyperparameters c and d in this paper is to
set d equal to a large value, d = 15, and then numerically solve ξ̃eff = E[∑j(nσ−2θ 2

j )/(1 + nσ−2θ 2
j )] for

c, as before. A large d has minimal effect in the middle of the horseshoe prior but effectively thins out the
heavy tails. We further discuss ξ̃eff in Section 5. The prior in (2.1) is the hierarchical shrinkage prior that
we will extend in Section 4 to adaptively incorporate historical information. But first, Section 3 considers
the prerequisite non-adaptive prior using the historical information alone.

3. HISTORICAL SHRINKAGE PRIOR

Separate X into X o and X a, of length p and q, respectively. The original covariates X o were measured in
the historical analysis, and the added covariates X a were not. We are interested in modeling E[Y |X o =
xo, X a = xa], but the historical model only estimates the smoothed version E[Y |X o = xo] = E[E[Y |X o =
xo, X a]|X o = xo]. The historical analysis conveys information about

g(E[Y |X o = xo]) = μo + (xo)�α. (3.1)

This knowledge is quantified by the posterior distribution of α given the historical data, about which one
likely only has access to summary statistics, e.g. the mean and covariance matrix. Our interest is not in
Model (3.1) but rather the embiggened model

g(E[Y |X o = xo, X a = xa]) = μ + (xo)�βo + (xa)�βa. (3.2)

We have a dataset of n observations, {y, xo, xa} and a likelihood function π(y|βo, βa). A standard analysis
of {y, xo, xa} alone might employ a shrinkage-to-zero prior as described in Section 2; that prior does not
distinguish between historical and current covariates. Keeping in mind our ultimate goal of incorporating
the historical information we have about α, this section lays out an alternative prior formulation based
upon the historical analysis. We will then combine these priors in Section 4.
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3.1. Naive Bayesian update

A naive Bayesian (NB) update would directly apply the historical posterior on α as a prior on βo, since
these parameters correspond to the same set of covariates, namely X o. More formally, one might use
mα ≡ E[α] and Sα ≡ Var[α] as the respective prior mean and variance for βo. Then, given an optional
scaling hyperparameter η, a conditional prior might be

πNB(βo|η) = N (βo|mα , ηSα) (3.3)

However, Model (3.1) cannot hold for all patterns xo if Model (3.2) is the true generating model unless
βa = 0 (or, if for some fixed q × p matrix of weights B, X a = BX o almost surely. In the special case that
g is the identity link, this condition may be relaxed to equality in expectation, i.e. E[X a|X o = xo] = Bxo).
Thus, in general, the naive Bayesian is implicitly assuming that βa ≈ 0, so as to be able to equate α and
βo in (3.3). To be consistent with this assumption, πNB(βo|η) should be accompanied by a prior on βa that
strongly shrinks to zero. We discuss this further in Section 4.

3.2. Sensible Bayesian update

Although the naive Bayesian update may improve efficiency, by construction it assumes α ≈ βo and
βa ≈ 0. In general α and βo are not equal, neither in value nor interpretation. Further, it is illogical to
begin with a strong prior assumption that βa- corresponding to the novel set of covariates of interest, is
approximately zero. The naive Bayesian update will introduce bias when βa is far from zero. A more
sensible Bayesian update would place the prior on the many-to-few mapping from {βo, βa} to α. Based on
derivations below, we show that this mapping can be approximated by α ≈ βo +Pβa, where P is a certain
p × q projection matrix. To see this, begin by iterating the conditional expectation of Y given X o = xo:

E[Y |X o = xo] = E[E[Y |X o = xo, X a]|X o = xo] = E[g−1
(
μ + (xo)�βo + (X a)�βa

) |X o = xo].

Applying Model (3.1), i.e. taking g(·) of both sides, which—because the true(r) model is (3.2)—will only
be an approximation of the conditional mean of Y given X o, we obtain the following:

μo + (xo)�α ≈ g E[g−1
(
μ + (xo)�βo + (X a)�βa

) |X o = xo] (3.4)

μo ≈ g E[g−1
(
μ + (X a)�βa

) |X o = 0]. (3.5)

This relates the available historical model with the current model. In particular, (3.5) obtains an approx-
imation for the historical (and misspecified) intercept μo by plugging in xo = 0, which is predicated on
xo = 0 falling within the observed support of X o and achieved by centering the covariates. This is useful
because taking the difference between (3.4) and (3.5) completely removes μo from the equation:

(xo)�α ≈ g E[g−1
(
μ + (xo)�βo + (X a)�βa

) |X o = xo] − g E[g−1
(
μ + (X a)�βa

) |X o = 0]. (3.6)

Equation (3.6) is the basis of the sensible Bayesian update: it links Model (3.2) to a function of the
parameters from Model (3.1), about which there is historical information. Furthermore, like the naive
Bayesian update, the sensible Bayesian update avoids borrowing information on the historical intercept
μo. This relaxes a critical assumption: we do not require that the historical and current data generating
models are identical but, less restrictively, that the underlying true values of {βo, βa} are equal.

