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SUMMARY

With increasing availability of smartphones with Global Positioning System (GPS) capabilities, large-
scale studies relating individual-level mobility patterns to a wide variety of patient-centered outcomes,
from mood disorders to surgical recovery, are becoming a reality. Similar past studies have been small in
scale and have provided wearable GPS devices to subjects. These devices typically collect mobility traces
continuously without significant gaps in the data, and consequently the problem of data missingness has
been safely ignored. Leveraging subjects’ own smartphones makes it possible to scale up and extend the
duration of these types of studies, but at the same time introduces a substantial challenge: to preserve a
smartphone’s battery, GPS can be active only for a small portion of the time, frequently less than 10%,
leading to a tremendous missing data problem. We introduce a principled statistical approach, based on
weighted resampling of the observed data, to impute the missing mobility traces, which we then summarize
using different mobility measures. We compare the strengths of our approach to linear interpolation (LI), a
popular approach for dealing with missing data, both analytically and through simulation of missingness for
empirical data. We conclude that our imputation approach better mirrors human mobility both theoretically
and over a sample of GPS mobility traces from 182 individuals in the Geolife data set, where, relative to
LI, imputation resulted in a 10-fold reduction in the error averaged across all mobility features.
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1. INTRODUCTION

The Global Positioning System (GPS) is a navigation system that uses a device’s distance from a
number of satellites in orbit to determine the location of the device. GPS has a wide range of appli-
cations. For example, in transportation GPS has been used to complement self-report surveys on travel
activity (Chapman and Frank, 2007; Stopher and others, 2007; Zhou and Golledge, 2003; Shen and
Stopher, 2014). One study instrumented participants with both a GPS receiver and an accelerometer
and showed that combining both data sources improved the prediction of a person’s mode of activity
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(Troped and others, 2008). Another study outfitted children with GPS devices and showed that their travel
behavior was different when they were accompanied by an adult as opposed to when they were on their own
(Mackett and others, 2007).

Another burgeoning area of application is mobile health and the application of GPS to social and
behavioral research in a wide variety of contexts (Wolf and Jacobs, 2010). For example, GPS devices
on older (>63 years of age) care-recipients were used to show that caregiver burden was negatively
correlated with the amount of time a care-recipient spent walking per day (Werner and others, 2012).
Two studies found that mobility measures extracted from GPS data were correlated with depressive
symptom severity (Saeb and others, 2015; Canzian and Musolesi, 2015), and another study was able to
predict changes of state for bipolar patients with 80.8% accuracy (Gruenerbl and others, 2014). Amongst
pregnant women at risk for perinatal depression, women with a larger radius of travel were found to have
milder depressive symptoms than the women with more severe symptoms (Faherty and others, 2017).
Following spine surgery, GPS tracking was used to monitor patient recovery and found that increased
mobility corresponded with a successful recovery (Yair and others, 2011). GPS has also shown promise
at keeping track of wandering dementia patients (Miskelly, 2005) as well as at monitoring the mobility of
patients with Alzheimer’s disease (Shoval and others, 2008). By combining pollution measurements from
air samples and a person’s GPS trace, exposure levels at the individual-level were calculated (Phillips and
others, 2001). Several behavioral traits measured passively through the smartphone use of schizophrenia
patients were found to be associated with self-reported measures of mental health (Wang and others,
2016).

In most of the above studies, GPS data were collected from study participants either through a study-
provided smartphone or wearable GPS receiver. While data collected in this way will have minimal
missingness, there are three distinct disadvantages to supplying the GPS device. Firstly, this study design
is not scalable because it is expensive to provide GPS devices to a large number of participants. Secondly,
adherence to wearable devices typically declines sharply after a few months (AsPC., 2015), making long-
term longitudinal studies less feasible. Thirdly, the data may be biased in unpredictable ways due to
the interference that can arise by introducing of a new device into a participant’s life (Ainsworth and
others, 2013). All of these shortcomings can be avoided by taking advantage of built-in GPS devices in
the smartphones of participants. In 2017, 80% of US adults owned smartphones, up from 35% in 2011
(Smith, 2015; Cassagnol, 2017), and this number is expected to continue to increase. Anonymized call
detail records (CDRs), resulting from mobile phone communication events, have been used to study both
social networks (Onnela and others, 2007) and mobility patterns (Gonzalez and others, 2008) at scale,
and analysis and modeling of CDRs to different purposes has since then become an active field of its own
(Blondel and others, 2015). However, for the purposes of inferring mobility metrics, these data are quite
limited as the location of the person is only available at the level of the cell tower used to transmit the
event, and even this is only available at the time of communication (either via calls or text messages).
Smartphone-based mobility traces from GPS are therefore more precise both spatially and temporally
and, importantly, making it possible to link the smartphone data with individual-level covariates, which
in the context of digital phenotyping, which we have previously defined as the “moment-by-moment
quantification of the individual-level human phenotype in situ using data from personal digital devices”
(Onnela and Rauch, 2016; Torous and others, 2016), could range from simple demographic variables to
fMRI imaging or genome sequencing data.

