
Genome analysis

Bioinformatics pipeline using JUDI: Just Do It!

Soumitra Pal * and Teresa M. Przytycka

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on May 21, 2019; revised on December 5, 2019; editorial decision on December 19, 2019; accepted on December 24, 2019

Abstract

Summary: Large-scale data analysis in bioinformatics requires pipelined execution of multiple software. Generally
each stage in a pipeline takes considerable computing resources and several workflow management systems
(WMS), e.g. Snakemake, Nextflow, Common Workflow Language, Galaxy, etc. have been developed to ensure opti-
mum execution of the stages across two invocations of the pipeline. However, when the pipeline needs to be exe-
cuted with different settings of parameters, e.g. thresholds, underlying algorithms, etc. these WMS require signifi-
cant scripting to ensure an optimal execution. We developed JUDI on top of DoIt, a Python based WMS, to
systematically handle parameter settings based on the principles of database management systems. Using a novel
modular approach that encapsulates a parameter database in each task and file associated with a pipeline stage,
JUDI simplifies plug-and-play of the pipeline stages. For a typical pipeline with n parameters, JUDI reduces the num-
ber of lines of scripting required by a factor of O(n). With properly designed parameter databases, JUDI not only ena-
bles reproducing research under published values of parameters but also facilitates exploring newer results under
novel parameter settings.

Availability and implementation: https://github.com/ncbi/JUDI

Contact: soumitra.pal@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large scale data analysis in bioinformatics requires many software
to be executed in a pipeline where the output of an upstream stage is
fed as an input to a downstream stage. Generally each stage takes a
considerable amount of computing resources such as CPU time and
memory. If the pipeline needs to be executed multiple times, may be
due to input or parameter variations, it is desired that only the bare
minimum stages that are affected by the variations are re-executed.
To address such a requirement, many workflow management sys-
tems (WMS) have been developed. GNU Make (Stallman et al.,
2004) is one of the earliest and widely used WMS where each pipe-
line stage is specified as a rule of commands that generate the out-
put(s) from the input(s). Make automatically figures out the
interdependency among the rules and subsequently, by using a
directed acyclic graph (DAG) of the rules, executes the commands in
a suitable order such that when a command is executed all inputs
are already available. Moreover, if all inputs are unchanged, make
skips re-execution of the command and saves computing resources.

Make has a steep learning curve, specifically for the biologists.
Several newer WMS have been developed to specify Make rules in
simpler languages, e.g. Snakemake (Köster and Rahmann, 2012)
uses a simplified Python, Nextflow (Di Tommaso et al., 2017) uses
Groovy, Common Workflow Language (Amstutz et al., 2016) uses
JavaScript to hierarchically specify rules and files and so on. These

WMS can also schedule the pipeline tasks efficiently on multiproces-
sor environments by exploiting the DAG of rules.

Several WMS to address the specific needs of scientific commun-
ities have also been developed, e.g. Deelman et al. (2005) developed
one of the early NSF funded tool to build scientific software,
Ramachandran (2018) developed for numerical computing,
Wolstencroft et al. (2013) for web services, Stropp et al. (2012) for
microarray data analysis, Shah et al. (2004) for processing biological
sequences and so on. To ease building of workflows, further
enhancements have also been developed, e.g. Pradal et al. (2008)
provides a graphical interface for plant modelling, Freire et al.
(2006) helps in managing rapidly evolving scientific workflows,
Blankenberg et al. (2014) accelerates dissemination of workflows
built with Galaxy and so on. Efforts have been made to address re-
producibility of scientific results through containerized workflow
builder (Di Tommaso et al., 2017; Freire et al., 2012; Köster and
Rahmann, 2012). References to many such WMS available in the lit-
erature have been provided in the review articles (Cingolani et al.,
2015; Cohen-Boulakia et al., 2017; Leipzig, 2017).

However, these WMS require significant effort in scripting to en-
sure optimal execution of the stages when the pipeline needs to be
executed under different settings of parameters such as thresholds,
algorithmic methods and so on. Generally these changes affect only
a few parts of the pipeline leaving some scope for resource saving.

