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The first year of a calf’s life is a critical phase as its digestive system and immunity are underdeveloped. A
high level of stress caused by separation from mothers, transportation, antibiotic treatments, dietary
shifts, and weaning can have long-lasting health effects, which can reduce future production parameters,
such as milk yield and reproduction, or even increase the mortality of calves. The early succession of
microbes throughout the gastrointestinal tract of neonatal calves follows a sequential pattern of coloni-
sation and is greatly influenced by their physiological state, age, diet, and environmental factors; this
leads to the establishment of region- and site-specific microbial communities. This review summarises
the current information on the various potential factors that may affect the early life microbial colonisa-
tion pattern in the gastrointestinal tract of calves. The possible role of host–microbe interactions in the
development and maturation of host gut, immune system, and health are described. Additionally, the
possibility of improving the health of calves through gut microbiome modulation and using antimicrobial
alternatives is discussed. Finally, the trends, challenges, and limitations of the current research are sum-
marised and prospective directions for future studies are highlighted.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The development of the gastrointestinal tract (GIT) in neonatal
humans and animals is a highly dynamic process that is influenced
by genetic and environmental factors, nutrition, and the concomi-
tant development of the intestinal microbial communities. This is
also true for ruminants, where the first month of life is even more
challenging as the rumen is less developed. The rumen is the lar-
gest forestomach in ruminants and is highly important for the con-
version of ingested feed particles into metabolites that are
absorbed and utilised by the host and the formation of microbial
protein sources used by the animals [1]. Young ruminants are func-
tionally monogastric at birth with an underdeveloped forestomach
system, including the rumen, reticulum, and omasum. During
these first months of life, the abomasum and intestines serve as
their major digestion sites [2]. The establishment of a fully mature
system requires the development of the reticulo-rumen and the
associated microbiomes [3]. The microbial communities in the
rumen follow a sequential pattern of colonisation with bacteria
as the first colonisers, followed by the methanogenic archaea,
anaerobic fungi, and protozoa [4–6]. However, studies using
molecular-based techniques showed initial rumen colonisation
with facultative anaerobic bacteria (Enterococcus and Streptococ-
cus) in new-born calves as well as archaea within a few hours after
birth [7,8]. A recent study by Malmuthuge et al. (2019) reported on
rumen colonisation in neonatal calves with an active bacterial
community at birth. The rumen of one-week-old calves were
already colonised by active complex-carbohydrate-fermenting
bacterial species even in the absence of solid substrates in the diet
[9]. These initial gut colonisers utilise the oxygen available in the
gut, thus, creating an anaerobic environment favourable for the
Fig. 1. Factors that influence the initial establishment and development of microbial com
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growth of strict anaerobic gut communities, including Bifidobac-
terium and Bacteroides [10,11]. The strict anaerobic bacterial com-
munity, including cellulolytic and proteolytic bacteria, together
with niche specialists, establish and dominate the gut microbiome
within the first two weeks of life [7,12–14].

The establishment of a strict anaerobic bacterial community in
the GIT of neonates plays an essential role in mucosal immune sys-
tem development, and is therefore, a critical phase for the host
[15,16]. After the initial gut colonisation, constant exposure of the
host GIT to specific microbes is necessary to maintain the host’s
energy metabolism, health, and mucosal immune system matura-
tion [17,18]. Once the GIT is fully mature and the climax microbial
community is established, the intestinal microbiome is considered
stable thereafter, except for changes in the host’s health, physiolog-
ical state, and diet [19–21]. However, considerable differences exist
in microbial community profiles in different regions of the GIT in
ruminants [14]. Similarly, themucosa-associatedmicrobial commu-
nities were found to differ from those occupying the lumen [14,22–
25], suggesting a possible role of host–microbe interactions in defin-
ing such diversemicrobial community structures. In this review, the
development of microbial communities across the GIT of calves
under the influence of maternal microbiota, age, diet, weaning, and
environmental factors (antibiotics and pre/probiotics) (Fig. 1 and
Table1), and the possible role of host–microbe interactions in the
development of the host’s gut, immunity, and health is summarised.

2. Early succession of microbes throughout the GIT of neonatal
calves and maternal influence

Birth exposes neonates to the vaginal, skin, and colostrum
microbiome of the mother [26,27], which initiates the microbial
munities throughout the GIT of neonatal calves. Figure created with BioRender.com.



Table 1
Overview of major factors that affect the initial colonization of microbial communities throughout the GIT of neonatal calves, host gut and immune system development.

