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Abstract

Accurate subcortical segmentation of infant brain magnetic resonance (MR) images is crucial for 

studying early subcortical structural growth patterns and related diseases diagnosis. However, 

dynamic intensity changes, low tissue contrast, and small subcortical size of infant brain MR 

images make subcortical segmentation a challenging task. In this paper, we propose a spatial 

context guided, coarse-to-fine deep convolutional neural network (CNN) based framework for 

accurate infant subcortical segmentation. At the coarse stage, we propose a signed distance map 

(SDM) learning UNet (SDM-UNet) to predict SDMs from the original multi-modal images, 

including T1w, T2w, and T1w/T2w images. By doing this, the spatial context information, 

including the relative position information across different structures and the shape information of 

the segmented structures contained in the ground-truth SDMs, is used for supervising the SDM-

UNet to remedy the bad influence from the low tissue contrast in infant brain MR images and 

generate high-quality SDMs. To improve the robustness to outliers, a Correntropy based loss is 

introduced in SDM-UNet to penalize the difference between the ground-truth SDMs and predicted 

SDMs in training. At the fine stage, the predicted SDMs, which contains spatial context 

information of subcortical structures, are combined with the multi-modal images, and then fed into 

a multi-source and multi-path UNet (M2-UNet) for delivering refined segmentation. We validate 

our method on an infant brain MR image dataset with 24 scans by evaluating the Dice ratio 

between our segmentation and the manual delineation. Compared to four state-of-the-art methods, 

our method consistently achieves better performances in both qualitative and quantitative 

evaluations.
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1 Introduction

Accurate segmentation of subcortical structures from the magnetic resonance (MR) brain 

images plays an important role in various neuroimaging studies [1–3]. As manual 

delineation of subcortical structures is very time-consuming, expertise needed, and difficult 
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to reproduce, many previous studies have put efforts into automatic segmentation and 

achieved significant progress for adult brain MR images [4–7]. However, as shown in Fig. 1, 

the automatic subcortical segmentation in the infant brain MR images is still challenging, 

due to their dynamic intensity changes, low tissue contrast, and small structural size [8]. 

Fully automatic subcortical segmentation methods in infants are urgently needed for many 

neurodevelopmental researches, such as studying the early growth pattern of subcortical 

structures [9–11] and the diagnosis of related brain disorders [12].

Recently, the context-guided convolutional neural networks (CNN) based methods have 

achieved many successes in medical image segmentation tasks [13,14]. These methods try to 

use the distance maps, which encodes the spatial context information, including the position, 

shape, and relationship among different segmentation targets, to improve the segmentation 

accuracy. However, their distance maps are constructed based on the intermediate 

segmentation results, which may accumulate the segmentation errors to the constructed 

distance maps. With the inaccurately constructed distance maps to guide the segmentation, 

the segmentation performance would be degraded. To address this issue, [15] proposed to 

directly generate the signed distance map (SDM) in a regressionbased network. Then, the 

boundary of the segmentation target can be computed through the Heaviside function. In 

doing so, the context information contained in the ground-truth SDMs can be used to 

directly supervise the network to generate high-quality segmentation results. In [15], the L1 

loss between the predicted SDM and the ground-truth SDM was used for the training, thus 

improving the robustness of the network. However, the L1 loss is non-differentiable at zero 

and may lead to an unstable training process in multi-class segmentation tasks [16], which is 

thus not suitable for the subcortical segmentation task.

Motivated by these works, in this paper, we propose a spatial context guided, coarse-to-fine 

deep CNN based framework for accurate 3D subcortical segmentation on infant brain MR 

images. At the coarse stage, a SDM learning UNet (SDM-UNet) is proposed to directly 

learn the SDM of each subcortical structure from the original multi-modal MR images, 

including the T1w, T2w, and T1w/T2w images. In this way, the proposed SDM-UNet can 

leverage the spatial context information, including the relative position information across 

different subcortical structures and the shape information of the segmented subcortical 

structures contained in the ground-truth SDMs, to mitigate the bad influence from the low 

tissue contrast in infant brain MR images and generate high-quality SDMs. Meanwhile, a 