To make use of the ubiquity of smartphones in biomedical research settings, we have developed an
open source research platform for digital phenotyping called Beiwe that includes customizable iOS and
Android smartphone apps that, among other features, can record a phone’s GPS trace using user specified
sampling scheme (Torous and others, 2016). For a smartphone app to be scalable and enable long-term
data collection, it must not impose too much of a drain on the phone’s battery. Study adherence, which in
this context means not uninstalling the app during the study, could be in jeopardy if the participant notices
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a significant drop in the battery life. Of all the current smartphone sensors, GPS is the most expensive
with regards to battery usage (Miller, 2012). To lower the strain on the battery, the Beiwe platform records
GPS over short intervals, called on-cycles, between gaps of periods of inactivity, called off-cycles. The
platform enables users to specify the length of on-cycles and off-cycles at will; for example, the on-period
might be 2 min and the off-period 10 min. However, all of these off-periods lead to a large portion of the
GPS trace being missing. Competing smartphone platforms for digital phenotyping also deal with similar
missing data problems.

To the best of our knowledge, there is currently no principled method of handling continuous missing
GPS data at the individual level (Krenn and others, 2011; Jankowska and others, 2015). There have
been methods developed that avoid using the coordinate pairs of GPS data by representing significant
locations as nodes in a network (Liao and others, 2007), and there are methods that require the trajectories
of large samples of individuals to construct road networks (Li and others, 2016). Studies that model
trajectories at the individual-level so far have either ignored missing data (Canzian and Musolesi, 2015),
or have used linear interpolation (LI) assuming travel at constant 1 m/s over the missing interval (Rhee
and others, 2007, 2011). With the rise of research in digital phenotyping large scale research studies
aiming to measure patient-centered outcomes and behavioral phenotypes in naturalistic settings over
long periods of time are becoming more prevalent, necessitating the development of statistical methods
that properly account for missingness. Here, we introduce a statistical approach for imputing the missing
trajectories present in an individual’s mobility trace that attempts to simulate human mobility patterns at the
individual level, i.e. using only the observed data from that same individual without reliance on any external
data. The properties of this approach are compared analytically to LI, as well as across high-frequency
complete-data mobility traces from 182 individuals in the Geolife data set (Zheng and others, 2009,
2008, 2010). Compared to LI, our imputation approach offers significant reductions in error relative to the
ground truth in the estimation of a wide variety of mobility measures, with a 10-fold improvement in the
average error.

2. METHODS

2.1. Mapping longitude and latitude to a 2D plane

While raw GPS data consists of a sequence of longitude and latitude coordinates that trace a person’s
location on the surface of the Earth, most mobility metrics are computed for data in a 2D Euclidean plane,
requiring a transformation of coordinates as the first step. Because of the differences in geometry, there
will always be distortion when mapping the surface of a 3D sphere to a 2D plane, although the distortion
is smaller the smaller the region of the sphere’s surface being mapped. People typically do not travel far
enough on a daily basis for this projection to greatly distort their mobility traces. For the purposes of
extracting mobility measures, a person’s mobility trace can be mapped to a 2D plane on an individual
basis, as opposed to using a universal projection such as the Mercator projection (Maling, 2013). By
allowing each person their own projection, distortion can be minimized by selecting the projection best
suited for each individual. We detail these individualized projections here.

Consider a person’s mobility trace where we let λmin, λmax, φmin, and φmax be the minimum and maximum
latitude and longitude attained over the study period, respectively. Note that these parameters are specific
to each individual. By projecting the region bounded by the points (φmin,λmin), (φmax,λmin), (φmin,λmax), and
(φmax,λmax) onto an isosceles trapezoid, the distortion of the projection is greatly reduced (see Figure S1 of
supplementary material available at Biostatistics online). To map a specific (φ, λ) coordinate to the X–Y
plane, let wλ = λ−λmin

λmax−λmin
, wφ = φ−φmin

φmax−φmin
, d1 = (λmax −λmin) · R, d2 = (φmax −φmin) · R · sin(π/2 −λmax),

and d3 = (φmax − φmin) · R · sin(π/2 − λmin), where R = 6.371 · 106 m represents the Earth’s radius in

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data


Inferring mobility measures from GPS traces with missing data e101

meters. Then the corresponding (x, y) pair is:

x = wλ

(
d3−d2

2

)
+ wφ {d3(1 − wλ) + d2wλ} ,

y = wλd1 sin
{

cos−1
(

d3−d1
2d1

)}
.