When the link function g is non-linear, constructing a prior based upon (3.6) would necessitate a
Jacobian adjustment, and the adaptive priors that we subsequently develop in Section 4 would require
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numerically integrating over this Jacobian at each iteration of the Markov Chain, rendering such an
approach computationally intractable. Practically, then, we must further approximate the mapping to
obviate the Jacobian adjustment. Moving g across the integrals,

(xo)�α ≈ E[μ + (xo)�βo + (X a)�βa|X o = xo] − E[μ + (X a)�βa|X o = 0]
= (xo)�βo + (

E[X a|X o = xo]� − E[X a|X o = 0]�)βa. (3.7)

For a given p-length vector xo, we can use Equation (3.7) to link a (p + q)-dimensional set of parameter
values {βo, βa} to a linear combination of α, capturing one dimension of information about α. With a
linearly independent set of p vectors xo, we can create the desired (p + q) → p mapping and capture the
available p dimensions of information.

In theory, (3.7) holds for any arbitrary vector xo. However, as a consequence of the derivations in this
section, we intuitively understand xo to correspond to a vector of the original covariates. This is important
because we need to be able to calculate or approximate the expectations in the mapping. Let V o denote
a p × p matrix of linearly independent columns, with the jth row representing a hypothetical pattern of
the original covariates. Analogously, let V a denote a p × q matrix of p hypothetical patterns of the added
covariates. Then, the length-p vectorized mapping is

voα ≈ voβo + (
E[V a|V o = vo] − E[V a|V o = 0p×p]

)
βa

⇒ α ≈ βo + Pβa, (3.8)

where P ≡ (vo)−1
(
E[V a|V o = vo] − E[V a|V o = 0p×p]

)
. Analogous to the naive Bayesian update,

πSB(βo + Pβa) = N ({βo + Pβa}|mα , ηSα). (3.9)

In calculating the posterior, vo and P are treated as fixed and known constants. Section S1 of supplementary
material available at Biostatistics online describes in detail how to construct vo and how to use multiple
imputation with chained equations (MICE) to calculate a Monte Carlo estimate of the integral in (3.8).

Contrasting the distributions in (3.3) and (3.9), the latter incorporates a linear offset to account for the
differences between Models (3.1) and (3.2). The sensible Bayesian update thus approximates and adjusts
for the difference between α and βo. However, the prior in (3.9) will still be insufficient on its own, as it
only informs p dimensions of a p + q parameter space. We return to this point in Section 4. In summary,
both ideas merit further consideration: the sensible Bayesian is intuitively preferable by adjusting for
model misspecification, and the naive Bayesian avoids modeling the distribution of X a given X o.

4. ADAPTIVE WEIGHTING

Alone, neither type of prior from Section 2 or 3 would be acceptable in the context of this article:
the shrinkage-to-zero prior in Section 2 ignores the historical data, and the priors in Section 3 may be
incomplete, particularly when the historical information is limited to a small number of covariates. In this
section, we develop combined versions of the historical priors that adaptively vary between the priors in
Sections 2 and 3. Called “naive adaptive Bayes” (NAB) and “sensible adaptive Bayes” (SAB), these seek to
incorporate the historical information without sacrificing potential efficiency gains coming from shrinking
to zero. We describe the two adaptive priors before formally defining them. Both share the following
commonalities. Similar to the power prior, a hyperparameter φ ∈ [0, 1] weights the historical information
by inversely scaling the variance Sα; larger (smaller) values of φ reflect greater (less) incorporation of the
historical information. When φ is equal to zero, both NAB and SAB reduce to the shrinkage-to-zero prior
in (2.1).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
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4.1. Naive adaptive Bayes

Where NAB and SAB differ is at φ = 1, which corresponds to full use of the historical information. NAB
extends the α ≈ βo assumption of its non-adaptive counterpart in Section 2.1. Therefore, the historical
prior on βo in (3.3) is fully used when φ = 1, and additional shrinkage of βo is unnecessary. Moreover,
βa is strongly shrunk to zero, because that is generally the only parameterization for which α ≈ βo. The
hyperparameters of NAB are {φ, η, τ } (scalars) and {λ, λ̃} (vectors). The pre-specified constants are scalars
c, d, and c̃. For notational simplicity, define θ̃j to be

θ̃j ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

d2
+ 1 − φ

c2τ 2λ2
j

)−1/2

, j = 1, . . . , p(
1

d2
+ 1 − φ

c2τ 2λ2
j

+ φ

c̃2λ̃2
j

)−1/2

, j = p + 1, . . . , p + q

Then, the NAB conditional prior is

πNAB(βo, βa|φ, η, τ , λ, λ̃) = N (βo|mα , ηSα/φ)

p+q∏
j=1

N (βj|0, θ̃ 2
j )ZNAB(φ, η, τ , λ), (4.1)