Sample type Calf age at the time of
sampling1

Diet1,2 Method3 Year Reference

MATERNAL
INFLUENCE

Faeces 0, 6, 12, 24 and 48 h, 3, 7,
14, and 42 days

N.D. DNA, PCR single strand
conformation polymorphism
(PCR-SSCP) of V4-V5 region

2012 [28]

4 days–20 days
Faeces 24 h and 7 days Colostrum: 4–6 h after birth, followed by pooled cow milk DNA, qPCR, V3-V4 amplicon

sequencing (Illumina)
2018 [29]

Overall GIT 0, 1, 2, 3, 4, 5, 7, 14, and
21 days

Milk replacer (MR) throughout the study DNA, V3-V4 amplicon
sequencing (Illumina)

2018 [25]

Faeces and mouth Faeces (0.5, 6,12, 24, and
48 h); mouth (0.5 h)

Colostrum: after 0.5 h till the end of trial DNA, V3, V4, V5 amplicon
sequencing (Illumina)

2019 [30]

WEANING
Rumen and faeces 36 and 54 days Abrupt weaning: MR until day 48, reduction to 0 within

24 h; Gradual weaning: MR slowly reduced from day 36 to
day 49; all calves had ad lib. access to water, starter and
chopped straw from day 7 to day 54

DNA, V4 amplicon sequencing
(Illumina)

2016 [79]

Rumen N.D., after weaning Fresh milk: day 1 to day 7; half fresh milk and half MR until
day 13; MR and dry feed starter till the end of trial; starter,
grass hay and water were available ad lib.

DNA, qPCR 2017 [80]

Rumen and faeces 5, 7, and 9 weeks Ad libitum access to water, starter, chopped straw and oat
straw from birth till the end of trial

DNA, V4 amplicon sequencing
(Illumina)

2017 [84]

ANTIBIOTICS
Rectal swabs and

faeces
Newborn, 1, 2, 3, 4, 5, 6, 7,
8, 9, and 10 weeks

Trial 1: Milk substitute without antibiotics or antibiotic
containing fresh milk or fermented milk

Culture-based assays 1990 [143]

Trial 2: Standard milk substitute, containing growth
promoter or antibiotic containing milk

Rectal swabs N.D. Colostrum: within 24 h after birth; ad lib. milk with
penicillin G and water: until day 37

Culture-based assays 2003 [144]

Faeces N.D. Bulk milk (BM) and grain concentrates with or without
oxytetracycline: 12 weeks trial

Culture-based assays and PCR
for screening of drug
resistance genes

2004 [133]

Rectal faecal swabs 0, 2, 4, and 6 weeks N.D. Culture-based assays 2005 [145]
Faeces 9 time points during first

6 months
Pasteurized or non-pasteurized waste milk before weaning Culture-based assays 2012 [146]

Faeces 6, 7, and 12 weeks Colostrum: within 2–6 h after birth; MR without antibiotics
or with neomycin sulfate and oxytetracycline
hydrochloride antibiotics; all calves ad lib. access to starter
grain from day 1; alfalfa hay offered post-weaning

DNA, qPCR, sequencing of
target genes

2012 [150]

Faeces 2, 14, 28, and 56 days Colostrum: within 2–4 h after birth; ad lib. hay: from day 1;
pasteurized or non-pasteurized (WM and BM): from day 3;
pelleted calf starter: from day 8 until day 56

Culture-based assays 2013 [132]

Faeces 12 days MR: from day 0 with or without bacitracin methylene
disalicylate. all calves: ad lib. to concentrate from day 3
until day 56

DNA, V4-V6 amplicon
sequencing (454)

2013 [137]

Faeces 3, 5, and 6 weeks Pasteurized hospital milk throughout the study. Water and
calf starter ad lib.

DNA, V1-V2 amplicon
sequencing (454)

2015 [138]

Faeces Newborn, 1, 2, 3, 4, 5, and
6 weeks

Colostrum: within 4 h after birth; raw milk without
antibiotics or with low concentrations of ampicillin,
ceftiofur, penicillin, and oxytetracycline: from day 1 till the
end of trial; pelleted calf starter: offered from day 7 until
day 42

DNA, V4 amplicon sequencing
(Illumina)

2016 [139]

Faecal and nasal
swabs

42 days and 1 year Colostrum: after birth; MR or WM: for 6–12 weeks Culture-based assays 2017 [147]

Faecal swabs 3, 35, and 56 days Colostrum: within the 24 h after birth; MR without
antimicrobials or pasteurized WM with b-lactam residues:
until day 49. all calves ad lib. water and textured calf
starter: from day 1 to day 56

Culture-based assays and PCR
of antimicrobial resistance
genes

2017 [148]

Faeces 0, 1, 3, and 6 weeks Milk without antimicrobials or with low concentrations of
ceftiofur, penicillin, ampicillin and oxytetracycline: birth
till 6 weeks of age

DNA, and whole genome
sequencing (Illumina)

2018 [151]

Faeces, ileum, colon 35 days Colostrum: within 1 h after birth; MR without antibiotics or
with low concentrations of antibiotics. all calves ad lib.
water and starter feed from day 4 until end of trial

DNA, V3-V4 amplicon
sequencing (Illumina)

2018 [140]

Faeces N.D. Colostrum: within hours after birth; Pasteurized non-
saleable milk: until 56 days of age. Ad lib. water

DNA, whole genome
sequencing (Illumina)

2019 [141]