Published by Oxford University Press 2019. This work is written by US Government employees and is in the public domain in the US. 2572

Bioinformatics, 36(8), 2020, 2572–2574

doi: 10.1093/bioinformatics/btz956

Advance Access Publication Date: 27 December 2019

Applications Note

http://orcid.org/0000-0003-4840-3944
http://orcid.org/0000-0002-6261-277X
https://github.com/ncbi/JUDI
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/

Though Snakemake (Köster and Rahmann, 2012) and Nextflow (Di
Tommaso et al., 2017) enable parameters based on ad hoc use of
wildcard characters for easy scripting, a systematic handling of
parameters is lacking in the literature. Moreover, these systems
focus on each stage of the pipeline separately and the lack of infor-
mation sharing across stages makes plug-and-play of stages difficult.
For example, if a file generated by one stage is used as an input in
multiple stages downstream then the details of the file need to be re-
specified in each downstream stage making it tedious when there are
several parameters.

2 JUDI

We develop JUDI on top of a Python-based build system, DoIt
(http://pydoit.org), to systematically handle the issue of parameter
settings using the principles of database management systems. The
basic unit of execution in DoIt is a task roughly equivalent to a col-
lection of rules in Make. Like other WMS, JUDI uses the depend-
ency among tasks based on their input and output files. However,
the novelty of JUDI is a consolidated way of capturing the variabil-
ity under which the pipeline being build could possibly be executed.
JUDI stores this variability in a simple parameter database table
which contains one column for each parameter where each row indi-
cates a value of the parameter (see details in Supplementary Section
S2). Each file or task in JUDI is associated with a parameter data-
base and hence does in fact represent a collection of physical files or
DoIt tasks, respectively, each corresponding to one row of the par-
ameter database (Supplementary Section S3–4). Which instances of
a file are associated with a task instance is determined by applying
few database operations on the parameter databases of the task and
the file (Supplementary Section S5).

JUDI is available as a Python library and any JUDI pipeline first
populates a global parameter database using a function add_param
to avoid repeated local definition in each task. Each task is a derived
class of Task with four class variables: (i) mask, (ii) inputs, (iii)
targets and (iv) actions. Each of inputs and targets is a
Python dictionary that maps each input or target file name to an ob-
ject of class File. If the class variable mask is set in a task then it
represents the list of parameters from the global parameters data-
base that are not applicable to the current task. Each element of the
Python list actions is a tuple (fun, args) where fun could be a
Python string denoting the command line specification of the action
and have placeholders fg which are replaced by the list args of val-
ues with the following exception: if a value is ‘$x’ then the place-
holder is replaced by the physical path of file x instance associated
with the task instance. A fun could also be a Python function and
args could additionally have a value ‘#x’ which is replaced by a slice
of the parameter database of file x applicable to the task instance
(details of argument substitution in Supplementary Section S6).

Figure 1 shows the tasks and files with their parameter databases
for a slightly modified (Supplementary Fig. S2) four-stage pipeline
used in (Köster and Rahmann, 2012, Fig. 1). In the first stage, each
of eight FASTQ files of reads, one for each combination of four sam-
ples and two groups of pair-end reads are aligned to a reference gen-
ome producing an intermediate file. For each sample, the second

stage converts the intermediate files for the two groups of pair-end
reads to a BAM file, and the third stage generates a table of genome
coverage information. The fourth stage consolidates genome cover-
age of all samples into a single table, unlike the Snakemake example
where a coverage plot is generated separately for each sample.
Listing 1 shows the Python script dodo.py for the pipeline of
Figure 1 which can be executed from command line by doit -f
dodo.py (details in Supplementary Section S7).