ZNAB(φ, η, τ , λ) =
(∫

βo
N (βo|mα , ηSα/φ)

p∏
j=1

N (βj|0, θ̃ 2
j )dβo

)−1

. (4.2)

As desired, the impact of the shrinkage-to-zero prior decreases withφ. τ andλ are the same as in Section 2.1,
and the constants c and d are selected as previously described. We set c̃ equal to 0.05, i.e. a small number,
reflecting the assumption that βa ≈ 0 when φ = 1; however, we introduce an auxiliary hyperparameter λ̃,
allowing for non-zero elements of βa if warranted by the data. The hyperparameter η separately controls
the historical prior shrinkage. Hyperpriors for λ̃ and η are discussed below. The constant d guarantees
propriety of the posterior for any φ ∈ [0, 1]. To summarize, NAB varies between standard shrinkage to
zero (φ = 0) and a Bayesian update under the assumption that α ≈ βo and βa ≈ 0 (φ = 1).

REMARK 1 The normalizing constant ZNAB(φ, η, τ , λ) in (4.2) ensures that the prior is proper for any
configuration of the hyperparameters and must be calculated when any of the hyperparameters are ran-
dom. Its analytic expression is derived in Section S2 of supplementary material available at Biostatistics
online. The integral calculation must be updated at each step of the Markov Chain. This would become
computationally intractable in the presence of a Jacobian from a non-linear transformation and is why we
approximated the mapping as in (3.7).

REMARK 2 A reviewer observed the similarity between NAB and the class of “penalized complexity”
priors of Simpson and others (2017), both of which use the extreme end of the hyperparameter support
(φ = 1, in our notation) to essentially recapitulate some pre-specified simple model and prevent overfitting.
Penalized complexity priors are defined for a much broader context and thus allow for more general base
models, as opposed to our specific objective of incorporating historical information.

4.2. Sensible adaptive Bayes

For SAB, the modified prior in (3.9) is fully employed when φ = 1, and any additional shrinkage of βo to
zero is weak. However, because the sensible Bayesian update adjusts for the difference between βo and

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
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α, it is not necessary to assume that βa ≈ 0. Thus, in SAB, the value of φ does not affect the contribution
of the variance-reducing prior on βa. Defining the SAB hyperparameter θ̃j to be

θ̃j ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

d2
+ 1 − φ

c2τ 2λ2
j

)−1/2

, j = 1, . . . , p(
1

d2
+ 1

c2τ 2λ2
j

)−1/2

, j = p + 1, . . . , p + q

the SAB conditional prior is

πSAB(βo, βa|φ, η, τ , λ) = N ({βo + Pβa}|mα , ηSα/φ)

p+q∏
j=1

N (βj|0, θ̃ 2
j )ZSAB(φ, η, τ , λ), (4.3)

ZSAB(φ, η, τ , λ) =
(∫∫

βo ,βa
N ({βo + Pβa}|mα , ηSα/φ)

p+q∏
j=1

N (βj|0, θ̃ 2
j )dβodβa

)−1

An expression for ZSAB(φ, η, τ , λ) is derived in Section S3 of supplementary material available at Bio-
statistics online. As with NAB, a finite-valued d ensures that πSAB(βo, βa|φ, η, τ , λ) is proper for any
φ ∈ [0, 1].

4.3. Hyperpriors

We describe here our choices of hyperprior for the hyperparameters φ, η, and, for NAB, λ̃. The hyperpriors
on the global and local shrinkage components, τ and λ, remain as given in Section 2.

The hyperparameter φ distributes prior weight between shrinkage to zero (φ ≈ 0) and historical
shrinkage (φ ≈ 1). We consider two hyperprior options. The first, called agnostic, is uniform over the
unit interval. The second is a truncated normal distribution with mean and standard deviation of 1 and
0.25, respectively. This is optimistic because the mode is φ = 1, encouraging full use of the historical
information.

The hyperparameter η independently controls the historical prior shrinkage. This could simply be set
to 1; we used an inverse-gamma distribution with shape and scale equal to 2.5.

Finally, the hyperparameter vector λ̃, used by NAB, controls the prior scale of βa when φ = 1. As
with η, each element of λ̃ could be set to 1, which would give that βa is normal with standard deviation
(1/d2 + 1/c̃2)−1/2 = (1/152 + 1/0.052)−1/2 ≈ 0.05 when φ = 1. We instead model the components of λ̃

as inverse-gamma, each with shape and scale equal to 0.5, allowing for some elements of λ̃ to be large.

5. SIMULATION STUDY

We conducted a simulation study of logistic regression to evaluate our proposed methodology against
a variety of data generating scenarios. All analyses were conducted in the R statistical environment
(R Core Team, 2016; Wickham, 2009; van Buuren and Groothuis-Oudshoorn, 2011) and its interface with
Stan (Carpenter, 2017; Stan Development Team, 2017, 2018), which numerically characterizes posterior
distributions using Hamiltonian Monte Carlo. Code to reproduce the simulation study is available at
https://github.com/psboonstra/AdaptiveBayesianUpdates.