Rumen fluid and
tissues

15, 25, and 35 days Colostrum: within 1 h after birth; MR without antibiotics or
with low concentrations of penicillin, streptomycin,
tetracycline and ceftiofur. all calves ad lib. starter and water
from day 2 until end of trial

DNA, V3-V4 amplicon
sequencing (Illumina)

2019 [142]

Faeces N.D. Colostrum: within 1 h after birth; pasteurized non-saleable
milk until 56 days of age. ad lib. water

Culture-based assays and PCR 2020 [149]

FEED
SUPPLEMENTS

(continued on next page)
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Table 1 (continued)

Sample type Calf age at the time of
sampling1

Diet1,2 Method3 Year Reference

Probiotics
Faeces 7–35 days Trial 1: MR without or with B. pseudolongum / L. acidophilus:

from day 7 to day 42 d; starter: from day 14 to day 56. ad
lib. water and dried grass

Culture-based assays 1995 [154]

Trial 2: MR without or with B. thermophilum, E. faecium and
L. acidophilus; ad lib. MR without antibiotics and water

Rumen contents
and faeces

31–33 days MR until 6 weeks of age, afterwards a mixture of alfalfa
pellets and sweet feed with ad lib. water throughout the
trial

Culture-based assays and
genomic DNA fingerprinting

1998 [157]

Faeces and blood 1, 3, 5, and 7 weeks Non-pasteurized colostrum: after birth; acidified non-
saleable milk: day 1 - day 56. Ad lib. water and calf starter

DNA, V4 amplicon sequencing
(Illumina)

2015 [155]

Blood, and tissue
and digesta of
jejunum, ileum
and colon

Blood (1 and 12 h, 1–
7 days); Tissue and digesta
(1 week)

Colostrum replacer: first 12 h; MR: from day 1 to day 7 with
or without supplementation of Saccharomyces cerevisiae
boulardii. Ad lib. water.

Radial immunodiffusion
analysis, ELISA,
immunohistochemistry, RNA
and DNA, RT-qPCR

2020 [159]

Prebiotics
Rumen fluid and

blood
N.D. Milk and concentrate feed (with or without

cellooligosaccharides or kraft pulp supplements): from
4 weeks before weaning till 12- or 16-weeks post-weaning

DNA, qPCR 2019 [161]

Rumen fluid and
blood

6.5, 7, 7.5, and 8 months Ad lib. starter concentrate, chopped oat hay and water: for
1 week; oat hay and concentrate (3:7) with or without
astragalus root extract: afterwards

Manual assay for serum; DNA,
V3-V4 amplicon sequencing
(Illumina)

2020 [162]

Dietary
supplements

Rumen 90 and 160 days Whole milk: first 30 days; MR and starter concentrate (with
or without calcium propionate supplement): day 30 to day
90; starter feed: day 91 till the end of trial; alfalfa hay was
only provided at day 91.

DNA, V4 (bacteria) and V8
(archaea) amplicon
sequencing (Illumina)

2020 [164]

Faeces and blood Faeces (1, 3, 7, and
14 days); Blood (14 days)

Colostrum: within 1 h after birth; Raw milk: day 2 to day 4;
starter concentrate (with or without zinc supplement): day
4 till the end of trial

ELISA, DNA, V3-V4 amplicon
sequencing (Illumina)

2020 [163]

HOST IMMUNE
SYSTEM
DEVELOPMENT

Ileum and colon
tissues, plasma,
adrenal glands

Plasma samples (72 h);
other (75 h)

Colostrum: immediately after birth. three groups: a)
colostrum, b) whole milk, c) mixture of 50% colostrum and
50% whole milk: for 72 h

RNA, qRT-PCR and qPCR 2020 [113]

Jejunal mucosa 80 days Colostrum: immediately after birth; acidified transition
milk: first 3 days; MR: day 4 until 8 weeks of age with
linear reduced amount during week 9 to 10. Ad lib. water,
hay and concentrate from day 10

RNA, Illumina HiSeq
sequencing

2018 [115]

Blood, jejunum
mucosa

Blood (1, 2, 7, 14, 21, 28, 35,
42, 49, 56, 63, 70, and
77 days) Jejunum (day 80)

Colostrum: within 2 h after birth; acidified transition milk
until day 3; MR: day 4 until day 70. Ad lib. water, hay and
concentrate from day 10

RNA, whole transcriptome
sequencing

2018 [117]

Rumen, jejunum,
ileum, cecum,
and colon

3 weeks Fresh whole milk and calf supplement throughout the trial DNA, V1-V3 amplicon
sequencing (454), qPCR

2014 [14]

Mucosa of rumen,
jejunum, ileum,
cecum and colon

3 weeks and 6 months Non-pasteurized whole milk and calf supplement: first
12 weeks; alfalfa hay and oats: for the next 4 months

DNA, fingerprinting, clone
libraries, qPCR

2012 [119]

HOST GUT
DEVELOPMENT

Rumen, jejunum
and ileum
tissues

Newborn, 7, 21, and
42 days

Colostrum: after 30 min. of birth; whole milk: until day 7;
ad lib. starter: from day 7 until day 42

