
Am J Cancer Res 2021;11(2):318-336
www.ajcr.us /ISSN:2156-6976/ajcr0122839

Review Article 

Clinical applicability of renin-angiotensin  
system inhibitors in cancer treatment 

Huirong Jiang1,2,3,4*, Zongguang Tai1,2,3*, Zhongjian Chen2, Quangang Zhu2, Leilei Bao1

1Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 
200438, China; 2Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; 
3Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; 
4Bengbu Medical College, Bengbu 233030, China. *Equal contributors and co-first authors.

Received September 21, 2020; Accepted December 16, 2020; Epub February 1, 2021; Published February 15, 2021

Abstract: The renin-angiotensin system (RAS) regulates physiological functions of the cardiovascular system, kid-
neys, and other tissues. Various in vivo and in vitro studies have shown that RAS plays a pivotal role in the develop-
ment of malignant tumors, while several retrospective studies have confirmed that patients undergoing long-term 
RAS inhibitors (RASi) treatment have a lowered risk of cancer. Moreover, blocking RAS has been shown to inhibit 
tumor growth, metastasis, and angiogenesis in various experimental models of malignant tumors. Herein, we review 
the available RASi-related literature and provide an analysis using the scientific atlas software VOSviewer. We ob-
served that recent studies have primarily focused on gene expression, tumor biology, and survival analysis. Through 
an in-depth data analysis from the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx), we iden-
tified the impact of AGTR1, an essential component of RAS, on tumors, and we discuss the underlying biological 
mechanism of RASi. Furthermore, we outline the research progress and potential use of RASi in tumor treatment. 
Overall, RASi may be a promising adjunct in cancer therapy.
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Introduction

The renin-angiotensin system (RAS) is a vital 
system for the regulation of human bodily fluids 
of not only in the circulatory system but also in 
several other tissues and organs (Figure 1) [1]. 
Renin-angiotensin system inhibitors (RASi) are 
widely used in the treatment of hypertension 
and related complications. In addition to this 
role, RAS is closely associated with the patho-
genesis of malignant tumors [2]. Therefore,  
the potential use of RASi to treat tumors has 
attracted attention. A meta-analysis showed 
that the use of angiotensin receptor blockers 
(ARBs) may increase the risk of cancer [3], but 
the study had several limitations [4]. Subse- 
quently, multi-institutional studies have report-
ed that RASi do not increase the incidence of 
cancer [5]. Although the effect of RAS blockade 
on the incidence of cancer remains controver-
sial, most experimental models have verified 
that RAS blockade could improve the patient 
prognosis by suppressing angiogenesis and 
inhibiting tumor cell proliferation and metasta-
sis. Therefore, the role of RASi in tumor treat-
ment has become a hotspot in research.

Cancer is one of the leading causes of suffering 
and death worldwide, apart from being a severe 
economic burden on patients and their famili- 
es [6, 7]. The research and development of 
novel anticancer drugs can be time-consuming 
and costly. Therefore, the repurposing and stud-
ies of existing therapies, such as RASi, may be 
useful to help expand their application and pro-
vide evidence for their use in tumor treatment, 
which would be more cost-effective than devel-
oping new drugs or treatment strategies. Ex- 
ploration of the positive association between 
RASi and the prognosis of patients with specific 
cancer types, malignant features, or stages 
may help to optimize the recovery from treat-
ment and promote the progress of individual-
ized treatment plans.

Classification of RASi

RASi, include angiotensin-converting enzyme 
inhibitors (ACEI) and hemotensin II receptor 
antagonists (ARBs), and those that are approved 
by the Food and Drug Administration (FDA) are 
listed in Table 1. ACEI reduce the production of 
angiotensin II by inhibiting angiotensin-convert-
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ing enzyme (ACE), whereas ARB primarily blo- 
cks the effect of AngII by antagonizing AT1R.