Correntropy based loss [17] is introduced in the SDM-UNet to further improve the 

robustness to outliers under the premise of a stable training process. At the fine stage, a 

multi-source and multi-path UNet (M2-UNet) is built to rationally encode and effectively 

fuse the multi-modal information and the spatial context information, which is included in 

the previously predicted SDMs, to produce the refined subcortical segmentation results. To 

our best knowledge, this is the first work of using spatial context information for the 

segmentation of the subcortical structures in infant brain MR images.
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2 Method

The framework of our method is presented in Fig. 2, which includes two networks for two 

stages, respectively. In the following, we will introduce each stage and its corresponding 

network in detail.

Coarse Stage SDM-UNet:

To generate high-quality SDMs for improving the segmentation performance in the fine 

stage, we proposed a SDM learning UNet (SDM-UNet) to directly learn the SDM of each 

subcortical structure from multi-modal MR images, including T1w, T2w, and T1w/T2w 

images. By doing this, we can use the spatial context information contained in the ground-

truth SDMs to supervise the SDM-UNet, which can help alleviate the bad influence from the 

low tissue contrast in the infant brain MR images and achieve superior performance on the 

estimation of SDMs, where the ground-truth SDMs are calculated from the manual 

delineations via the Euclidean distance transforms. Meanwhile, we can also precisely 

convert the SDMs to the segmentation maps through the Heaviside function. Therefore, 

during the training, we convert the predicted SDMs to the predicted segmentation maps and 

introduce a segmentation loss to penalize the difference between the manual delineations 

and the predicted segmentation maps to further improve the performance of the proposed 

SDM-UNet.

The proposed SDM-UNet has an encoder-decoder architecture, which is shown in Fig. 2, 

and the multi-modal MR images are used as multi-channel input. Skip connections are 

employed to recover essential details that are possibly lost in the down-sampling process of 

the encoder.

For a specific subcortical structure in the 3D image, its corresponding SDM can be 

computed using the following formula, which is a mapping from ℝ3 to ℝ:

ϕ(x) =

0, x ∈ ℬ
− inf

y ∈ ℬ
‖x − y‖2, x ∈ Ωin

+ inf
y ∈ ℬ

‖x − y‖2, x ∈ Ωout

(1)

where x is the coordinate of any point in the 3D image; y is the coordinate of any point on 

the subcortical structure boundary ℬ, Ωin and Ωout denote the region inside (negative value) 

and outside (positive value) a subcortical structure, respectively. Based on this definition, we 

can use the Euclidean distance transforms to calculate the ground-truth SDMs of each 

subcortical structure from the manual delineation.

Once the ground-truth SDMs are calculated, they can be introduced into a SDM learning 

loss, which encourages the SDM-UNet to predict the SDMs from the original multi-modal 

MR images. In the learning of the SDMs, the conventional ways [15,18] use the L1 loss 

instead of L2 loss to achieve better robustness to outliers. However, L1 loss is not 

differentiable at zero, which severely reduces the training stability. To alleviate the impact of 

outliers and overcome the shortage of L1 loss, we apply a Correntropy based loss (Closs) 
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[19] to penalize the difference between the predicted and the ground-truth SDM. 

Correntropy is a nonlinear distance measure in the original input space, and defines an L2 

distance in kernel space by mapping the input space to a reproducing kernel Hilbert space 

(RKHS) [20]. For a K-class segmentation task, the SDM learning loss is defined as follows:

ℒSDM = ∑
k = 1

K
1 − exp  − pk − qk

2

2σ2 , (2)

where σ is the tunable kernel bandwidth, pk and qk represent the predicted and ground-truth 

SDM belonging to the k-th class. Compared to the L1 or L2 norm-based similarity losses, the 

Correntropy based loss is not only robust to outliers but also stable in training because it is 

differentiable everywhere [21].

To further utilize the label information in the manual delineation, we convert the predicted 

SDM to a predicted segmentation map via a smooth approximation of the Heaviside 

function [22], and introduce a segmentation loss to help improve the prediction of the SDM. 