Varying between each scenario were the fixed, unknown values of {βo, βa} to be estimated (ten pos-
sibilities described in Table 2, ranging from p + q = 6 to 100 predictors), the sample size of the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
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historical data analyses (nhist ∈ {100, 400, 1600}), and the sample size of the current data analyses
(n ≡ ncurr ∈ {100, 200}). For each of the 60 unique data generating scenarios, we independently sampled
128 “historical” and “current” datasets of size nhist and ncurr, respectively. To generate the data, preliminary
values of {X o, X a} were sampled from multivariable normal distributions with constant correlation equal
to 0.2. After this, half of the elements of each of X o and X a were transformed using the sign function,
i.e. 1[x>0] − 1[x<0]. Then, given the resulting {X o, X a} vector, Y was sampled from a logistic regression
with parameters {βo, βa} fixed at one of the values in the third column of Table 2. The true generating
value of the intercept in the historical data model (μhist = −1) was larger than that of the current data
model (μ = −2), yielding different marginal prevalences of the outcome. Each historical dataset consisted
of nhist independent draws of {Y , X o}, whereas each current dataset consisted of ncurr independent draws
of {Y , X o, X a}. In summary, the historical and current generating models differ in the true value of the
intercept; the historical and current datasets structurally differ in that the former does not use X a.

REMARK 3 The intercept μo in Model (3.1) is distinct from μhist described in the preceding paragraph:
the former denotes the intercept from the asymptotically misspecified sub-model, and the latter is the true
intercept from Model (3.2) that actually generated the historical data.

The fourth column of Table 2 gives the asymptotic parameter values from the misspecified logistic
regression of Y on X o, which the historical data analysis estimates. To emulate the historical analysis,
an initial Bayesian logistic regression was fit to the historical outcomes yhist to estimate Model (3.1). We
applied a regularized horseshoe prior on α using (2.1) with d = 15 and ξ̃eff = p1/3 − 0.5, n = nhist, and
σ = 2 to determine the value of c. So, for example, when p = 20, the assumed effective number of non-
zero parameters was 201/3 − 0.5 ≈ 2.21, and when nhist = 400, solving 2.21 = E[∑j(nhistσ

−2θ 2
j )/(1 +

nhistσ
−2θ 2

j )] yields c ≈ 0.0060. Fixing σ = 2 corresponds to the largest dispersion in a logistic GLM and

usually results in slightly less than ξ̃eff effective parameters compared with σ < 2 (Piironen and Vehtari,
2017a). We obtained samples from the historical posterior distribution π(α|yhist) and estimated mα and
Sα , the ingredients for the adaptive priors in the current data analysis. Then, the “current” analysis was
conducted: a second Bayesian logistic regression to estimate the larger model in (3.2), using the current
outcomes ycurr. Each of the five priors in the third column of Table 1 was paired with the likelihood of
ycurr, yielding five posterior distributions to be compared. Four of these were adaptive Bayesian updates
from in Section 4: two adaptive priors times two distinct hyperpriors on φ. The other was the regularized
horseshoe in (2.1) and was used as a reference; we call this approach ‘Standard’. We used d = 15 and
ξ̃eff = (p + q)1/3 − 0.5, n = ncurr, and σ = 2 to solve for c. All of the adaptive priors are equivalent
to Standard when φ ≡ 0. For SAB, we estimated P (3.9) using Monte Carlo methods based upon 100
independent draws from MICE. We measured performance using RMSE ≡ √

Eπ(β|y)(β − b)�(β − b),

Table 1. Summary of posterior distributions evaluated in the simulation study

Labels Likelihood Prior Prior equation Hyperprior: π(φ) =
Standard π(y|βo, βa) πSZ(βo, βa|τ , λ) Equation (2.1) —
NAB(agnostic) π(y|βo, βa) πNAB(βo, βa|φ, η, τ , λ, λ̃) Equation (4.1) Unif(φ|0, 1)

NAB(optimist) π(y|βo, βa) πNAB(βo, βa|φ, η, τ , λ, λ̃) Equation (4.1) N (φ|1, 0.252)1φ∈[0,1]
SAB(agnostic) π(y|βo, βa) πSAB(βo, βa|φ, η, τ , λ) Equation (4.3) Unif(φ|0, 1)

SAB(optimist) π(y|βo, βa) πSAB(βo, βa|φ, η, τ , λ) Equation (4.3) N (φ|1, 0.252)1φ∈[0,1]

Because the same likelihood is used for all methods, any differences are due to priors used. The “Standard” approach is precisely
the regularized horseshoe prior and used as a benchmark for comparing performance.
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where b is the fixed, true value of the regression coefficient vector, and the expectation is taken over both
the original and added covariates. For each of the adaptive Bayesian updates, we calculated its RMSE
ratio with respect to Standard, such that ratios less than one indicate relatively better performance of the
adaptive update. For each unique data generating mechanism, we report the distribution of 128 RMSE
ratios. The top panel of Figure 1 plots the RMSE ratios from the first 5 rows of Table 2, for which p = 4
and q = 2, and the bottom panel plots the ratios from the final 5 rows, for which p+q ∈ {22, 25, 50, 100}.