Basis for the application of RASi in cancer 
treatment

Bibliometric analysis

We searched the RAS, RASi, AGTR1, ACE, and 
tumor-related literature through PubMed data-
base and used the scientific knowledge map 
software “VOSviewer” to construct and visual-
ize the relationships between “network data” 
(document knowledge units). We observed that 
the relevant literature catalogs showed chang-
es at several time points (Figure 2). Between 
2000 and 2015, the literature primarily focused 
on cardiovascular diseases, such as hyperten-

sion and heart failure, as well as the impact of 
the use of RASi on patient survival analysis 
(Figure 2A). Over the past 5 years, researchers 
have begun to focus on cancer-related factors 
such as AngII and ATR1, vascular endothelial 
growth factor, tumor immunosuppressive mi- 
croenvironment, and PD-L1. The literature se- 
arch for the past two years showed that the 
keywords “AGTR1” and “RASi” appeared fre-
quently in cancer research-related literature, 
indicating that AGTR1 and ACE are closely asso-
ciated with the occurrence and development of 
tumors. Specifically, the articles based on 
AGTR1 mainly focused on the effects of gene 
expression and polymorphism on “cell apopto-
sis”, “tumor metastasis”, and “tumor immuno-
suppressive microenvironment”; whereas ar- 
ticles based on the ACE research primarily 

Figure 1. Gene expression profile of AGTR1 in 33 cancer types and matched non-tumor samples. Each point repre-
sents a different tumor or normal sample. Short black lines represent the median gene expression level. The data 
were obtained through Gene Expression Profiling Interactive Analysis (GEPIA). T: tumor tissue; N: normal tissue; n: 
number; ACC: adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; 
CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COAD: 
colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: esophageal carcinoma; 
GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: 
kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: 
brain lower grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous 
cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; 
PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; 
SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell 
tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus endometrial carcinoma; UCS: uterine car-
cinosarcoma.
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Table 1. U.S. Food and Drug Administration (FDA) listed renin-angiotensin system inhibitors, including angiotensin-converting enzyme inhibitors 
(ACEI) and angiotensin receptor inhibitors (ARB)

Classification Active ingredients Chemical structure Product Application  
type

Application 
number

Product number 
approval date Applicant Occupational  

market conditions
ACEI QUINAPRIL HYDROCHLORIDE ACCUPRIL NDA 019885 1991/11/19 PFIZER PHARMS Prescription

PERINDOPRIL ERBUMINE ACEON NDA 020184 1993/12/30 SYMPLMED PHARMS 
LLC

Discontinued

RAMIPRIL ALTACE NDA 019901 1991/1/28 KING PHARMS LLC Prescription

022021 2007/2/27 KING PFIZER Discontinued

BENAZEPRIL HYDROCHLORIDE BENAZEPRIL  
HYDROCHLORIDE

ANDA 076118 2004/2/11 PRINSTON INC Prescription

076211 2004/2/11 TEVA

076267 2004/2/11 HERITAGE PHARMA Discontinued

076333 2004/2/11 ANI PHARMS INC

CANDESARTAN CILEXETIL CANDESARTAN CILEXETIL ANDA 078702 2013/5/3 MYLAN Prescription

202079 2014/1/10 APOTEX INC Discontinued

CAPTOPRIL CAPOTEN NDA 018343 1982/1/1 PAR PHARM Discontinued

CAPTOPRIL ANDA 074640 1997/3/31 PUREPAC PHARM

074472 1995/3/31 APOTHECON

074363 1995/11/9 YAOPHARMA CO LTD

074418 1996/2/13 OXFORD PHARMS

074322 1996/2/13 TEVA Prescription
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ENALAPRIL MALEATE ENALAPRIL MALEATE ANDA 075048 2000/8/22 SANDOZ Discontinued