As a reference point, we assign the origin to (φmin, λmin).

2.2. Notation and model

First, a person’s GPS latitude and longitude coordinates are transformed to 2D plane coordinates using
the projection detailed in 2.1. According to the rectangular method (Rhee and others, 2007), the data are
next converted into a mobility trace defined by a sequence of flights and pauses. Flights are defined to be
segments of linear movement and pauses are defined to be periods of time where a person does not move.
Curved movement is approximated by multiple sequential flights. Also, if a missing interval is flanked by
two pauses at the same location (situated within 50 m of one another), the missing interval is assumed to
be a longer pause at the same location.

Suppose a person’s mobility trace begins at time t0 at projected coordinates (x0, y0). The mobility trace
is modeled as a sequence of n events, where an event is either a flight of straight-line movement, or a
pause. Let �x

i be the horizontal displacement of the ith event, �
y
i be the vertical displacement of the ith

event, and �t
i be the duration of the ith event. The time of the ith event is ti while the location at the start

of the ith event is (xi, yi). Letting zi = (xi, yi, ti),

zi = z0 +
i−1∑
j=1

(�x
j , �y

j , �t
j).

The indicator for missingness at time i is mi. Due to the battery strain that GPS imposes, on smartphones
GPS can only be activated for regularly scheduled short intervals (e.g., 2 min) of time, with large gaps
(e.g., 10 min) between collection periods. This scheduled missingness occurs independent of a person’s
mobility and therefore can be classified as missing completely at random (MCAR) (Little and Rubin,
2002), meaning that pr(mi = 1|Z) = pr(mi = 1), where Z = (X , Y , T ) represents the random variables
for location and time.While this scheduled missingness will undoubtedly account for the largest percentage
of missing data in a person’s GPS trace, some GPS data may be missing not at random (MNAR) as related
to a person’s mobility, such as powering off the phone, being inside a tall building, or geographical features
inhibiting satellite connection, and this type of missing data is not accounted for here.

We model the event displacements �i = (�x
i , �y

i , �t
i) with the joint density of BiF (f )(�i|Z = zi) +

(1 − Bi)F (p)(�i|Z = zi) where F (f )(·|Z = zi) and F (p)(·|Z = zi) are density functions for flights and
pauses conditional on the time and location at the start of the ith event, respectively, Bi = 1 when the ith
event is a flight and Bi = 0 when the ith event is a pause, with Bi ∼ Bernoulli(pi). The probability of the
ith event being a flight instead of a pause is pi = Bi−1�(zi) + (1 − Bi−1) where �(·) is the probability of
observing a flight conditional on the previous event being a flight. The reason that pi is dependent on Bi−1

is because two consecutive pauses are impossible by definition, as they would simply combine to count as
one longer pause at the same location. This forces Bi = 1 conditional on Bi−1 = 0. Note that F (f ) and F (p)

are distribution functions conditional on Z while � is not. This conditioning allows the full distribution
functions of flights and pauses to change with Z .

Continuity assumptions on F (f ), F (p), and � enable local weighted resampling. We consider three differ-
ent continuity assumptions that correspond to upweighting events close in time, or temporally local (TL),
upweighting events locally geographically (GL), or upweighting events at similar times of day at similar
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locations, or geographical local and circadian (GLC). Details regarding these continuity assumptions are
left to the Supplementary Materials available at Biostatistics online.

2.3. Imputing missing trajectories

Our approach to dealing with missing data is to impute missing flight and pause events by resampling
from observed events over each missing interval or sequence of events. A person’s true Cartesian location
after projection at time t is L(t) = (Lx(t), Ly(t)). Consider a period of missing data in a mobility trace
that starts at time τs and ends at time τf . L(t) is unobserved over the time interval (τ0, τ1) with L(τ0)

and L(τ1) both being known. We aim to closely approximate L(t) over the missing interval (τ0, τ1) by
borrowing information from the observed mobility trace outside this interval. Previous approaches either
ignore missing data altogether (Canzian and Musolesi, 2015) or have used LI between L(τ0) and L(τ1),
which essentially amounts to connecting the dots at L(τ0) and L(τ1) with a straight line. More precisely, LI
estimates L(t) with L̃(t) = τ1−t

τ1−τ0
L(τ0)+ t−τ0

τ1−τ0
L(τ1) on the interval (τ0, τ1), and this same linear trajectory

is assumed at some pre-specified constant velocity, such as 1 m/s, from L(τ0) to L(τ1) (Rhee and others,
2007, 2011). While such a simple model of human mobility may be suitable for near-complete data with
scarce missingness, for smartphone GPS data with substantial degree of missingness, a more careful
treatment is required.