DNA and RNA; Illumina RNA-
sequencing and qRT-PCR

2014 [122]

Rumen tissue and
content

Newborn, 1, 3, and 6 weeks Colostrum: within the first 3 days; whole milk: day 4 till
the end of trial. Ad lib. starter from second week of life

DNA, whole genome
sequencing (Illumina), qPCR,
RNA, transcriptome (host)

2019 [9]

1 N.D. = Not defined.
2 Ad lib. = ad libitum.
3 Hypervariable regions (V1, V2, V3, V4, V5 V6 and V8) of prokaryotic 16S rRNA gene.
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colonisation of the neonatal GIT. The neonatal microbiome must
undergo several modifications prior to weaning (6–12 weeks),
and it may take a year for the establishment of a fully functional
and stable GIT microbial community [7]. To date, only a few
culture-independent studies have examined the effect of maternal
sources on the early establishment of microbes in neonatal calves’
GIT [25,28–30]. At the genus level, the rectal microbiota of the
new-born calves was more similar to the dam’s oral microbiota
(39%) as compared to the microbiota on the dam’s vagina (24%)
992
or faeces (15%), indicating an in utero transfer route for the inocu-
lation of neonatal gut microbiota [29]. However, the faecal micro-
biota during the first 48 h of calf life showed a close resemblance to
the dam’s vaginal microbiota than other maternal sources (faeces
or colostrum), indicating the possible transfer of microbes to the
neonates via the birth canal [30]. In contrast, Yeoman et al.
reported high similarity between the dam’s udder skin and calf’s
GIT microbiota during the first three weeks of life [25]. The incon-
sistencies among these studies are probably due to differences in
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sampling sites (calf faeces vs. dam’s mouth, vagina, faeces, udder
skin, or colostrum), and sampling time. In addition to the influence
of maternal interaction/microbiome on the early succession of
microbes throughout the neonatal calves’ GIT, the facility, farm
or location where the calves are born and raised also reported to
have a significant impact on the gut microbiota of Holstein dairy
cows [31] as well as beef calves [32,33]. Thus, the management
practices must be carefully considered because of their unidenti-
fied role in shaping gut microbial community structures besides
several other factors including genetics, breed, age, diet and study
method etc.
3. Effect of early feeding regimen and age on the initial
establishment and development of microbial communities in
the GIT of neonatal calves

Young ruminants are pseudo-monogastric at birth with an
underdeveloped reticulo-rumen, relying solely on a milk-based
diet [2]. In pre-weaned calves, most of the liquid feed flows
straight into the abomasum without entering the rumen; thus,
the small and large intestines serve as their major digestion sites.
The forestomach system in neonatal calves changes tremendously
during the first year of life, with a shift in the activity of intestinal
enzymes (lactase and maltase), which facilitates the development
of the salivary apparatus, other digestive compartments, and rumi-
nation behaviour in calves [34–36]. In addition, rumen volume
increases, and rumen papillary shape and size proliferate, provid-
ing better niche environments for the microbial colonisation of
the rumen and its subsequent functioning [37]. Concomitant with
these morphophysiological adaptations, the changes in microbial
composition of pre-weaned calves’ GIT are driven by the rearing
environment, age, and diet [17,33,36,38,39]. The diet of pre-
weaned calves is changed gradually from milk or milk replacer
(MR)-based diets to solid feed within the first few weeks of their
lives [40]. These dietary shifts seem to have prominent effects on
the neonatal calf microbiome. Many studies have explored the
effect of liquid/solid diets, including fresh or heated colostrum
[41,42], whole milk, waste milk (WM), pasteurised waste milk
(pWM) or MR [43–45], starter concentrate [23,46,47] and roughage
[48–51], on the initial establishment of bacterial communities in
the GIT of neonatal calves.
3.1. Colostrum and other liquid feeds

New-born calves are immunodeficient and depend solely on
colostrum-associated immunoglobulins [52]. Feeding high-
quality colostrum is highly recommended as it can inhibit the
growth of pathogens, stimulate the colonisation of the small
intestines with beneficial microorganisms [41], increase body
weight gain, improve the development and function of the GIT,
reduce the risk of diarrhoea [53] and thereby, decrease the mortal-
ity rate in calves [54]. However, the lack of proper hygiene prac-
tises increases the risk of colostrum contamination with
microbes [55]; therefore, adequate heating of colostrum is recom-
mended. Feeding heat-treated colostrum within the first 12 h of
life inhibited pathogenic Escherichia coli and Shigella, and increased
the growth of Bifidobacterium [41,42]. The increase in Bifidobac-
terium was also observed in 51-hour-old dairy calves using a sim-
ilar treatment [56].

