Table 1.
AUC | Accuracy | Sensitivity | Specificity | |
---|---|---|---|---|
Development | ||||
LR | 0.783 (0.731-0.836) | 0.728 (0.673-0.778) | 0.774 (0.664-0.849) | 0.682 (0.514-0.743) |
DT | 0.768 (0.716-0.819) | 0.731 (0.677-0.781) | 0.637 (0.496-0.726) | 0.824 (0.695-0.877) |
SVM | 0.810 (0.761-0.859) | 0.748 (0.695-0.797) | 0.726 (0.568-0.801) | 0.770 (0.648-0.831) |
C-R | 0.776 (0.724-0.828) | 0.711 (0.655-0.762) | 0.720 (0.675-0.794) | 0.608 (0.455-0.693) |
C-R-R | 0.849 (0.805-0.893) | 0.786 (0.734-0.831) | 0.808 (0.685-0.870) | 0.764 (0.642-0.845) |
Validation | ||||
LR | 0.778 (0.695-0.862) | 0.738 (0.652-0.812) | 0.773 (0.560-0.924) | 0.700 (0.533-0.834) |
DT | 0.761 (0.679-0.844) | 0.762 (0.678-0.833) | 0.652 (0.368-0.731) | 0.883 (0.624-0.953) |
SVM | 0.796 (0.717-0.876) | 0.746 (0.661-0.819) | 0.742 (0.499-0.909) | 0.750 (0.583-0.850) |
C-R | 0.739 (0.652-0.826) | 0.714 (0.627-0.791) | 0.712 (0.448-0.803) | 0.717 (0.467-0.817) |
C-R-R | 0.835 (0.761-0.909) | 0.802 (0.721-0.867) | 0.773 (0.485-0.879) | 0.833 (0.617-0.917) |
AUC, area under the curve; C-R, clinical-radiological; C-R-R, clinical-radiological-radiomics; DT, decision tree; LR, logistic regression; SVM, support vector machine.