To simulate a trajectory at any given time point t, we first simulate if a flight occurs (as opposed to
a pause) with probability �

(
Lx(t), Ly(t), t

)
. If a flight is determined to occur, then a flight is sampled

from the empirical distribution function F̂ (f )(·|Z = (Lx(t), Ly(t), t)). If a pause is determined to occur,
then a pause is sampled from F̂ (p)(·|Z = (Lx(t), Ly(t), t)). Letting the displacement for the bth simulated
consecutive event be denoted as �(b), events are simulated until number of steps q is reached such that∑q+1

b=1 �t
(b) ≥ τ1−τ0 is true, at which point the process is terminated and �(q) is declared as the displacement

of the final simulated event of the imputed trajectory over the missing interval.
Let N (t) = max{k : τ0 + ∑k

b=1 �t
(b) ≤ t} be the counting process for the number of simulated events

elapsed by time t and let t(b) be the time of the bth event in the simulated trajectory. The simulated trajectory,
used as an estimator for L(t), bridged so it starts at L(τ0) and ends at L(τ1) is:

L̂(t) = t(N (t)+1) − t

t(N (t)+1) − t(N (t))
G(t(N (t))) + t − t(N (t))

t(N (t)+1) − t(N (t))
G(t(N (t)+1))

where

G(t) = τ1 − t

τ1 − τ0

{
L(τ0) +

N (t)∑
b=1

(
�x

(b), �
y
(b)

)} + t − τ0

τ1 − τ0
L(τ1).

This bridging ensures that the flights retain the property of being straight lines, whereas bridging G(t)
directly would lead to curvature.

Above we described our process for simulating a person’s trajectory over an interval (τ0, τ1) of missing
data. A person’s full mobility trace is likely to have multiple missing intervals, and this same approach
can be applied equally to each missing interval. Imputing over the gaps in a person’s mobility trace in
this fashion introduces variability, so repeated imputations over the same missing intervals are likely to
produce variable trajectories. Mobility metrics, such as radius of gyration and distance traveled, will also
vary with each imputed mobility trace. As a result, repeated imputations can be used to provide confidence
bounds for any mobility metric of interest to account for the uncertainty that results from data missingness
and subsequent imputation. After repeating simulating the same trajectories B times and calculating the
desired mobility metrics each time, the α/2 · B and the (1 − α/2) · B ordered values form the lower and
upper confidence bounds of an α-level confidence interval, respectively.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
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3. RESULTS

3.1. Analytical treatment of the expected gap between a mobility trace and its surrogates

Here we consider a model for a person’s mobility trace and then compare analytically the performance
of our approach to LI in the ability to approximate the true trajectory. Consider a mobility trace with no
pauses where each flight has the same arbitrary duration of one unit of time and where the x displacement
is independently distributed from the y displacement of a flight. For the x and y flight displacements, let the
expectations be functions of t, μx(t) and μy(t), and let the variances be constant, σ 2

x and σ 2
y , respectively.

We assume each flight to be independent. Though such stringent independence assumptions would lead
unrealistic mobility traces, the analytic results that can be derived based on this model will provide some
insight into how the extent of missingness is related to the accuracy of trajectories we simulate over the
missing periods.

Let the length of a missing data interval be n, and for t ∈ (0, n) let the mobility trace be L(t) =
(t − �t�)(�x

	t
, �
y
	t
) + ∑

i≤t(�
x
i , �y

i ). Without loss of generality we assume L(0) = (0, 0). If instead
of continuous time we consider discrete time t ∈ {0, 1, . . . , n}, this simplifies to L(t) = ∑t

i=1(�
x
i , �y

i ).
Though L(t) represents the actual trajectory, assume that the time period (0, n) represents a period of
missingness, and thus a period where L(t) is unobserved. We use a simplified version of our simulated
trajectory estimate L̂(t), which has been bridged so that L̂(0) = L(0) and L̂(n) = L(n), where we
only consider integer-valued t: L̂(t) = t

n

{
L(n) − ∑n

i=1(�
x
(i), �

y
(i))

} + ∑t
i=1(�

x
(i), �

y
(i)). Here �x

(i) and �
y
(i)

represent the x and y displacements of the ith resampled flight, and are assumed to be independent from
and distributed the same as �x

i and �
y
i , respectively. Compare this to LI, which in this context simplifies to

L̃(t) = t
n L(n). Ideally, the simulated trajectory L̂(t) and the linearly interpolated trajectory L̃(t) should be

‘close’ to the true but unobserved trajectory L(t). To measure closeness, we examine the average squared
distance between the L(t) and L̂(t) across t ∈ {0, 1, . . . , n}, or 1

n+1

∑n
t=0 E

[∥∥L(t) − L̂(t)
∥∥2]

. We then do

the same to compare the closeness of L(t) and L̃(t). We seek to answer the question of how the length of
the period of missingness, in this case n, relates to the accuracy of the surrogate trajectories L̂(t) and L̃(t)
used to replace the unobserved true trajectory L(t).