075369 2000/8/22 KRKA DD NOVO MESTO

075370 2000/8/22 KRKA DD NOVO MESTO

075472 2000/8/22 MYLAN

075480 2000/8/22 MYLAN

075459 2000/8/22 SANDOZ INC Prescription

075479 2000/8/22 HERITAGE PHARMA

EPANED NDA 208686 2016/9/20 SILVERGATE PHARMS

EPANED KIT 204308 2013/8/13 SILVERGATE PHARMS Discontinued

ENALAPRILAT ENALAPRILAT ANDA 075456 2000/8/22 HOSPIRA Discontinued

075571 2000/8/22 HOSPIRA

075458 2000/8/22 HOSPIRA Prescription

075578 2000/8/22 DR REDDYS

075634 2000/8/22 ATHENEX INC

078687 2008/12/23 HIKMA FARMACEUTICA

FOSINOPRIL SODIUM FOSINOPRIL SODIUM ANDA 076139 2003/11/25 TEVA Prescription

076483 2004/4/23 UPSHER SMITH LABS

076580 2004/4/23 RANBAXY LABS LTD Discontinued

076188 2004/10/8 UPSHER SMITH LABS

076620 2004/10/15 ACTAVIS LABS FL INC

076987 2004/12/23 WATSON LABS

LISINOPRIL LISINOPRIL ANDA 075743 2002/7/1 PRINSTON INC Prescription

075752 2002/7/1 HERITAGE PHARMA Discontinued

075783 2002/7/1 TEVA

BENAZEPRIL HYDROCHLORIDE LOTENSIN NDA 019851 1991/6/25 US PHARMS  
HOLDINGS I

Prescription

MOEXIPRIL HYDROCHLORIDE MOEXIPRIL  
HYDROCHLORIDE

ANDA 076204 2003/5/8 TEVA Prescription

077536 2006/11/30 CHARTWELL RX

078454 2008/6/2 APOTEX INC

090416 2010/3/30 GLENMARK GENERICS
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FOSINOPRIL SODIUM MONOPRIL NDA 019915 1991/5/16 BRISTOL MYERS 
SQUIBB

Discontinued

PERINDOPRIL ERBUMINE PERINDOPRIL ERBUMINE ANDA 078138 2009/11/10 ANI PHARMS INC Discontinued

078263 2010/1/27 LUPIN LTD

090463 2010/8/30 APOTEX

079070 2009/11/10 AUROBINDO PHARMA Prescription

090072 2009/11/10 HIKMA

LISINOPRIL PRINIVIL NDA 019558 1987/12/29 MERCK Prescription/ 
Discontinued

QBRELIS 208401 2016/7/29 SILVERGATE PHARMS Prescription

QUINAPRIL HYDROCHLORIDE QUINAPRIL  
HYDROCHLORIDE

ANDA 076036 2005/1/28 MYLAN Discontinued

076607 2004/12/15 SUN PHARM INDS LTD

076459 2004/12/22 ACTAVIS ELIZABETH

076049 2005/1/14 ACTAVIS LABS FL INC

076694 2004/12/23 MYLAN Prescription

RAMIPRIL RAMIPRIL ANDA 076549 2005/10/24 WATSON LABS Prescription/ 
Discontinued

077626 2008/6/9 LUPIN Prescription

077470 2008/6/18 TEVA PHARMS

077513 2008/6/18 ACTAVIS ELIZABETH Discontinued

077514 2008/6/18 YAOPHARMA CO LTD

SPIRAPRIL HYDROCHLORIDE RENORMAX NDA 020240 1994/12/29 SCHERING Discontinued

TRANDOLAPRIL TRANDOLAPRIL ANDA 077489 2006/12/12 TEVA PHARMS Prescription

077522 2007/6/12 LUPIN

078438 2007/6/12 AUROBINDO PHARMA

077256 2007/6/12 EPIC PHARMA LLC Discontinued

077307 2007/6/12 CIPLA

077805 2007/6/12 WATSON LABS

078320 2007/6/12 INVAGEN PHARMS
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ENALAPRIL MALEATE VASOTEC NDA 018998 1985/12/24 BAUSCH Prescription

ENALAPRILAT 019309 1988/2/9 BIOVAIL LABS INTL Discontinued

LISINOPRIL ZESTRIL NDA 019777 1988/5/19 ALVOGEN Prescription

ARB CANDESARTAN CILEXETIL ATACAND NDA 020838 1998/6/4 ANI PHARMS INC Prescription

IRBESARTAN AVAPRO NDA 020757 1997/9/30 SANOFI AVENTIS US Prescription

LOSARTAN POTASSIUM COZAAR NDA 020386 1995/4/14 MERCK SHARP DOHME Discontinued/ 
Prescription

EPROSARTAN MESYLATE EPROSARTAN MESYLATE ANDA 202012 2011/11/16 MYLAN PHARMS INC Prescription
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IRBESARTAN IRBESARTAN ANDA 077159 2012/3/30 TEVA PHARMS Prescription

077466 2012/9/27 SANDOZ

079213 2012/9/27 ZYDUS PHARMS USA 
INC

LOSARTAN POTASSIUM LOSARTAN POTASSIUM ANDA 076958 2010/4/6 TEVA Discontinued

OLMESARTAN MEDOXOMIL OLMESARTAN  
MEDOXOMIL

ANDA 090237 2020/4/13 SANDOZ INC Prescription

078276 2016/10/26 MYLAN

VALSARTAN PREXXARTAN NDA 209139 2017/12/19 CARMEL BIOSCIENCES Discontinued

TELMISARTAN TELMISARTAN ANDA 078710 2014/1/8 CIPLA Discontinued
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EPROSARTAN MESYLATE TEVETEN NDA 020738 1997/12/22 ABBVIE Discontinued