More historical data, i.e. larger nhist, improved the relative performance of the adaptive updates.
For example, across coefficient settings b1–b5, with ncurr = 100, the middle quartiles of the
SAB(agnostic)/Standard RMSE ratio were {0.71, 0.80, 0.90} when nhist = 100 versus {0.51, 0.62, 0.75}
when nhist = 1600. The NAB-type updates also improved with increasing nhist, but, in absolute terms, they
did not always improve upon Standard, e.g. for b5 the quartiles of the RMSE ratio were {0.96, 1.09, 1.19}
when nhist = 100 and {0.88, 1.01, 1.10} when nhist = 1600.

More current data, i.e. larger ncurr, hurt the typical relative performance of the adaptive updates, all
other aspects being fixed, but also decreased the variability between datasets. This can be seen in Figure 1:
when ncurr = 200 (the second and fourth rows), the boxplots move closer to 1.00 and with less spread
relative to ncurr = 100 (the first and third rows, respectively). A fixed amount of historical data becomes
relatively less valuable in the presence of more current data.

The adaptive priors were relatively less useful when p + q was small: across all datasets in the top
panel of Figure 1, for which p + q = 6, the middle quartiles of the RMSE ratios for NAB(agnostic) was
{0.68, 0.84, 1.02}, and for SAB(agnostic) it was {0.61, 0.74, 0.86}; across all datasets in the bottom panel,
for which p + q ∈ {22, 25, 50, 100}, these were {0.26, 0.54, 0.72} and {0.28, 0.58, 0.78}, respectively.
Comparing the adaptive priors, NAB outperformed SAB in scenarios for which the integral required by
the latter, i.e. (3.8), was difficult to estimate well, e.g. p 
 q.

Figures S1 and S2 of supplementary material available at Biostatistics online plot the separate RMSE
ratios for βo and βa, respectively. There is a clear trend of improving performance for estimating βo,
which is to be expected given its relationship to α. For the small p + q settings, the SAB-type updates
were about equivalent to the standard approach in estimating βa, and the NAB-type updates were worse.
Interestingly, in the larger p + q settings, the adaptive priors were marginally better at estimating βa than
the standard approach. Our findings were relatively unchanged upon increasing the shape and scale of η,
which scales Sα , to 25 (Figure S3 of supplementary material available at Biostatistics online). Finally,
Table S1 of supplementary material available at Biostatistics online summarizes the running time of each
prior considered. The SAB-type updates were slowest to run, owing in part to the required imputation
step.

6. APPLICATION: MORTALITY RISK PREDICTION IN PEDIATRIC ECMO PATIENTS

We demonstrate our methods on the data example discussed in the introduction. Ped-RESCUERS was fit
to nhist = 1611 historical patients, and p = 11 risk factors for short-term mortality were included. Our
current data consists of ncurr = 178 patients, on which we have measured both the p = 11 original and
the q = 11 added covariates, all of which are defined in Table S2 of supplementary material available at
Biostatistics online. The overall mortality rate in the Ped-RESCUERS cohort was 40.8%; in the current
cohort it was 26.4%.

We fit the following seven Bayesian logistic regression models. Ped-RESC is the model from Barbaro
and others (2016) based upon the original covariates fit to the 1611 patients. Ped-RESC2 is this same model
fit to the current 178 patients, using weakly informative Cauchy priors on the regression coefficients; we
include this model so as to be able to assess differences due to study populations. The other five priors are
as considered in the simulation study: a regularized horseshoe prior on all 22 parameters (“Standard”), and
agnostic and optimistic versions for each of the SAB and NAB priors. For all five priors, we used ξ̃eff = 11

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy053#supplementary-data
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Fig. 1. Boxplots of RMSE ratios (y-axis, on the log2-scale) comparing four adaptive priors that make use of the
historical information against a standard hierarchical shrinkage prior, plotted against varying sample sizes of the
historical data (nhist; x-axis) for ten true values of the regression coefficients (bk , k = 1, . . . , 10; columns) taken from
Table 2 and varying sample sizes of the current data (ncurr; rows). Each boxplot compares the posteriors across 128
independent datasets. Smaller ratios indicate better performance of the corresponding adaptive prior.