After colostrum feeding, the nutrient composition of the subse-
quent feeding again defines the microbiome composition. In gen-
eral, the rumen bacterial community of one- to three-day-old
colostrum-fed calves was dominated by Proteobacteria [7,57],
but as the calves aged and started to consume MR and starter
concentrate-based diet, Proteobacteria was slowly replaced by
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Bacteroidetes in the rumen [7,12,57]. Similar to the rumen, Pro-
teobacteria dominated the faecal microbiota of 24–48-hour-old
calves, showing a depletion and a subsequent increase in Firmi-
cutes within the first seven days of a calf’s life without any diet
change [29,30]. Similarly, Firmicutes was the dominant phylum
in the faecal microbiota of one- to seven-week-old calves [13]. Yeo-
man et al. also reported higher abundance of Firmicutes in the
colon and faeces, while Bacteroidetes was more abundant in the
rumen, reticulum, omasum, and abomasum within the first three
weeks of a calf’s life [25].

Shifting the diet of pre-weaned calves (7–28 days) from colos-
trum to whole milk increased the abundance of typical milk-
utilising bacteria (Lactobacillus, Parabacteroides, and Bacteroides)
in their rumen [47]. Feeding milk to two-week-old calves also
increased the abundance of Ruminococcus flavefaciens, a fibrolytic
bacterium in the rumen [46]. Similarly, a recent study by Mal-
muthuge et al. reported the colonisation of a whole milk-fed
one-week-old calf’s rumen with active R. flavefaciens, whose den-
sity increased with increasing age, suggesting the possible use of
milk as a substrate for R. flavefaciens [9]. Feeding a milk-based
diet also had prominent effects on the lower gut microbiota of
pre-weaned calves as indicated by the high levels of the Bac-
teroides–Prevotella group and Faecalibacterium in the faecal sam-
ples of MR-fed one-week-old calves [58]. Similar levels were also
reported in the colon samples of three-week-old whole milk-fed
calves [14], indicating that faecal samples represent the micro-
biome of the large intestine in an adequate manner [14]. Similarly,
Alipour et al. also observed a high dominance of Faecalibacterium
and Bacteroides in the faecal samples of seven-day-old milk-fed
calves [29].

The cost benefits of WM over whole milk and MR [59,60] and
the increased use of on-farm pasteurisers have facilitated the use
of waste milk in calf feeding programmes. Feeding WM modified
the rumen bacterial community composition by decreasing Prevo-
tella 7 and increasing Butyrivibrio 2, the Rikenellaceae RC9 gut
group, and Prevotellaceae UCG-003 in two-month-old calves [45].
The opposite was true when WM feeding was prolonged during
the first six months, and higher abundance of Prevotella 7 and Suc-
cinvibrionaceae UCG-001 and lower abundance of Prevotellaceae
UCG-003, Rikenellaceae RC9 gut group, Selenomonas 1, and others
were observed [45]. Pasteurisation inactivates the vegetative bac-
terial cells, reduces the risk of disease transmission and mortality
and improves the growth rate of calves [61]. A relatively high
abundance of Prevotella and low abundance of Streptococcus and
Histophilus were observed in the nasal microbiota of pWM-fed
42-day-old calves [44]. In addition, feeding pWM increased faecal
bacterial diversity from two weeks to six months of age; a higher
prevalence of faecal Bacteroidetes and lower prevalence of Firmi-
cutes, and no Salmonella were detected in young pWM-fed calves
[43]. An opposite, but non-significant, ratio of Firmicutes and Bac-
teroidetes was also found in pWM-fed calves as compared to that
in MR-fed calves [44]. The effects of MR-compositions on faecal
microbial communities were studied recently, and it was found
that the faecal microbiota of seven-day-old calves fed with MR
enriched with conjugatedmilk oligosaccharides had higher relative
abundance of Faecalibacterium prausnitzii and Bifidobacterium spe-
cies than did those consuming MR with high free milk oligosaccha-
rides [62]. F. prausnitzii is a beneficial bacterium for neonatal calves
due to its positive correlation with body weight gain and reduced
diarrhoea [13]. Furthermore, Yak calves reared in isolation on a
standard MR-, starter concentrate-, and hay-based diet were found
to have better organ development, growth rate, immune function,
and higher abundance of non-fibrous carbohydrate-utilising bacte-
rial genera [63] than the maternally nursed and grazed calves that
had a higher abundance of fibrous carbohydrate-utilising bacterial
genera [63,64]. Thus, the early feeding regimen shapes the micro-
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biome structure in pre-weaned calves by providing different sub-
strates for growth and establishment of various ecological niches.

In addition, drinking water offered to the calves immediately
after birth seems to have a prominent impact on gut microbial
composition, as indicated by the increased abundances of Faecal-
ibacterium and Bacteroides at two weeks and Faecalibacterium and
Bifidobacterium in the six-week-old calves [65]. In addition, calves
consuming drinking water from birth had higher body weight,
digestibility of fibre, and feed efficiency than the calves that started
to receive drinking water from 17 days of age [66].