The chemical structure is derived from ChemSpider | Search and share chemistry.
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Figure 2. A. Bibliometric map of RASi application during year 2000 to 2020. B. Bibliometric map of the application of RASi and tumor from 2000 to 2020. Dot size 
is proportional to the frequencies of particular keywords in analyzed articles. Lines between two dots indicate that these two keywords appear in the same article. 
The thicker the line, the more frequently the two keywords appear in the same article. The color indicates the year when a keyword appears most often in an article.
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focused on genotype-phenotype and apoptosis 
related studies, as well as cancers such as  
cervical cancer and lymphoma. Research on  
RASi has focused on the treatment of digestive  
system tumors, chronic myeloid leukemia, and 
breast cancer, as well as the combined use  
of protein kinase inhibitors and other drugs 
(Figure 2B). Collectively, these studies demon-
strated the potential of RASi in tumor treat-
ment. Due to the high incidence of cancer and 
the acquisition of tolerance for traditional treat-
ments, an increasing number of studies have 
focused on the search for new treatment strat-
egy, such as targeted therapy, immunotherapy, 
and combination therapy. In recent years, re- 
searchers have also explored the role of RASi, 
besides their effects on the cardiovascular sys-
tem, and have made significant advances.

The controversial role of RASi in different tu-
mors

Although results reported from multiple studi- 
es have shown that the use of RASi can impro- 
ve patient prognosis, no correlation has been 
reported between RASi and cancer prognosis, 
and in fact, some studies have even indicated 
that it may even increase the risk of cancer.

A cohort study on British individuals had report-
ed that the use of RASi was not associated with 
a reduction in the risk of pancreatic cancer [8]. 
In contrast, in a retrospective study on lung 
cancer, the use of RASi could reduce tumor pro-
gression and improve patient prognosis [9]. A 
recent review showed that patients with anti-
VEGF-responsive tumors, such as hepatocellu-
lar carcinoma (HCC), appear to be more sensi-
tive to treatment with RASi, which can signifi-
cantly improve their prognosis [10]. In addition, 
the use of RASi is an independent prognostic 
factor for longer cancer-specific and overall sur-
vival in patients with bladder cancer [11]. 
However, in a meta-review that included 13 
breast cancer studies, only two studies report-
ed beneficial effects of RSAi, whereas three 
studies reported poor outcomes [10]. In an 
acute myeloid leukemia cell model, combined 
treatment with losartan and doxorubicin could 
increase the sensitivity of certain cell lines to 
doxorubicin, whereas no changes in the thera-
peutic effect was observed in other cell lines 
[12]. A large epidemiological study showed that 
the benefits of RASi for cancer treatment 
reported in case-control studies and cohort 

studies were not observed in randomized con-
trolled trials (RCTs) [13].

Effect of high AGTR1 expression in malignant 
tissue on patient survival

AGTR1 is one of the most studied genes in the 
RAS and plays a crucial role in tumors. Based 
on an analysis of the large TCGA and GTEx data 
found in the GEPIA database, we found that 
AGTR1 is expressed at lower levels in tumor tis-
sue than normal tissue (Figure 1). We analyzed 
the relationship between the expression level 
of AGTR1 and survival in 31 types of tumor tis-
sues (excluding mesothelioma and uveal mela-
noma lacking the control group), and the results 
are listed in Table 2. AGTR1 expression is asso-
ciated with survival in most tumors and is dif-
ferentially expressed in tumor and normal tis-
sues. Examples of tumors showing differential 
expression of AGTR1 include uterine corpus 
endometrial carcinoma, colon adenocarcino-
ma, cutaneous skin melanoma, urothelial blad-
der carcinoma, and rectum adenocarcinoma 
(Table 2). In addition, in tumors with differential 
AGTR1 expression between tumor and normal 
tissue, higher expression of AGTR1 in tumor tis-
sue was negatively correlated with patient sur-
vival (Figure 3A-E). In tumor tissues where 
there was no difference in the expression of 
AGTR1 between normal and tumor tissues, 
higher expression of AGTR1 was negatively cor-
related (Figure 3F, 3G) or positively correlated 
(Figure 3J) with patient survival. 