to reflect an optimistic prior assumption that 11 of the 22 parameters are non-zero. To account for sporadic
missingness in the current data (about 4% in total), we used a pseudo-Bayesian strategy proposed by
Zhou and Reiter (2010). We first imputed 100 datasets using MICE. Then, for each completed dataset and
each prior, we sampled 400 draws from the posterior distribution of the parameters conditional upon that
completed dataset, concatenating these across imputations to construct a sample of 400 × 100 = 40, 000



e58 P. S. BOONSTRA AND R. P. BARBARO

Table 2. Summary of fixed, true values of {βo, βa} from the generating logistic regression
model, [Y |X o, X a] used in the simulation study as well as the asymptotic true values of α

from the misspecified reduced model, [Y |X o]
Label {p, q} {βo||βa} α

b1 {4, 2} {0.5, 0.5, 0.5, 0.5||0.5, 0.5} {0.55, 0.55, 0.58, 0.58}
b2 {4, 2} {1, 0.5, 0, 0||0.5, 1} {0.97, 0.54, 0.16, 0.16}
b3 {4, 2} {1,-0.5, 0, 0||-0.5,-1} {0.73,-0.54,-0.16,-0.16}
b4 {4, 2} {0.5, 0.5, 0, 0||1, 1} {0.53, 0.53, 0.19, 0.19}
b5 {4, 2} {0.5, 0.5, 0, 0||-1,-1} {0.25, 0.25,-0.19,-0.19}
b6 {11, 11} {0.5, . . . , 0.5︸ ︷︷ ︸

4

, 0.25, . . . , 0.25︸ ︷︷ ︸
7

|| {0.37, . . . , 0.37︸ ︷︷ ︸
4

, 0.24, 0.24, 0.29, . . . , 0.29︸ ︷︷ ︸
5

}

2, 1, 1, 0, . . . , 0︸ ︷︷ ︸
8

}

b7 {5, 20} {0.2, . . . , 0.2︸ ︷︷ ︸
5

|| 0.2, . . . , 0.2︸ ︷︷ ︸
20

} {0.41, . . . , 0.41︸ ︷︷ ︸
3

, 0.51, 0.51}

b8 {20, 5} {0.2, . . . , 0.2︸ ︷︷ ︸
20

|| 0.2, . . . , 0.2︸ ︷︷ ︸
5

} {0.23, . . . , 0.23︸ ︷︷ ︸
10

, 0.24, . . . , 0.24︸ ︷︷ ︸
10

}

b9 {5, 45} {1, 1, 1, 0, 0|| {0.89, 0.89, 0.89, 0.35, 0.35}
0.5, . . . , 0.5︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
35

}

b10 {5, 95} {1, 1, 1, 0, 0|| {0.97, 0.97, 0.97, 0.38, 0.38}
0.25, . . . , 0.25︸ ︷︷ ︸

20

, 0, . . . , 0︸ ︷︷ ︸
75

}

The “||” symbol is used to distinguish between elements of βo and βa.

posterior draws “averaged” over the imputations. The log-odds ratios (ORs), i.e. elements of β, were
standardized with respect to the observed distribution of the 178 current patients, allowing for a comparison
of magnitudes both between and within priors.

Table 3 gives the posterior medians of the ORs. Also included is the larger of (i) Pr(eβk > 1) and (ii)
Pr(eβk < 1). Bolded results correspond to those with a > 75% probability of falling above or below 1,
a simple binary indicator of variable importance. The first two blocks of rows correspond to the original
covariates, and the second two blocks of rows correspond to the added covariates. Figure 2 presents
boxplots of the posterior distributions of all ORs.

Comparing PED-RESC and PED-RESC2, the direction and magnitude of the observed associations
in the sets of original covariates were consistent between the two cohorts, with one exception: in PED-
RESC2, no patients with a primary diagnosis of asthma died, i.e. the data were quasi-complete separated.
All variable importance probabilities were generally closer to 1 in PED-RESC, due to its larger sample
size. The regularized horseshoe (Standard) shrinks nearly all ORs, both original and added, close to one.
This is one consequence of the size of ncurr relative to p + q. In contrast, all of the adaptive priors recover
some of the original associations from PED-RESC.

Using the NAB-type priors, the importance probabilities for the original risk factors were all greater
than 75%, as well as those of added covariates ofALT and lactate. These two were also important according
to Standard. Neither of the SAB priors found PaCO2, MAP(CMV), admit hours pre-ECMO, malignancy,
preECMO milrinone, or DX:Asthma to be important and, among the added covariates, identified bilirubin,
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Table 3. Posterior medians of standardized odds ratios (ORs) and, in parentheses, variable importance
probabilities given as percentages, defined as the larger of (i) the posterior probability that an OR exceeds
one and (ii) the posterior probability that an OR falls below one

Model pH PaCO2 (mmHg) MAP(CMV) MAP(HFOV) Admit hours Intubated hours
(cmH2O) (cmH2O) pre-ECMO (log) pre-ECMO (log)