We consider a family of trajectories to allow for varying degrees of curvature in L(t). For a fixed
θ0 ∈ [0, π/2] we consider the mean displacements of the flight at time t ∈ {0, 1, . . . , n − 1} to be
μx(t) = √

d cos
(
θ0 − 2θ0t

n−1

)
and μy(t) = √

d sin
(
θ0 − 2θ0t

n−1

)
, where d is the expected distance of a flight.

Under this model, θ0 = 0 corresponds to a straight trajectory whereas θ0 = π/2 corresponds to a
semicircular trajectory (see Figure 1). We investigate how close the simulated trajectory L̂(t) is to the
actual trajectory L(t): E

[∥∥L(t) − L̂(t)
∥∥2] = 2t(1 − t

n )(σ
2
x + σ 2

y ). By averaging this quantity across all t
in the missing interval we arrive at:

1

n + 1

n∑
t=0

E

[∥∥∥L(t) − L̂(t)
∥∥∥2

]
=

(
n − 1

3

) (
σ 2

x + σ 2
y

)
. (3.1)

An analogous calculation can be performed to see how close the linearly interpolated trajectory L̃(t) is
to L(t): E

[∥∥L(t) − L̃(t)
∥∥2] = t

(
1 − t

n

)(
σ 2

x + σ 2
y

) + M (t), where

M (t) =
∑

l∈{x,y}

[ t∑
i

μl(i)
2 + t2

n2

n∑
i=1

n∑
j=1

μl(i)μl(j) − 2

n

t∑
i=1

n∑
j=1

μl(i)μl(j)

+ 2
t∑

i<j

{
μl(i)μl(j) − 1

n

n∑
k=1

μl(k)(μl(i) + μl(j))

}]
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n=50; θ0=π 2A n=800; θ0=π 2B

n=50; θ0=π 18C n=800; θ0=π 18D

n=50; θ0=0E n=800; θ0=0F

Truth
Simulation
LI
μ

Fig. 1. Theoretical unobserved trajectories and their surrogates. Trajectories are generated according to the theoretical
model of Section 3.1. Panels (A), (C), and (E) represent a shorter period of missingness (n = 50) while panels (B),
(D), and (F) represent a longer period of missingness (n = 800). The solid lines represent the true unobserved and
simulated trajectories over an interval of n units of time, and the dashed line represents its expected trajectory. It is
assumed that the location immediately before and immediately after this interval are observed and known. The straight
line represents LI as a means for imputing the missing gap. The θ0 represents the starting angle above the x-axis of the
mean trajectory. LI is best when the expected trajectory is a straight line, but only the simulation approach is robust
to curvature.

is a function of the μ(i). The derivation is left for the Supplementary Materials available at Biostatistics
online. Again we average across all time points in the missing interval to arrive at:

1

n + 1

n∑
t=0

E

[∥∥∥L(t) − L̃(t)
∥∥∥2

]
=

(
n − 1

6

)
(σ 2

x + σ 2
y ) + 1

n + 1

n∑
t=0

M (t). (3.2)

When comparing the expected gap between L̂(t) and L(t) in (3.1) and the expected gap between L̃(t)
and L(t) in (3.2), only (3.2) has both a σ 2 component as well as a component comprised of μ. The σ 2

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data


Inferring mobility measures from GPS traces with missing data e105

0 200 400 600 800 1000

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

n

Av
er

ag
e 

Sq
ua

re
d 

G
ap

 (l
og

10
 s

ca
le

) LI: θ0=π 2
LI: θ0=π 3
LI: θ0=π 18
LI: θ0=0
Simulation

Fig. 2. Expected average gap between imputed trajectories and the true unobserved trajectory. The length of the
interval of missingness, n, ranges from 50 to 1000 by increments of 50. For each value of n, the average over 1000
simulations are used to estimate the average squared gap for the simulation approach. While for small n and small
θ0 LI can be a better approximation to the true trajectory, asymptotically the simulation approach is better for any
amount of curvature.

term in (3.2) is exactly 1/2 of that in (3.1), and while the second component involving μ disappears
in the case where t = 0, t = n, or when μ(i) is constant. In all other cases it can add considerably to
the expected gap. Only when θ0 = 0 is μ(i) always constant. In this case, we would expect the average
squared distance between L(t) and L̂(t) to be twice as large as the average squared distance between L(t)
and L̃(t). In other words, when the expected trajectory has no curvature (i.e., it is a straight line), then
LI is the best approximation of the true trajectory. As the true trajectory gains curvature, L̂(t) becomes a
closer approximation to the true trajectory and LI becomes increasingly inaccurate (see Figure 2).