The above mentioned studies indicated that 
the response to treatment with RASi may vary 
depending on various factors including tumor 
type, characteristics or stage, and study design. 
In some tumors, detailed analysis revealed that 
elevated expression of AGTR1 is closely related 
to survival, which may also explain why RASi do 
not show significant benefits for patients in 
some studies. Therefore, it is necessary to 
carry out treatment with RASi according to the 
types and characteristics of the tumor, and the 
maximum therapeutic benefit is expected to be 
realized using personalized treatment plans.

Basic mechanisms of RASi in tumor treat-
ment

The above mentioned data analysis and a vari-
ety of experimental evidence indicated that 
components of the RAS exist in a variety of 
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solid tumors, such as in the breast, liver, and 
gastrointestinal tract tumors (Figure 1), and 
they are involved in the pathological and physi-
ological processes of cancer, including prolifer-
ation, migration, apoptosis, and angiogenesis, 
suggesting that dysfunction of RAS contributes 
to tumor progression [4, 14-17]. At the same 
time, abnormal expression levels of RAS have 

ing cytotoxicity and inducing cell apoptosis [24]. 
A mouse model of breast cancer treated with 
losartan showed a significant decrease in the 
number of invasive cancer cells, which indi- 
cated inhibition of tumor cell proliferation and 
reduction of inflammatory cytokines [25]. Simi- 
larly, in experimental studies, telmisartan re- 
duced the viability of melanoma cells by induc-

Table 2. Expression levels of AGTR1 in 31 cancer types 
and matched non-tumor samples and the relationship 
between high AGTR1 expression in tumor tissues and 
patient survival
Tumor T Median N Median HR (high) P (HR) logrankP
ACC 10.04 29.98 1.2 0.63 0.62
BLCA 0.21 8.32 1.5 0.0065 0.006
BRCA 1.89 21.87 1.1 0.47 0.47
CESC 0.05 3.01 0.97 0.89 0.89
CHOL 2.83 29.62 2.1 0.14 0.13
COAD 0.09 11.07 1.6 0.053 0.05
DLBC 0.05 0.02 1.8 0.42 0.41
ESCA 0.17 1.01 0.75 0.22 0.22
GBM 0.35 0.11 1.5 0.043 0.042
HNSC 0.08 0.21 1.2 0.24 0.24
KICH 0.7 6.33 0.76 0.66 0.66
KIRC 4.94 6.92 0.58 0.00047 4.00E-04
KIRP 0.29 5.4 0.68 0.21 0.21
LAML 0.1 0.02 1.2 0.44 0.44
LGG 0.09 0.11 1.5 0.041 0.039
LIHC 14.21 26.29 0.96 0.83 0.83
LUAD 0.61 10.09 0.84 0.26 0.26
LUSC 0.28 10.2 1.3 0.09 0.09
OV 0.16 2.06 0.96 0.77 0.78
PAAD 1.17 1.36 0.6 0.018 0.016
PCPG 2.14 34.36 0.25 0.22 0.19
PRAD 5.54 4.19 1.8 0.37 0.37
READ 0.26 12.72 2.7 0.061 0.051
SARC 1.92 7.69 0.76 0.17 0.17
SKCM 0.11 9.43 1.3 0.041 0.039
STAD 0.27 1.38 1.4 0.063 0.062
TGCT 0.39 2.3 3.1 0.33 0.31
THCA 0.45 12.09 0.91 0.85 0.85
THYM 0.14 0.02 0.13 0.063 0.03
UCEC 0.05 4.11 2.3 0.023 0.02
UCS 0.83 4.22 1.2 0.65 0.67
Blue indicates that the expression of AGTR1 in tumor groups and nor-
mal tissues is significantly different. The data were obtained through 
Gene Expression Profiling Interactive Analysis (GEPIA). T median: 
Median expression of tumor tissue; N median: median expression of 
normal tissue.

been observed in the tumor microen- 
vironment, including tumor-associated 
macrophages (TAM), regulatory T cells 
(Tregs), fibroblasts, and the surrounding 
matrix. These are related to the regula-
tion of immune function, vascular endo-
thelial growth factor (VEGF), hypoxia, and 
acidosis in the matrix [4, 18-20]. The- 
refore, whether the antagonistic effects 
of RAS can produce the expected antitu-
mor effects remains a controversial sub-
ject. Many experimental studies have 
shown that RASi play a beneficial role in 
certain aspects of cancer, although the 
molecular mechanisms underlying its 
benefits are not fully understood.