3.2. Consumption of solid feed reshapes the gut microbiota in pre-
weaned calves

The solid feed intake begins around two to three weeks of life,
which initiates the critical transition process leading to the estab-
lishment of a fully functional rumen. It is usually characterised by a
constant or gradual supply of concentrate and ad-libitum hay in
addition to milk feeding. Thus, the effects of solid feed intake
should be considered as complex responses to enhanced starch-
rich and moderate fibrous feed ingredients together. Generally,
an increased abundance of amylolytic and fibrolytic bacteria, such
as Succinovibrionaceae, Fibrobacteraceae, and Prevotellaceae, in the
rumen microbiome has been described in almost all studies of this
feeding period [7,46,48–50,57,67–70]. Prevotellaceae is the pre-
dominant family in the rumen fluid and has a broad genetic capac-
ity to use a variety of soluble sugars, starch, protein, and peptides
[71–73]. The enzymes involved include carbohydrate-degrading
enzymes (CAZYmes), such as glycoside hydrolases (GH2, GH3,
GH42, and GH92), which are detectable in pre-ruminant rumen
samples [12]. The activity of amylase and xylanase has already
been shown in two-day-old calves, even in the absence of complex
dietary carbohydrates [74]. Thus, the presence of glycoside hydro-
lase activity together with the production of short-chain fatty acids
(SCFA) reveals that the metabolically active rumen microbiome is
established soon after birth in neonatal calves, even in the absence
of solid feed. SCFA are important for rumen tissue metabolism,
rumen papillae, and epithelium development [9,40] and they are
absorbed into the bloodstream through the papillae and provide
energy for calf metabolism and growth [40]. Depending on the
solid feed source, changes in the pH and SCFA amount and compo-
sition are observed. Forage feeding improves the ruminal environ-
ment by increasing rumen liquid pH [40,48], reducing the chances
of subacute ruminal acidosis, and modifying the structure of the
rumen microbiome, leading to the establishment of a fully func-
tional rumen during weaning [49,75]. Furthermore, the particle
size as well as the physical form of diet seems to influence the mor-
phophysiological and microbial development of the rumen [76,77].
Feeding a ground diet to calves reduces the growth of their rumen
papillae, lowers the pH of their rumen liquid, reduces the number
of cellulose-degrading bacteria, and increases the number of amy-
lose degraders [76]. This finding strongly indicates the potential
role of effective fibre feeding for the modification of the rumen
environment as well as the associated microbial community
composition.

The establishment of an archaeal community in the GIT of calf is
important for the required hydrogen balance during bacterial fer-
mentation. The dietary modifications also seemed to have obvious
effects, and a higher abundance of Methanosphaera and lower
abundance of Methanobrevibacter were observed in the rumen of
pre-weaned calves fed a milk plus starter concentrate-based diet
as compared to the milk-fed calves [47]. Starter concentrate feed-
ing also increased the dominance of Methanomicrobiales mobile in
the abomasum, caecum, and faeces and Methanobrevibacter in the
caecum and faeces of 20-day-old calves, as well as decreasing the
abundance of Methanococcales votae [46]. Additionally, a decrease
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in the rumen bacterial diversity, and an increase in the rumen
archaeal diversity as well as fungal richness were observed with
silage supplementation [51].
4. Effect of weaning age and management on microbial
colonisation of the GIT in calves

Among the most important factors influencing further animal
development in general, and the forestomach system in particular,
are the date (age) and strategy of weaning. The abrupt weaning of
calves from a milk-based diet to the consumption of solid feed
decreases their solid feed intake and average daily gain [40,78].
However, no effect of the weaning strategy (abrupt vs. gradual)
was observed on the establishment of rumen and faecal microbial
community composition [79], suggesting that the progressive
development of the microbial community into a mature state
occurs with age [12]. The date of weaning is an important factor
in the development of the rumen. Weaning calves, at eight weeks
of age, increased their average daily gain [80], and improved car-
cass quality, feedlot growth, and performance [81,82]. Rumen
enzyme activity was also improved [80], probably due to a greater
concentrate intake [83], indicating that the consumption of solid
feed triggers the development of the adult-like rumen bacterial
community. However, calves weaned six weeks after birth
abruptly shifted the b-diversity of their rumen and faecal micro-
biomes compared to the calves weaned eight weeks after birth
[84].This sudden change in the microbial community structure of
early weaned calves reflects pre-mature rumen development, par-
alleled by their reduced growth rate [85], whereas gradual rumen
development, [84] improved feed intake, and growth rates were
observed when calves were weaned at eight weeks of age [85].
Thus, a balanced weaning management and an appropriate wean-
ing age are important to minimise the side effects.