To speed up the execution of a pipeline built using JUDI by uti-
lizing multiple CPUs available in the modern processors, DoIt can
be invoked by doit -n N -f dodo.py where N denotes the max-
imum number of independent tasks that DoIt should execute simul-
taneously. Moreover, to execute the pipeline in a high performance
computing (HPC) cluster environment, the command string speci-
fied in the actions list of a task is prefixed with a cluster specific
blocking command string. For example, each of the AlignFastq task

reads

covbamsaireads sai bam cov

sample group

AlignFastq

Sequence reads in
fastq format

groupsample

Alignment in sai
format

groupsample

sample

CreateBam

Alignment in BAM
format

sample

sample

GetCoverage

Coverage in CSV format

sample

CombineCoverage
res

Fig. 1. A slightly modified pipeline of Snakemake paper (Köster and Rahmann, 2012) visualized using JUDI concepts where each rectangle represents a task and each rectangle

with a missing corner adjacent to a black dot represents a file. The parameter database table associated with a task (or a file) is also shown on the top of it

Listing 1. dodo.py: JUDI script for the pipeline in Figure 1

1 from judi import File, Task, add_param, combine_csvs

2 add_param(’100 101 102 103’.split(), ’sample’)

3 add_param(’1 2’.split(), ’group’)

4 REF ¼ ’hg_refs/hg19.fa’

5 path_gen ¼ lambda x: ’{}_{}.fq’.format(x[’sample’],

x[’group’])

6 class AlignFastq(Task):

7 inputs ¼ {’reads’: File(’orig_fastq’, path ¼ path_gen)}

8 targets ¼ {’sai’: File(’aln.sai’)}

9 actions ¼ [(’bwa aln {} {} > {}’, [REF,’$reads’,’$sai’])]

10 class CreateBam(Task):

11 mask ¼ [’group’]

12 inputs ¼ {’reads’: AlignFastq.inputs[’reads’],

13 ’sai’: AlignFastq.targets[’sai’]}

14 targets ¼ {’bam’: File(’aln.bam’, mask ¼ mask)}

15 actions ¼ [(’bwa sampe {} {} {} j samtools view -Sbh --j
samtools sort --> {}’, [REF,’$sai’,’$reads’,’$bam’])]

16 class GetCoverage(Task):

17 mask ¼ [’group’]

18 inputs ¼ {’bam’: CreateBam.targets[’bam’]}

19 targets ¼ {’cov’: File(’cov.csv’, mask ¼ mask)}

20 actions ¼ [(’(echo val; samtools rmdup {} --j samtools

mpileup --j cut -f4) > {}’, [’$bam’,’$cov’])]

21 class CombineCoverage(Task):

22 mask ¼ [’group’, ’sample’]

23 inputs ¼ {’cov’: GetCoverage.targets[’cov’]}

24 targets ¼ {’res’: File(’combined.csv’, mask¼mask,

root¼’.’)}

25 actions ¼ [(combine_csvs, [’#cov’, ’#res’])]

JUDI 2573

http://pydoit.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data

instances in Listing 1 can be executed in a Slurm (Yoo et al., 2003)
managed HPC node with four CPUs by prefixing srun -N 1 -n 1 -
c 4 to the command string starting with bwa aln (details in
Supplementary Section S9). Though srun is a blocking call, the
desired parallel execution of multiple tasks is achieved by invoking
doit with option -n.

3 Conclusion

We introduced a novel way of handling files and parameter settings
in WMS with the motto: define once, reuse many times. We used
DoIt for implementing our ideas quickly, however, JUDI can be
implemented in other WMS too. Though Listing. 1 takes a similar
number of lines as Snakemake, the usefulness of JUDI can be dem-
onstrated by two tasks: CreateBam has only parameter ‘sample’
whereas its input files ‘reads’ and ‘sai’ have both parameters ‘sam-
ple’ and ‘group’. For each sample, the physical paths of sai and fastq
files for both pair-end reads are passed to the aligner bwa sampe
automatically by JUDI through the argument substitutions $sai
and $reads. On the contrary, the same task needed hard-coding of
file names due to the masked parameter ‘group’ in lines 11–12,
Listing 1 of Köster and Rahmann (2012). The effort required could
be significant if there were many masked parameters with a large
number of values (Pal et al., 2019). In general JUDI takes O(n) times
less number of lines for a pipeline with n parameters
(Supplementary Section S8). Similarly, CombineCoverage shows
how the coverage tables for the masked parameter ‘sample’ can be
easily combined using JUDI utility function combine_csvs and ar-
gument substitutions.