The role of RASi in cell proliferation, 
apoptosis, and survival

Mounting experimental evidence indi-
cates that RASi have potential anti-prolif-
eration and pro-apoptotic properties. For 
example, in a mouse liver cancer model 
induced by diethyl nitrosamine, the inhi-
bition of ACE or blocking of AT1R inhibit-
ed tumor development by inactivating 
the NF-κB pathway and increasing the 
survival rate of mice [21]. Captopril can 
inhibit the growth of colorectal cancer 
liver metastases in the regenerating li- 
ver by anti-angiogenesis and promoting 
tumor cell apoptosis, without affecting 
the regeneration of normal liver tissue 
following partial hepatectomy [22]. In 
HepG2 cell line, the angiotensin receptor 
blocker azilsartan increased the rate of 
apoptosis induced by Bay 11-7082 (an 
NF-κB inhibitor) by inducing oxidative 
stress to inhibit the growth of tumor cells 
[23]. In an experimental model, treat-
ment of a breast cancer (MCF-7) cell line 
with the angiotensin II receptor antago-
nist olmesartan and an NF-κB inhibitor, 
Bay11-7082, could inhibit tumor growth 
individually or in combination by enhanc-
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Figure 3. The effect of high expression of AGTR1 in tumor tissue on the surviv-
al of patients. The median expression level of AGTR1 was divided into one-to-
one groups. A. Bladder urothelial carcinoma (BLCA); B. Colon adenocarcino-
ma (COAD); C. Rectal adenocarcinoma (READ); D. Skin cutaneous melanoma 
(SKCM); E. Uterine corpus endometrial carcinoma (UCEC); F. Glioblastoma 
multiforme (GBM); G. Brain lower-grade glioma (LGG); H. Pancreatic adeno-
carcinoma (PAAD); I. Kidney renal clear cell carcinoma (KIRC); J. Thymoma 
(THYM). The data was obtained through Gene Expression Profiling Interactive 
Analysis (GEPIA).
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ing mitochondrial dysfunction, changing cell 
bioenergy, and inducing apoptosis [26]. In addi-
tion, in a lung adenocarcinoma model, mice 
treated with captopril had significantly reduced 
tumor volume compared with those of the con-
trol group. This effect was closely related to the 
blockade of the energy uptake pathway in tu- 
mor cells, which resulted in a decrease in the 
number of proliferating cells [27]. Another 
meta-analysis showed that the survival rate 
improved for patients with renal cancer who 
received treatment with RASi compared to 
those who did not [28].

Role of RASi in tumor invasion and metastasis

The N87 and MKN45 cell lines derived from 
gastric cancer became less aggressive follow-
ing olmesartan treatment [29]. The AT1R antag-
onist TCV-116 is equivalent to the ACE inhibitor 
lisinopril and exerts inhibitory effects on tumor 
angiogenesis, growth, and metastasis [30]. An 
in vitro experimental model confirmed that can-
desartan could inhibit the invasion, angiogene-
sis, and peritoneal dissemination of ovarian 
cancer [31]. A retrospective study reported that 
the expression of AGTR1 in colorectal cancer 
was significantly upregulated and that the treat-
ment with ACEI and ARBs reduced the tumor 
recurrence rate of colorectal cancer, thereby 
improving its prognosis [32].

Role of RASi in tumor angiogenesis

The blockade of angiogenesis has long been 
considered an effective mechanism for inhibit-
ing tumor growth. Increasing evidence has 
shown that targeting the Ang II/AT1R axis can 
inhibit tumor growth and metastasis by reduc-
ing the expression of VEGF to inhibit angiogen-
esis and reduce vascular permeability [33-35]. 
In an in vitro model of hepatocellular carcino-
ma, the ACE inhibitor perindopril and the AT1R 
blocker losartan prevented hepatocellular car-
cinoma by inhibiting growth factor-mediated 
angiogenesis and enhancing endostatin-medi-
ated anti-angiogenesis [21, 36]. The new angio-
tensin II antagonist, olmesartan, can target the 
VEGF-A gene by upregulating miR-205 in cervi-
cal cancer cell lines, thereby inhibiting tumor 
proliferation [37]. In prostate cancer cell lines, 
AT1R blockade can inhibit the expression of 
hypoxia-inducible factor alpha (HIF-1α) and Ets-
1, thereby inhibiting tumor cell angiogenesis 
[38]. In pancreatic ductal adenocarcinoma, the 

expression levels of ACE and AT1R are positive-
ly correlated with the expression of VEGF, and 
captopril and losartan significantly inhibited 
cell proliferation [39].