PedRESC 0.46(100.0%) 0.70(96.3%) 1.37(93.9%) 1.43(98.6%) 1.42(99.3%) 1.62(99.5%)
PedRESC2 0.37(96.0%) 0.67(76.9%) 1.54(74.1%) 1.59(83.4%) 1.64(86.8%) 2.30(95.7%)
Standard 0.99(58.8%) 1.01(58.9%) 1.01(55.6%) 1.02(60.8%) 1.01(58.4%) 1.96(90.6%)
NAB(Agn) 0.58(94.5%) 0.88(70.1%) 1.29(84.3%) 1.39(93.0%) 1.33(91.5%) 1.71(98.3%)
NAB(Opt) 0.55(97.5%) 0.82(78.4%) 1.33(88.7%) 1.41(96.2%) 1.36(95.7%) 1.67(99.0%)
SAB(Agn) 0.90(73.7%) 1.02(56.9%) 1.10(69.2%) 1.14(77.4%) 1.03(59.2%) 2.25(99.0%)
SAB(Opt) 0.86(76.9%) 1.02(56.1%) 1.13(71.4%) 1.15(78.4%) 1.02(58.1%) 2.25(99.4%)

Model Malignancy Pre-ECMO DX:Asthma DX:Bronchiolitis DX:Pertussis
milrinone

PedRESC 1.22(95.1%) 1.29(95.8%) 0.75(93.9%) 0.58(100.0%) 1.33(99.5%)
PedRESC2 1.21(71.1%) 1.31(76.6%) 0.05(99.2%) 0.76(75.1%) 2.07(97.9%)
Standard 1.00(50.8%) 1.00(51.4%) 0.94(69.8%) 0.98(63.6%) 1.33(85.2%)
NAB(Agn) 1.15(80.7%) 1.17(81.5%) 0.70(91.4%) 0.65(95.4%) 1.43(98.8%)
NAB(Opt) 1.17(87.0%) 1.21(87.8%) 0.71(93.6%) 0.63(98.2%) 1.40(99.4%)
SAB(Agn) 1.03(59.2%) 0.99(54.9%) 0.96(60.6%) 0.61(96.4%) 1.50(96.8%)
SAB(Opt) 1.03(59.5%) 0.99(52.6%) 0.97(60.0%) 0.57(97.9%) 1.49(96.9%)

Model Abnormal Bilirubin ALT U/L (log) Extent of Extent of Extent of
pupillary resp. mg/dL (log) leukocyt. (log) leukopen. (log) thrombocytopen. (log)

PedRESC — — — — — —
PedRESC2 — — — — — —
Standard 0.99(56.4%) 1.07(72.5%) 5.60(99.8%) 1.04(68.7%) 0.97(66.6%) 1.01(55.1%)
NAB(Agn) 0.99(55.1%) 1.05(71.5%) 4.88(99.6%) 1.03(63.8%) 0.98(62.5%) 1.01(54.3%)
NAB(Opt) 0.99(54.6%) 1.04(69.6%) 4.92(99.5%) 1.02(63.1%) 0.98(61.5%) 1.01(54.1%)
SAB(Agn) 0.99(57.5%) 1.13(75.5%) 4.87(99.8%) 1.05(66.4%) 0.95(66.5%) 1.01(55.3%)
SAB(Opt) 0.99(57.8%) 1.12(75.2%) 4.60(99.7%) 1.04(64.6%) 0.96(65.1%) 1.01(55.3%)
Model INR VIS (log) Lactate PF ratio (log) Pre-ECMO acute

mMol/L (log) kidney injury

PedRESC — — — — —
PedRESC2 — — — — —
Standard 1.02(62.0%) 1.01(57.9%) 1.57(85.6%) 0.94(71.4%) 1.00(53.7%)
NAB(Agn) 1.01(57.9%) 1.01(53.2%) 1.10(77.6%) 0.96(68.8%) 1.00(50.2%)
NAB(Opt) 1.01(56.7%) 1.00(53.0%) 1.07(75.1%) 0.97(67.6%) 1.00(50.0%)
SAB(Agn) 1.05(66.8%) 1.02(59.1%) 1.94(90.7%) 0.87(77.2%) 1.00(52.8%)
SAB(Opt) 1.05(66.8%) 1.02(60.1%) 1.97(90.6%) 0.88(76.8%) 1.00(51.9%)

Results in bold have percentages exceeding 75.0%.

ALT, lactate, and PF ratio as important. The posterior means of φ were 0.61 and 0.64, respectively, for the
agnostic versions of NAB and SAB, and 0.84 and 0.82, respectively, for the optimistic versions.