We use the following smooth approximation of the Heaviside function to obtain the 

predicted segmentation maps:

sk = 1
1 + e−pk/m , (3)

where sk denotes the predicted segmentation map belonging to the k-th class, and m is an 

approximation parameter. A larger m means a closer approximation. Once the predicted 

segmentation maps are obtained, the Dice loss [23] is used as the segmentation loss to 

measure the overlapping between the predicted segmentation maps and the manual 

delineations:

ℒSeg = ∑
k = 1

K
1 −

2∑i = 1
N sk, itk, i

∑i = 1
N sk, i + ∑i = 1

N tk, i
, (4)

where N is the number of voxels, tk,i and sk,i represent the i-th voxel in the k-th manual 

delineation and predicted segmentation map, respectively.

By integrating the above loss terms, the joint loss ℒSDM‐UNet is defined as:

ℒSDM‐UNet = ℒSDM + λℒSeg, (5)

where λ is the loss weight. By minimizing this loss, the proposed SDM-UNet can be stably 

trained to generate high-quality SDM, which is used as the spatial context information to 

guide the training of the following M2-UNet to further improve the segmentation accuracy.

Fine Stage M2-UNet:

In order to leverage the spatial context information generated by SDM-UNet, we propose a 

multi-source and multi-path UNet, namely M2-UNet, at the fine stage to achieve the refined 

segmentation. The proposed M2-UNet can effectively integrate the multi-modal information 
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and the spatial context information by encoding the multi-modal MR images and SDMs 

through different encoder paths, which is detailed as follows.

The input of the M2-UNet includes two parts: a) the original multi-modal MR images, 

which are used as multi-channel input; b) the predicted SDMs from the coarse stage. 

Different from the multi-modal MR images, the SDMs of different subcortical structures 

illustrate distinct spatial context information. Therefore, in order to effectively integrate the 

spatial context information of the subcortical structures, we propose to construct an 

individual encoder path for the SDMs of each subcortical structure, which can make full use 

of each encoder path to better extract the high-level features of each subcortical structure.

As the extracted high-level feature maps could better complement each other than the source 

images [13], we propose to perform a cross-source convolution to aggregate the outputs of 

all encoder paths. Specifically, the outputs of each encoder path are concatenated and fed to 

an additional convolutional layer at the beginning of the decoder path. As the cross-source 

convolution performs across different sources, it assigns different weights to each source and 

merges the extracted high-level features in the output feature maps. In doing so, the 

proposed cross-source convolution layer can model the relationships across different source 

images and achieve a better fusion of the extracted high-level features.

Moreover, because there are total (K + 1) encoder paths in the M2-UNet, employing the skip 

connections for each encoder path will significantly increase the complexity of the network. 

It is worth noting that, compared to the SDMs of each subcortical structure, multi-modal 

MR images accommodate exhaustive intensity information [24]. Hence, in order to recover 

more useful details with less complicated network architecture, we only employ the skip 

connections for the encoder path of the multi-modal MR images. Herein, we still use the 

aforementioned Dice loss for the M2-UNet training.

3 Experiments

Dataset and Experimental Setup:

The proposed network is evaluated on a real infant dataset, which includes 24 infant MRI 

scans (with both T1w and T2w images) from the UNC/UMN Baby Connectome Project 

(BCP) [25]. The resolution of the T1w and T2w images is 0.8 × 0.8 × 0.8mm3. These 24 

subjects are divided into two age groups (6 and 12 months), and each group has 12 scans. 

The subcortical structures of all 24 subjects are manually delineated by two experienced 

experts. For each subject, the T2w image was linearly aligned onto the T1w image [26]. 

Then, T1w/T2w image is obtained by dividing the T1w image by the T2w image at each 

voxel. Intensity inhomogeneity is corrected in all images by [27]. To simplify the network, 

we merged the bilaterally symmetric subcortical structures into six classes (thalamus, 

caudate, putamen, pallidum, hippocampus, and amygdala). We performed random flipping 

of image patches for augmenting the data. In order to validate our method, a stratified 5-fold 

cross-validation strategy is employed, and each fold consists of 16 training images, 4 

validation images, and 4 testing images.
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Parameters of SDM-UNet and M2-UNet are experimentally set as: learning rate of Adam 

optimizer = 0.0001, kernel size of each network = 4, stride = 2, λ = 0.1, and σ = 0.8. m is set 

to 1500. The segmentation was performed in a patch-wise manner, with the patch size of 32 

× 32 × 32.