Currently DoIt, and thus JUDI do not support docker/singularity
containerization for reproducing task execution environments un-
like other WMS (Di Tommaso et al., 2017; Köster and Rahmann,
2012). However, there is another aspect of reproducible research
that JUDI facilitates far better than other WMS. For example, sup-
pose the results using a pipeline built upon JUDI was published for a
parameter P-value cutoff ¼ f0.05, 0.01g. The same results for an
unpublished cutoff 0.001 can be obtained just by adding the new
value in the parameter definition. This usage can be further
enhanced when JUDI is combined with graphical interfaces like
iPython Notebooks.

Acknowledgement

The authors would like to thank the developers of DoIt. S.P. would like to

thank Sunayna for the help on the manuscript.

Funding

This work was supported by the Intramural Research Program of the

National Library of Medicine, National Institues of Health, USA.

Conflict of Interest: none declared.

References

Amstutz,P. et al. (2016) Common workflow language, v1.0. In: Common

Workflow Language Working Group. Figshare, Cambridge, MA, London.

Blankenberg,D. et al.; the Galaxy Team. (2014) Dissemination of scientific

software with Galaxy ToolShed. Genome Biol., 15, 403.

Cingolani,P. et al. (2015) BigDataScript: a scripting language for data pipe-

lines. Bioinformatics, 31, 10–16.

Cohen-Boulakia,S. et al. (2017) Scientific workflows for computational repro-

ducibility in the life sciences: status, challenges and opportunities. Future

Gener. Comp. Syst., 75, 284–298.

Deelman,E. et alet al. (2005) Pegasus: A Framework for Mapping Complex

Scientific Workflows onto Distributed Systems. Scientific Programming, 13,

219–237.

Di Tommaso,P. et al. (2017) Nextflow enables reproducible computational

workflows. Nat. Biotechnol., 35, 316–319.

Freire,J. et al. (2006) Managing rapidly-evolving scientific workflows. In:

Moreau, L. and Foster, I. (eds.) Provenance and Annotation of Data,

Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 10–18.

Freire,J. et al. (2012) Computational reproducibility: state-of-the-art, chal-

lenges, and database research opportunities. In: Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data,

SIGMOD ’12. Association for Computing Machinery, New York, NY,

USA, pp. 593–596.

Köster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics

workflow engine. Bioinformatics, 28, 2520–2522.

Leipzig,J. (2017) A review of bioinformatic pipeline frameworks. Brief.

Bioinform., 18, 530–536.

Pal,S. et al. (2019) Co-SELECT reveals sequence non-specific contribution of

DNA shape to transcription factor binding in vitro. Nucleic Acids Res., 47,

6632–6641.

Pradal,C. et al. (2008) OpenAlea: a visual programming and

component-based software platform for plant modelling. Funct. Plant Biol.,

35, 751–760.

Ramachandran,P. (2018) Automan: a python-based automation framework

for numerical computing. Comput. Sci. Eng., 20, 81–97.

Shah,S.P. et al. (2004) Pegasys: software for executing and integrating analyses

of biological sequences. BMC Bioinformatics, 5, 40.

Stallman,R.M. et al. (2004) GNU Make: A Program for Directed

Recompilation: GNU Make Version 3.81. Free Software Foundation,

Boston, MA.

Stropp,T. et al. (2012) Workflows for microarray data processing in the

Kepler environment. BMC Bioinformatics, 13, 102.

Wolstencroft,K. et al. (2013) The Taverna workflow suite: designing and exe-

cuting workflows of Web Services on the desktop, web or in the cloud.

Nucleic Acids Res., 41, W557–W561.

Yoo,A.B. et al. (2003) SLURM: simple Linux utility for resource management.

In: Feitelson, D. et al. (eds.) Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 44–60.

2574 S.Pal and T.M.Przytycka

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz956#supplementary-data