From Figure 2, there are two general differences between Standard and the adaptive priors. For the
two original covariates that Standard also identified as important (DX:Pertussis and intubated hours pre-
ECMO), the posterior variability of the adaptive priors is smaller than Standard. Among the remaining
original covariates, the adaptive priors have larger posterior variability than Standard; this is a consequence
of the shrinkage-to-zero prior, which yields small posterior variance for coefficients that it identifies as
likely to be zero-valued. This does not mean Standard is automatically preferred, because some of this
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Fig. 2. Boxplots of posterior draws of odds ratios (ORs) from seven Bayesian logistic models using different priors.
All models estimate ORs corresponding to the original covariates (the bottom eleven rows). Five models (all except
“PedRESC” and “PedRESC2”) estimate ORs corresponding to the added covariates (the top eleven rows).
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shrinkage likely reflects an inability to reliably estimate parameters rather than confidence that they are
truly zero. In general, the SAB-type priors deviate more from PED-RESC than the NAB-type priors: NAB
shrinks βo directly towards the PED-RESC estimates, whereas SAB shrinks a linear combination of βo

and βa toward the PED-RESC estimates.

7. DISCUSSION

We have proposed novel adaptive Bayesian updates of a GLM when the historical model only includes
a subset of the covariates of interest. The priors, with acronyms ‘NAB’ or ‘SAB’, adaptively combine
prior information from the historical model, including underlying statistical uncertainty, with variance-
reducing shrinkage to zero. Thus, they are flexible enough for use in many contexts, ranging from the
historical information being highly informative about a few parameters to being weakly informative about
most parameters, as evidenced by our simulation study. They generally outperformed or matched in
performance a standard approach that ignores historical information. We demonstrated these ideas in our
motivating case study for predicting short-term mortality risk in pediatric ECMO patients.

Specifically, we combined a registry-based mortality risk prediction model (the historical model) fit
to 1611 patients’ data with a broader model that includes biometric measurements (the current model)
recorded on 178 patients. A standard shrinkage prior shrunk most ORs, both original and added, to one,
which is typical behavior for such priors in the presence of substantial uncertainty. Taking into account
a clinical perspective, it seems unlikely that only two of the eleven original covariates identified by
Ped-RESCUERS remain as risk factors for mortality after including the added biometric measurements.
Agreeing more with our clinical expectation, the adaptive updates included between five and all eleven
of the original Ped-RESCUERS risk factors and also identified two (NAB) or four (SAB) of the added
covariates as likely risk factors. Some of this “loss” of importance may be due to correlation between the
original and added covariates: PaCO2 and lactate are negatively correlated, both associated with the degree
of acidosis in the body. Similarly, bilirubin and ALT both measure liver damage, which may explain that
the NAB priors focused on ALT alone whereas SAB found both bilirubin and ALT to be important. One
surprising non-finding was SAB’s failure to identify malignancy as a meaningful risk factor. NAB did
identify malignancy as important, and this is more consistent with the Ped-RESCUERS model as well as
our expectation based upon clinical experience and intuition.

The SAB prior depends upon both a simplifying functional approximation (3.6) and an imputation
model for X a given X o = xo (3.7). In simulated scenarios for which the imputation model was readily
estimated and had sufficient predictive ability, namely p ≈ q, these approximations yielded considerable
efficiency gains. Its advantage over NAB was most evident in coefficient setting b5, in which the true value
of βo differed from the misspecified true value of α, and so NAB was substantially worse than Standard
because the former was biased. Subsequent investigations have also suggested that SAB improves as μ is
closer to zero. In contrast, in settings b9 and b10, for which p 
 q and NAB slightly outperformed SAB,
the need for imputation was likely to the detriment of SAB (although it still outperformed Standard). Such
p 
 q and small ncurr scenarios would correspond, for example, to an exploration of adding a panel of
biomarkers, X a, which are available on just a few subjects, to an established risk prediction model, Y |X o.
In that setting, the covariates X o are probably weak predictors of X a. Empirically, we have found that
estimating P with 100 imputations worked as a good rule of thumb. Of course, there may be underlying
differences between the current and historical populations in the true [X a|X o] distribution that no amount
of current data or number of imputations could recover. NAB is free of this particular distributional
assumption and therefore not automatically inferior to SAB in all scenarios, despite the implied value
judgment in our nomenclature of ‘naive’ versus ‘sensible’. The only difference between the historical
priors in (3.3) and (3.9) being the additive offset Pβa in (3.9), replacing it with γ Pβa, γ ∈ [0, 1], may
be one way to leverage the advantages of both adaptive priors. Importantly, both NAB and SAB ignore
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information on the historical intercept, meaning that they assume that the historical and current models
share {βo, βa} in common but not necessarily the full data-generating mechanism [Y |X o, X a].

Shrinkage methods classically make a bias-variance tradeoff to improve overall performance: bias in
the direction of zero in exchange for a reduction in variance to improve efficiency. In contrast, the adaptive
Bayesian updates we propose, which balance between historical-based shrinkage and shrinkage to zero,
are making a bias-bias tradeoff. Both extremes of the adaptive priors (φ = 0 and φ = 1) reduce variance,
and the question is rather one of determining, which type of shrinkage is less biased.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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