The proposed method was compared with the following methods: a commonly used 

software package FIRST in FSL [26]; three state-of-the-art deep learning segmentation 

methods including V-Net [23], LiviaNet [4], SA-Net [15] and the method involving only the 

proposed SDM-UNet. In order to ensure a fair comparison, the three MR modalities are used 

as multi-channel input to all learning-based methods. The segmentation results were 

quantitatively evaluated by the Dice similarity coefficient (DSC) (mean and standard 

deviation).

Evaluation Results:

In Fig. 3, we visually compared the subcortical segmentation results of the manual 

delineation and the six automatic methods on a 6-month T1w infant brain MR image. 

Evidently, the proposed method obtained overall segmentation results more consistent with 

the manual results. Meanwhile, the proposed method and SDM-UNet can more precisely 

segment the amygdala and hippocampus than the other competing methods. Compared to 

SDM-UNet, the proposed method generates segmentation results that are more accurate for 

most of the subcortical structures, suggesting that the proposed M2-UNet exerts a positive 

effect in improving the segmentation performance.

The DSC values of the segmentation of the six subcortical structures are summarized in 

Table 1, where we have at least three observations.

First, compared to the state-of-the-art methods, our method has remarkably better 

segmentation results for all six subcortical structures in each age group (improved the 

overall DSC by 2.51% (p−value = 2.3e−4) and 2.03% (p−value = 1.7e−5) on 6-month and 12-

month images, respectively). Although promising segmentation for amygdala and 

hippocampus is hard to obtain due to their relatively smaller size, our method still achieves 

significantly higher DSC values on these two structures (p−value = 1.3e−4, compared with 

SA-Net). The results suggest that our method can effectively leverage the spatial context 

information to improve the segmentation performance.

Second, the DSC values of 6-month images are generally lower than those of 12-month 

images. This is because the 6-month brain images have the lowest contrast for different 

subcortical structures, which is conformal with the previous studies [8,28,29]. Meanwhile, 

the proposed method shows the highest consistency of the segmentation on the 6 and 12 

months infant brain MR images. This further implies that incorporating the SDM of each 

specific subcortical structure can help remedy the bad influence from the low tissue contrast 

of 6-month MR images and verifies that our method is effective in the task of subcortical 

segmentation of infant brain MR images.

Third, when compared to state-of-the-art methods, the proposed SDM-UNet achieves better 

segmentation results (p − value = 1.8e−4, compared with SA-Net), which indicates that our 
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SDM-UNet can generate more trustworthy SDMs to effectively guide the training of the 

following M2-UNet to acquire improved segmentation accuracy. Moreover, when compared 

to SDM-UNet, our method also achieved markedly improved DSC values on all the 

subcortical structures (from 90.90% to 92.89% (p−value = 5.4e−6) and 92.18% to 93.73% (p
−value = 3.1e−5) on 6 and 12 months images, respectively), which reveals the effectiveness 

of the proposed framework in refining the segmentation.

Both the qualitative evaluation in Fig. 3 and the quantitative evaluation in Table 1 suggest 

that our method yields superior performance on automatic subcortical segmentation of infant 

brain MR images.