This result tells us that using simulated trajectories from the distribution of unobserved flights leads
to a better accuracy, on average, than using LI to fill in the missing data; the only exception to this is if
the true unobserved trajectory happens to be a straight line. While this result is demonstrated on a model
that assumes we are able to simulate from the distribution of unobserved flights, which is generally not
possible since normally only the distribution of observed flights is available, our goal is to come as close as
possible to this scenario by borrowing information from the ‘closest’ observed flights. ‘Close’ could mean
temporally close (using TL kernel), spatially close (using GL kernel), or close in the sense of leveraging the
periodicity of human behavior due to the circadian rhythm along with spatial closeness (using GLC kernel).

3.2. Variability in the biases of mobility measure estimation

Regardless of the approach used for imputing over the missing intervals in a person’s mobility trace, there
can still be substantial bias in the mobility estimates that are calculated from the imputed data. After all,
each approach assumes a different model; LI assumes constant linear movement over a missing interval,
TL assumes that flights and pauses that occur nearby in time come from the same distribution, GL assumes
that flights and pauses that occur nearby in space come from the same distribution, and GLC assumes
that flights and pauses that occur at the same time of day and at the same place come from the same
distribution. These models each try to approximate the true nature of human mobility, but seldom will any
of these models precisely hold true.
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In addition, in most cases it is difficult to predict the direction of bias. We demonstrate this through an
example by looking at an easily interpretable mobility measure: distance traveled. Consider a person who
follows a semicircular trajectory with some added jitter to their movement (see Figure S2 of supplementary
material available at Biostatistics online). Evenly spaced intervals of different sizes are removed to show
how the bias changes as the extent of missingness increases/decreases. As expected, in each case as
missingness decreases, the bias in the estimates of distance traveled decreases. The bias is predictably
negative for LI because LI takes the shortest possible path over missing intervals, so it attains the lower
bound for the distance traveled metric. In contrast, the TL model is less predictable in the direction of its
bias. For the smoother trajectories the TL approach overestimates distance traveled, but for a large enough
jitter the bias switches direction and becomes negative. In this small toy example, GL will mirror TL in
how the data is weighted, and there is no routine for GLC to take advantage of, so both GL and GLC are
omitted here.

Overall, the 95% confidence band of TL accurately reflects the amount of missingness in the data,
visible as the narrowing of the confidence band as more and more data are observed, whereas the LI
approach as a point estimator shows equally misplaced certainty regardless of the amount of missing data.
The fact that the confidence bands do not in general attain the nominal 95% coverage of the true distance
traveled demonstrate the flaws, created by design in this example, of the TL assumption that nearby flights
come from the same distribution. Unfortunately, when the majority of data is missing, it will be nearly
impossible to avoid all bias when estimating various measures of mobility. Instead, one must choose a
modeling assumption guided by domain specific knowledge that is as close to the truth as possible. To this
end, in the next section, we compare various missing data imputation approaches across many measures
of mobility in the context of empirical GPS data over a large sample of individuals.

3.3. Mobility measure estimation on a week-long empirical mobility trace

To generate a high-frequency GPS mobility trace, we had a test subject install an Android version of the
Beiwe application on their phone for 1 week (Torous and others, 2016). The application was set to sample
the smartphone GPS essentially in continuous time: the on-cycle was specified to be 119 min and the
off-cycle just 1 min. Ultimately, due to the occasional loss of power or GPS signal to their phone, an
average of 92 min of GPS trajectories per day were missing as opposed to the expected 12 min per day, but
the high quality of this data set allows us to establish a de facto ground truth. The goal of this analysis is
to take a subset of this data set and to simulate a higher rate of missingness, one that is likely observed in
practice. We superimposed on top of the observed data a simulated 2-min on-cycle and 10-min off-cycle,
and we calculated a variety of mobility measures on the data produced by multiple missing data imputation
approaches (LI, TL, GL, and GLC). Here, we report the error for each approach on the estimated mobility
measures as compared to the ground truth.

The person’s daily mobility trace for the full week is displayed in Figure 3. The mobility trace based
on the simulated 2-min on-cycle and 10-min off-cycle (top row) is shown alongside the mobility trace
based on the complete data (bottom row). The general movements, locations, and daily routines are
accurately captured by the subset with missingness, but some of the details are of course lost. For each
day, 15 different mobility measures were calculated (detailed in the Supplementary Materials available at
Biostatistics online), once for each missing data imputation approach and once for the ground truth. The
estimates of the mobility measures for one example day are given in Table S1 of supplementary material
available at Biostatistics online.

