Skip to main content
. 2021 Feb 1;11(2):546–560.

Table 1.

Performance of the radiomics signature, C-R and C-R-R models

AUC Accuracy Sensitivity Specificity
Development
    LR 0.783 (0.731-0.836) 0.728 (0.673-0.778) 0.774 (0.664-0.849) 0.682 (0.514-0.743)
    DT 0.768 (0.716-0.819) 0.731 (0.677-0.781) 0.637 (0.496-0.726) 0.824 (0.695-0.877)
    SVM 0.810 (0.761-0.859) 0.748 (0.695-0.797) 0.726 (0.568-0.801) 0.770 (0.648-0.831)
    C-R 0.776 (0.724-0.828) 0.711 (0.655-0.762) 0.720 (0.675-0.794) 0.608 (0.455-0.693)
    C-R-R 0.849 (0.805-0.893) 0.786 (0.734-0.831) 0.808 (0.685-0.870) 0.764 (0.642-0.845)
Validation
    LR 0.778 (0.695-0.862) 0.738 (0.652-0.812) 0.773 (0.560-0.924) 0.700 (0.533-0.834)
    DT 0.761 (0.679-0.844) 0.762 (0.678-0.833) 0.652 (0.368-0.731) 0.883 (0.624-0.953)
    SVM 0.796 (0.717-0.876) 0.746 (0.661-0.819) 0.742 (0.499-0.909) 0.750 (0.583-0.850)
    C-R 0.739 (0.652-0.826) 0.714 (0.627-0.791) 0.712 (0.448-0.803) 0.717 (0.467-0.817)
    C-R-R 0.835 (0.761-0.909) 0.802 (0.721-0.867) 0.773 (0.485-0.879) 0.833 (0.617-0.917)

AUC, area under the curve; C-R, clinical-radiological; C-R-R, clinical-radiological-radiomics; DT, decision tree; LR, logistic regression; SVM, support vector machine.