Rumen fermentation activity begins with the addition of solid
feed in the diet and concomitantly alters the microbial composi-
tion of a calf’s GIT. An increase in the abundance of Firmicutes
and Proteobacteria and a decrease in the abundance of Bacteroide-
tes were observed in the rumen microbial community from pre- to
post-weaned state [79]. Bacteroidetes dominated the rumen
microbiota of 42-day-old [12] and two-month-old pre-weaned
calves [7]. A similar weaning-related decrease in the abundance
of Bacteroidetes and a subsequent increase in Firmicutes were
observed, regardless of the calf’s age at weaning [84]. This suggests
that the rumen of pre-weaned calves contains the same dominant
phyla, including Bacteroidetes, Firmicutes, and Proteobacteria, as
found in the rumen of mature post-weaned calves, although the
abundance of these phyla varies depending on the developmental
stage [86]. At the genus level, Prevotella dominated the rumen
microbial community of both pre- and post-weaned calves and
showed no changes in the abundance regardless of weaning age
or strategy [79,84]. Similarly, high dominance of Prevotella in the
mature rumen of two-month- to two-year-old cattle has previ-
ously been reported [7,12] Nevertheless, the genus level composi-
tion of MR-fed pre-weaned calves’ rumen showed a higher relative
abundance of Bacteroides and Succinivibrio than did that of post-
weaned calves fed a high-starch diet [79]. In contrast to this deple-
tion, the abundance of Sharpea increased by weaning, making it the
second dominant genus in the rumen of post-weaned calves [79].
The increase in starter and forage intake from pre- to post-
weaned period [79,87] was positively correlated with the calf’s
body weight and the abundance of Sharpea [79]. However, the
abundances of Shuttleworthia and Dialister increased drastically in
early weaned calves across weaning, while no differences were
observed in late-weaned calves before and after weaning [84].
Dialister spp. are capable of degrading starch [88], and the
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increased abundance of Dialister in early weaned calves was prob-
ably due to increased consumption of starter concentrate across
weaning [84]. In addition, early weaned calves had higher number
of Fibrobacter succinogenes and Ruminococcus albus, with a lower
number of Butyrivibrio fibrisolvens, than did late-weaned calves
[80]. Ruminococcus abundance was positively correlated with solid
feed intake and body weight gain in calves [79], likely reflecting
the cellulolytic capabilities of Ruminococcus species, which are
found in the mature rumen [7,89]. Therefore, it can be speculated
that as soon as the calf started to consume the solid feed, the bac-
terial community resembling the mature rumen is established.

Contrary to the bacterial community of the rumen, the faecal
bacterial community of pre-weaned calves showed a high domi-
nance of Firmicutes being replaced by Bacteroidetes in post-
weaned calves [79]. At the genus level, the abundance of faecal
Bacteroides decreased due to weaning, but it remained the predom-
inant genus in both the pre- and post-weaned state [79]. Further-
more, an increase in the abundance of Prevotella was observed due
to weaning [79]. However, the abundances of the major faecal bac-
teria remained unaffected by weaning [84]. Nevertheless, an
increased abundance of Ruminococcus and a decreased abundance
of Blautia were observed in post-weaned calf faeces [79,84], likely
reflecting a shift from intestinal to ruminal fermentation in post-
weaned calves.

Rumen carbohydrate metabolism showed an age-dependent
increase between 5 and 9 weeks, regardless of weaning. Con-
versely, a decline in faecal carbohydrate metabolism was observed
from the pre- to post-weaned state [84]. Additionally, a decrease in
rumen bacterial diversity and evenness and an increase in faecal
bacterial diversity, richness, and evenness were observed in post-
weaned calves [79]. This was probably due to the higher solid feed
intake in the post-weaning period, resulting in a greater amount of
substrates reaching the lower intestine [79]. Thus, the higher sub-
strate availability and lower pH variability of the hindgut favoured
higher bacterial diversity in the lower digestive tract of ruminants.
5. Distinct bacterial communities are associated with the
mucosal epithelium and luminal digesta of the GIT of calves

The bacterial composition in the GIT of animals and humans
varies among the gut regions, with considerable differences
between the microbes associated with the epithelial mucosa and
those occupying the luminal digesta. This is also true for calves
[14,22–25] and adult ruminants [90]. The mucosa-associated
microbial community in calves is found to have higher individual
variation, diversity, richness, and a lower microbial load than the
microbiota in digesta samples [17,22–24,90]. These differences
are caused by variations in host physiological state and immunity,
interactions between the symbiotic bacteria and host epithelium,
pH, oxygen gradient, nutrient profile, and dietary transition rates
[91,92]. Each of these factors defines the microbial colonisation
potential of each site, thus resulting in site- and region-specific
microbial community establishment.