4 Conclusion

In this work, we propose a spatial context guided, coarse-to-fine deep CNN-based 

framework for the accurate 3D subcortical segmentation in infant brain MR images. At the 

coarse stage, to mitigate the bad influence from the low tissue contrast in infant brain MR 

images, we construct a signed distance map (SDM) learning UNet (SDM-UNet), which is 

supervised by the spatial context information contained in the ground-truth SDMs, to 

generate high-quality SDMs from the original multi-modal images, including T1w, T2w, and 

T1w/T2w images. Moreover, a Correntropy based loss is introduced in the SDM-UNet to 

improve the robustness to the outliers under the premise of a stable training process. At the 

fine stage, for simultaneously leveraging the multi-modal MR images and the SDMs 

predicted at the coarse stage to achieve improved segmentation accuracy, a multi-source and 

multi-path UNet (M2-UNet) is constructed to rationally encode and effectively integrate the 

multi-modal appearance information and the spatial context information contained in the 

predicted SDMs. Experimental results demonstrate that, compared to four state-of-the-art 

methods, our method achieves higher accuracy in the segmentation of subcortical structures 

of infant brain MR images.
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Fig. 1. 
T1w, T2w, and T1w/T2w images of a 6-month subject, the associated manual delineation, 

and the ground-truth signed distance map (SDM) of the thalamus. Evidently, the boundaries 

of subcortical structures are fuzzy due to the low contrast in T1w and T2w images. In the 

T1w/T2w image, the contrast of tissues increased; thus, more distinguishable boundaries can 

be observed. The ground-truth SDM of each subcortical structure is calculated from the 

manual delineation.
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Fig. 2. 
A schematic illustration of the proposed framework, consisting of SDM-UNet at coarse 

stage and M2-UNet at fine stage.
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Fig. 3. 
Visual comparison of the segmentation results of the six subcortical structures on a 6-month 

T1w image, obtained from manual delineation and six automatic methods. The apparent 

segmentation errors are indicated by boxes.
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Table 1.

The DSC values of the six subcortical structures in each age group.

Month FIRST V-Net LiviaNet SA-Net SDM-UNet Our method

Thalamus 6 83.85 ± 2.73 94.65 ± 0.68 94.89 ± 0.91 94.12 ± 0.32 94.33 ± 0.36 96.10 ± 0.22

12 87.37 ± 1.52 95.26 ± 0.42 94.75 ± 1.34 95.14 ± 0.58 95.00 ± 0.48 96.23 ± 0.32

Caudate 6 84.62 ± 1.61 88.45 ± 1.46 92.35 ± 1.28 92.39 ± 0.42 92.36 ± 0.33 94.25 ± 0.54

12 87.76 ± 1.59 92.78 ± 0.46 91.78 ± 1.89 94.21 ± 0.77 94.12 ± 0.35 94.71 ± 0.43

Putamen 6 74.76 ± 1.93 89.94 ± 2.63 90.69 ± 1.66 91.64 ± 1.26 92.48 ± 1.31 94.60 ± 1.11

12 83.12 ± 2.82 92.86 ± 1.29 92.44 ± 1.40 93.26 ± 0.82 93.47 ± 0.96 95.51 ± 0.54

Pallidum 6 78.09 ± 2.78 88.35 ± 1.94 89.08 ± 1.82 90.14 ± 1.27 91.01 ± 1.50 92.82 ± 0.98

12 83.56 ± 1.46 90.72 ± 0.81 90.43 ± 1.22 91.99 ± 0.67 92.23 ± 0.88 94.24 ± 0.91

Hippocampus 6 66.73 ± 4.25 87.27 ± 2.15 86.49 ± 1.46 88.18 ± 1.19 88.71 ± 0.74 90.52 ± 0.86

12 80.47 ± 2.97 90.14 ± 1.56 90.54 ± 0.89 89.42 ± 1.33 90.34 ± 0.46 92.02 ± 1.28

Amygdala 6 49.33 ± 5.95 83.58 ± 5.99 79.66 ± 3.99 85.79 ± 2.73 86.51 ± 2.89 89.06 ± 1.91

12 55.12 ± 3.56 85.71 ± 2.41 86.21 ± 2.05 86.20 ± 1.39 87.89 ± 1.31 89.64 ± 1.29

Mean DSC 6 72.90 ± 3.21 88.71 ± 2.48 88.86 ± 1.85 90.38 ± 1.20 90.90 ± 1.19 92.89 ± 0.94

12 79.56 ± 2.32 91.25 ± 1.16 91.03 ± 1.47 91.70 ± 0.93 92.18 ± 0.74 93.73 ± 0.80
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