We also investigated sensitivity to changes in the cycle of data collection and planned missingness.
Both 1-min on-cycles and 2-min on-cycles were paired with 10-min off-cycles, 20-min off-cycles, and
30-min off-cycles. Absolute relative errors to the ground truth of our test subject for each mobility measure
were calculated in of the six settings of planned data collection settings in Table 1. While some measures,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
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Fig. 3. A person’s daily trajectories over the course of a week. The bottom row represents a person’s trajectory
when GPS is captured continuously. The top row represents the identical trajectories to the bottom row with emu-
lated/simulated missingness, such that the GPS is assumed to be recorded only for 2-min intervals with 10-min gaps
of missingness between recorded intervals. Lines represent flights, or movement. Points represent pauses, or periods
where the person is stationary, with larger points indicating longer pauses.

like radius of gyration and the probability of a pause, showed a clear decrease in accuracy as the missing
interval was lengthened, some other measures, like the maximum distance from home and the number
of significant locations visited, did not lose accuracy with increased missingness. In particular, the 1-min
on/10-min off-cycle showed a general improvement in accuracy relative to the 2-min on/20-min off-cycle,
despite the two different cycles having identical amounts of missingness.

3.4. Analysis of the Geolife data set

A larger sample of individuals is required for more generalized comparisons of the competing imputation
methods, so we also used the complete data GPS trajectories from the Geolife data set for 855 outings
across an additional 182 individuals (Zheng and others, 2009, 2008, 2010). Because only the mobility
traces from user-specified outings are available, estimates of home and other significant locations are
unreliable. As a result, we refrained from calculating those mobility measures that relate to significant
locations for this data. Missingness was simulated according to the same 2-min on-cycle and 10-min
off-cycle for each trajectory. The performance of each competing imputation approach was applied to the
data set with simulated missingness and evaluated against the ground truth. For each of the imputation
approaches, TL, GL, and GLC, three different kernel parameter settings were considered. In each case
ν = 1, while the scale parameter was varied (increased by a factor of 1, 10, and 20). Increasing the
scale parameter gave greater weight to nearby observations in resampling. The error was calculated by
subtracting the estimated measure under each missing data imputation approach from that same measure
calculated on the full data (with near-continuously gathered GPS). For the simulation-based imputation
approaches, we used the mean value of the estimated measure from 100 simulated samples in the error
calculations.

A small error over most of the mobility measures would indicate that the resampling missing data
imputation approaches (TL, GL, and GLC) do a good job of mimicking real human mobility patterns.
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Table 1. Comparison of imputation on different levels of missingness to the ground truth. For each
measure, the absolute error relative to the ground truth measure is scaled relative to the ground truth
value as represented as a percent. For example, the value in the first cell contains 2.75, indicating that
using a cycle of 1 min on and 10 min off for GPS missingness led to a 2.75% error relative in the
estimation of time spent at home to the ground truth. Over the 1-week period, absolute relative errors are
calculated for each day using GLC with scaling parameter 10 as the missing data imputation approach,
and the median absolute relative error over the full week is shown. This is repeated for each mobility
measure and each level of missingness. The Xon/Yoff indicates alternating regular intervals of X minutes
of data collection as the on-cycle and Y minutes of scheduled missingness as the off-cycle

Measures 1on/10off 1on/20off 1on/30off 2on/10off 2on/20off 2on/30off

Hometime 2.75 6.29 7.53 2.18 5.58 5.83
DistTraveled 15.02 16.06 24.59 8.59 22.44 21.75
RoG 0.30 0.85 1.79 0.29 0.90 1.53
MaxDiam 0.41 7.90 7.70 6.03 1.24 3.64
MaxHomeDist 3.12 3.17 1.43 4.14 0.47 0.85
SigLocsVisited 32.14 11.11 21.43 23.21 23.21 0.00
AvgFlightLen 63.92 63.54 56.28 30.86 51.96 60.51
StdFlightLen 61.41 78.42 65.73 25.17 50.40 64.48
AvgFlightDur 37.74 53.97 50.63 15.57 32.34 36.29
StdFlightDur 55.69 228.24 562.80 112.36 40.70 530.51
ProbPause 6.00 9.58 12.72 4.06 9.68 13.13
SigLocEntropy 1.73 7.71 4.38 3.06 2.94 5.50
CircdnRtn 1.27 6.86 5.41 0.97 6.85 6.91
WkEndDayRtn 1.32 6.52 3.51 1.72 6.38 6.41

To quantify this performance, the absolute value of the errors were averaged across all 855 outings
for each mobility measure and for each imputation method (Table 2). Based on this metric, the worst
performing missing data imputation approach was Li (LI), with errors relative to the ground truth that
were consistently larger than the resampling-based approaches for the majority of the mobility measures.
The best performing missing data imputation approach for this data was TL with a scaling parameter of
20, with nearly a 10-fold improvement in accuracy over LI.