Role of RASi in the tumor microenvironment

Angiotensin II can reduce tumor perfusion, 
leading to acidosis and hypoxia in the tumor 
stroma [40]. Tumor acidosis and hypoxia can 
trigger the expression of a series of inflamma-
tory cytokines, such as HIF, VEGF, and trans-
forming growth factor-β (TGF-β). At the same 
time, modulation of some inflammatory cyto-
kines, such as tumor necrosis factor-α (TNF-α), 
monocyte chemoattractant protein-1 (MCP-1), 
osteopontin (OPN), and inducible nitric oxide 
synthase (iNOS) influence the regulation of 
immune suppression and immune escape [41, 
42]. Acidosis and hypoxia contribute to the 
establishment of an immunosuppressive envi-
ronment and promote tumor growth and metas-
tasis [43, 44]. Antagonizing VEGF receptors can 
normalize tumor blood vessels, thereby effec-
tively alleviating hypoxia and acidosis, repro-
gramming the tumor immunosuppressive mi- 
croenvironment, and improving the efficacy of 
immunotherapy [44, 45].

Ang II targets AT1R to release a variety of tumor-
supporting cytokines, such as MCP-1, cyclooxy-
genase 2 (COX-2) and C-reactive protein (CRP) 
can upregulate the immunosuppressive path-
way through COX-dependent pathways [46, 47]. 
In addition, after AT1R is activated, Ang II can 
promote the production of reactive oxygen spe-
cies (ROS) and related proteins in tumor and 
stromal cells [48]. ROS can impair the function 
of T cells in the tumor microenvironment (TME), 
while enhancing the functions of Tregs and TAM 
[47]. The ARB inhibitor candesartan can reduce 
the production of ROS and inhibit the oxidative 
stress response [49].

Local RAS in the tumor microenvironment can 
inhibit the induction of tumor antigen-specific 
treatment. Antitumor efficacy was augmented 
by enhancing the induction and infiltration of 
tumor antigen-specific T cells [19]. In addition, 
RASi can enhance antitumor effects by induc-
ing neutrophil polarization to an antitumor phe-
notype [50]. In mouse tumor models, the block-
ade of local RAS reverses the immunosuppres-
sive microenvironment of tumor and triggers 
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the immune activation cytokine profile of can-
cer cells [51].

In addition, RAS can affect the immune re- 
sponse by establishing a proliferative environ-
ment. For example, cancer-associated fibro-
blasts (CAFs) inhibit the function of T cells and 
NK cells, promote the accumulation of immuno-
suppressive cells, and maintain an inflamma-
tory environment that affects the immune sys-
tem and hinders its normal physiological func-
tions [52]. Dense tumor fibrosis can also com-
press blood vessels by increasing solid stress 
[53, 54], reducing tumor perfusion, and leading 
to hypoxia and acidosis in the tumor microenvi-
ronment. This, in turn, can promote immune 
cell reprogramming to an immunosuppressive 
phenotype, inhibiting the normal killing of tumor 
cells by immune cells and enhancing the ex- 
pression of various immunosuppressive check-
point molecules [43, 53-57]. Several experi-
mental studies have shown that RASi can 
improve tumor-stromal fibrosis. In various ma- 
lignant tumor models, losartan and telmisartan 
reduced the expression of transforming growth 
TGF-β and collagen I, thereby reducing tumor-
stromal proliferation and improving vascular 
perfusion, and improving the distribution and 
efficacy of anticancer drugs and nanotherapy in 
tumors [58-61].

RASi can therefore improve the activity of 
pathophysiological processes in the tumor 
microenvironment. In addition to modulating 
tumor angiogenesis, it can also increase tumor 
perfusion, reduce hypoxia and acidosis, impro- 
ve the inflammatory environment, and enhance 
immune cell function to promote antitumor 
effects.

Practical application of RASi in cancer treat-
ment

Preclinical and clinical studies have shown that 
RASi exhibit good anticancer properties in 
many types of cancer. RASi can not only be 
used in combination with radiotherapy and che-
motherapy to improve the prognosis of patients, 
but can also be used to prevent the occurrence 
of certain cancers associated with high-risk 
factors. Currently, they are also used in immu-
notherapy and targeted therapy, In addition, 
several patients may require treatment termi-
nation because of the side effects of chemo-
therapy and radiotherapy. In such patients, 

RASi have also shown beneficial effects in 
reducing the side effects of cancer treatment. 
In short, RASi have great potential in the man-
agement of cancer.