4. DISCUSSION

Past studies with small subject pools have not adequately accounted for missingness, likely because missing
data are less of a problem for studies that provide their subjects with dedicated instrumentation capable
of recording continuous or near-continuous GPS trajectories. However, instrumenting each subject with
dedicated GPS devices is expensive and therefore scaling up to larger sample sizes or longer follow-up
times becomes infeasible. In the near future, studies will likely increasingly leverage the high ownership
rates of smartphones so that subjects need only to download an app onto their personal devices. For
example, the smartphone research platform Beiwe is currently used to study patient-centered outcomes
across different disorders, from depression to surgical recovery, by collecting sensor data, survey data, and
phone usage patterns from diverse patient cohorts. In these studies, which generally have long follow-up
times, battery life is preserved by recording GPS less frequently, often leading to more than 80% missing
data. This means that missingness can no longer be ignored and will need to be properly adjusted for. In
this article, we introduced a hot-deck imputation approach to address missingness, and we found that, even
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Table 2. Comparison of different missing data imputation approaches to the ground truth. 855 out-
ings/trajectories across 182 individuals from the Geolife data set were used to compare imputation
approaches. 83.3% missingness was imposed on the data set in equal intervals. For each outing, all
measures not requiring a home location or routine were calculated. For each measure, the error relative
to the ground truth is stated as a percent. For the stochastic approaches, TL, GL, and GLC, the mean
daily measures from 100 simulations are used in relative error calculations. The final row is the average
absolute error across all measures. The best performing missing data approach, TL with a Cauchy kernel
and scaling parameter of 20, is highlighted. Also highlighted, LI had the largest average error

LI TL.1 TL.10 TL.20 GL.1 GL.10 GL.20 GLC.1 GLC.10 GLC.20

DistTraveled −1.44 −0.15 −0.26 −0.58 1.70 0.20 0.08 −0.67 −0.83 −0.71
RoG −0.51 0.94 1.45 0.13 1.23 0.46 0.20 0.03 −0.12 0.01
MaxDiam −0.41 0.25 0.22 −0.19 1.16 0.36 0.27 −0.11 −0.28 −0.09
AvgFlightLen 11.72 −0.09 −0.14 −0.35 0.11 0.25 0.33 0.56 0.73 0.83
StdFlightLen 10.62 −0.11 −0.03 −0.65 0.56 0.65 0.85 1.07 1.03 1.29
AvgFlightDur 22.55 0.55 0.40 0.47 0.12 0.62 0.69 1.51 1.64 1.73
StdFlightDur 29.56 2.72 2.10 2.29 1.50 2.33 2.25 3.57 3.18 3.58
ProbPause −10.01 5.22 5.36 3.80 10.26 7.88 7.05 5.35 4.66 4.38
Avg. Error 10.85 1.26 1.24 1.06 2.08 1.60 1.46 1.61 1.56 1.58

with large percentages of missingness, mobility measure estimation from the proposed data imputation
approach is accurate compared the current standard of using LI.

Our approach is designed to account for planned periods of missingness where the missing intervals
may be frequent, but are each individually not too long. This type of missingness is benign because it
operates independent of a person’s location, and so can be treated as MCAR where imputation approaches
like the one we propose are viable. While this planned missingness will undoubtedly account for the largest
percentage of missing data in a person’s GPS trace, other sources of missingness are left unaccounted
for by our approach. If a person’s position is obstructed from a satellite’s view, it is possible that either a
connection to satellite is not possible or their true location can be distorted. This type of missingness is
difficult to account for and cannot be ignored as its mechanism qualifies as MNAR due to the missingness
being dependent on location. Similarly, MNAR gaps in a person’s mobility trace can be created by the
person intentionally turning off their phone or disabling GPS. Individuals that frequently have this type of
missingness could potentially lead to large biases in the estimation of mobility measures. If an individual
has a large amount of GPS data MNAR, which can be estimated by the extent of missingness there is outside
of the scheduled intervals of missingness, the proposed imputation approach may not be appropriate.

With the prospect of scalable studies on the horizon, additional statistical challenges will likely emerge
in the analysis of mobility measures from patient cohorts. With mobility measures paired with daily smart-
phone surveys, the longitudinal nature of the data can be leveraged with generalized linear mixed models
(Breslow and Clayton, 1993) (GLMM) or generalized estimating equations (Liang and Zeger, 1986) (GEE)
to estimate the effects of mobility measures on various outcomes obtained through the surveys.Also, while
here we considered only mobility measures extracted from GPS traces, these mixed model frameworks can
be readily adapted to include information from other smartphone sensors by adding additional covariates,
such as those obtained from the phone’s built-in accelerometer, into the regression model.

Finally, the method introduced in this paper has been implemented as a package in the statistical
computing software, R, and is freely available (see Supplementary Materials available at Biostatistics
online). To conduct digital phenotyping studies, the Beiwe research platform can be used through its open
source software.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy059#supplementary-data
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