A recent meta-analysis showed that a combina-
tion of RASi (including ACEI and ARBs) and che-
motherapy significantly delayed the disease 
process, and the overall mortality was signifi-
cantly reduced compared with treatment with 
chemotherapeutic drugs alone, suggesting that 
RASi can improve the prognosis of different 
types of cancer as an adjuvant therapy [62]. In 
a phase II trial of advanced renal cell carcino-
ma, a combined treatment with interferon-α, 
cimetidine, cyclooxygenase-2 inhibitor, and 
RAS inhibitor (I-CCA therapy) led to the majority 
of patients showing good tolerance with a low 
incidence of toxicity [63]. In an experimental 
study, the combined use of olmesartan and 
sorafenib significantly reduced the levels of 
angiogenic markers such as VEGF and IGF-I 
and their intracellular receptors and inhibited 
tumor angiogenesis, thereby enhancing the 
overall antitumor effect [64]. In a study on pa- 
tients with rectal cancer, the pathological com-
plete response rate (pCR) of patients using 
RASi to neoadjuvant radiotherapy was signifi-
cantly increased compared to other drugs (such 
as statins) [65].

RASi can not only be used as a chemotherapy 
adjuvant to improve the prognosis of several 
tumor types, but can also be used to prevent 
the occurrence of cancer. Earlier studies have 
shown that ACEI/ARBs can effectively preve- 
nt liver cancer induced by diethylnitrosamine 
(DENA) and promoted by carbon tetrachloride 
(CCl(4)) [36]. An experimental study has shown 
that blocking RAS expression can effectively 
prevent the disorder of adenosine monophos-
phate activated protein kinase signal transduc-
tion pathway caused by unilateral nephrectomy, 
which leads to the carcinogenesis of renal tu- 
bular epithelial cells [66]. In addition, a meta-
analysis of multiple observational studies fo- 
und that the use of RASi can reduce the risk of 
keratinocyte carcinoma (basal and squamous 
cell carcinoma) [67].

As mentioned above, local RAS expression is 
associated with tumor immunosuppressive mi- 
croenvironment, which provides a theoretical 
basis for the combination of local RAS block-
ade and immune checkpoints. Consistent with 
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this, the combination of local RAS blockade 
and immune checkpoint blockade can change 
the immunosuppressive properties in the tu- 
mor microenvironment and significantly enhan- 
ce the antitumor effect in a CD8+ T-cell-de- 
pendent manner [19, 51]. In addition, the co-
delivery system of gold nanoparticles modified 
by captopril-polyethyleneimine conjugated and 
gene drugs has shown strong tumor homing 
ability and antitumor effect in the treatment of 
breast cancer [68].

In addition to having a synergistic effect in the 
treatment of cancer, RASi can also reduce the 
side effects of molecular targeted therapy in 
cancer patients, such as left ventricular dys-
function. A clinical trial conducted by Gulati et 
al. showed that patients with early breast can-
cer treated with both desartan and anthracy-
clines had a decreased risk of reduced left ven-
tricular function [69]. In addition, concurrent 
use of ACEI reduced the incidence of chest 
pneumonia in patients receiving radiotherapy 
for non-small cell lung cancer [70].

Conclusion

The benefits of treatment with RASi remains 
controversial, and the underlying mechanism of 
RASi in the treatment of different types of 
tumors warrants further investigations. How- 
ever, existing research and data analysis have 
shown that the high expression of RAS has vari-
ous effects on the survival of patients with dif-
ferent types of tumors. In addition, whether as 
an adjuvant in cancer treatment to improve the 
efficacy of chemoradiotherapy, immune and 
targeted therapy, or as a protective agent for 
normal tissues and organs in chemoradiothera-
py to reduce toxic and side effects, RASi have 
demonstrated their infinite potential in cancer 
management.

Future research should continue to explore the 
role of RASi in the treatment of different types 
of tumors and the underlying mechanisms 
involved. Specifically, studies should focus on 
colorectal cancer and anti-VEGF-responsive 
tumors (such as hepatocellular carcinoma). The 
development of more effective and novel RASi 
analogs or complexes is needed to advance the 
applications of RASi in cancer therapy. Addi- 
tionally, RASi are widely used in clinical practice 
and are tolerated well by the patients, Therefore, 

RASi can be used as potential therapeutic 
option for cancer patients, in the near future.
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