Digesta-associated gut communities within the first 21 days of
a calf’s life, except for the colon, showed a high dominance of Fir-
micutes [14,25], whereas a higher abundance of Bacteroidetes was
observed in the mucosa-associated communities, except jejunal
tissues, suggesting that the early life mucosal environment favours
the colonisation by Bacteroidetes than Firmicutes [14]. Proteobac-
teria were also more abundant in the mucosa than the digesta
samples [14,25], suggesting that the mucosa-associated Proteobac-
teria spp. might play an essential role in scavenging blood oxygen
and ruminal ammonia oxidation [14]. This would promote an
anaerobic environment for the colonisation and fermentative
activities of rumen microorganisms [14]. Such compositional
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changes in the mucosa or digesta-associated communities were
more prominent at the genus level, where Bacteroides dominated
the digesta-associated communities in the reticulum, rumen, oma-
sum, abomasum, caecum, and colon [14,25]. In contrast, the
mucosa-associated bacterial communities of the rumen, ileum,
caecum, and colon were dominated by Prevotella [14]. Moreover,
the abundance of Escherichia exceeded Bacteroides in the mucosal
samples of the omasum, abomasum, ileum, colon, and faeces
[25]. Similar to this study, the hindgut microbiota of one-week-
old calves showed a high dominance of mucosa-associated
Escherichia-Shigella groups, indicating greater disease susceptibility
in young calves [24]. The digesta-associated community of the
duodenum was dominated by Lactobacillus, while Pseudomonas
dominated in the mucosa [25]. Furthermore, the mucosa-
associated communities of the jejunum showed high abundances
of Prevotella, Pseudomonas, Acinetobacter, Rikenellaceae RC9 group,
and Delftia [25]. The high dominance of aerobic/facultative anaer-
obic bacteria (Pseudomonas, Acinetobacter, Delftia, and Escherichia)
in several mucosal samples suggests that these bacteria prefer gas-
trointestinal epithelium for growth due to higher availability of
oxygen concentration [93]. In contrast, the jejunal digesta-
associated communities were dominated by Sharpea, Butyrivibrio,
Ruminococcus, Lactobacillus [14], Streptococcus, and Escherichia
[25]. Sharpea spp. are capable of fermenting a vast variety of sugars
[94]. Their high dominance in jejunal digesta of three-week-old
calves is indicative of their important role in the fermentation of
milk during early calf life [14].

The mucosa-associated bacterial community composition was
also affected by calves’ age and was significantly correlated with
SCFA concentrations, indicating that the host physiology as well
as diet play a role in shaping mucosal microbial communities
[24]. The abundance of mucosa-associated Escherichia-Shigella
was negatively correlated with acetate concentration and the inhi-
bition of E. coli growth was observed due to high concentration of
acetate [95]. SCFA can also influence the turnover of intestinal
epithelial cells [96], indicating a possible interaction between
mucosa-associated microbial communities and digesta-associated
microbial metabolites [24].
6. Influence of host genetics on gut microbial colonisation and
systemic immunity in neonatal calves

In recent years, many studies have evaluated the influence of
host genetics on gut microbiota in cattle [97–101] and the possible
association of heritable gut microbes with nutrition and gut health
in calves [102], methane emissions and feed efficiency in beef and
dairy cattle [98,101]. Majority of these studies used animals
belonging to different populations with variable genetic distance,
age and diet, thus, masking the real influence of host genetics on
gut microbiota. However, a recent study by Fan and colleagues
reported genetic influences on gut microbiota based on 228 calves
with linearly varying breed (Angus to Brahman), raised under con-
trolled diet and environmental conditions [102]. The three-month-
old pre-weaned calves with higher Brahman proportion harboured
more butyrate-producing and fibre-digesting bacteria, carbohy-
drate metabolism genes, less opportunistic pathogenic bacteria
and mucin-degraders, lower level of primary antibody (plasma
IgG1) and less weight gain than higher Angus proportion calves
that harboured bacterial taxa rapidly involved in amino acids and
lipids metabolism [102]. This indicates that the host genetics not
only shapes the early life gut microbiota composition but can also
have strong impact on systemic immunity, which is further associ-
ated with health and growth of an animal. However, the studies
addressing the role of host genetic influence on neonatal calves’
microbiota are still very scare and needed to be explore further.



Fig. 2. Mucosa-associated lymphoid tissues (MALTs) dependent activation of immune responses in mucosal surface of calves. A) Microfold (M) cell transport microbial
antigens from the luminal surface to the underlying MALT cells, where they stimulate specific T- and B- lymphocytes, resulting in the production of dIgA by B-cells, which are
translocated as sIgA to the apical epithelial surface. PAMPs can alter the expression of TLRs and activate host immunity. B) Upregulation of HTR4 and HTR2B genes expression
by mucosa-associated bacteria. These gene codes for the serotonin receptors that regulate GLP-2 secretion by enteroendocrine L cells via interaction of 5-HT with serotonin
receptors. C) Breakdown of tight junctions, transport of pathogens and activation of inflammatory responses. Abbreviations: PAMPs, pathogen-associated molecular patterns;
dIgA, dimeric immunoglobulin A; sIgA, secretory immunoglobulin A; pIgR, polymeric Ig receptor; TLRs, toll-like receptors; EC cell, enterochromaffin cell; 5-HT, 5-
hydroxytryptamine/serotonin; HTR4, 5-hydroxytryptamine receptor 4; HTR2B, 5-hydroxytryptamine receptor 2B; GLP-2, glucagon-like peptide-2. Figure created with
BioRender.com.
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7. Gut microbiota and the host immune system development

Gut microbial communities are essential for the development of
the mucosal epithelium and immune system of the host [18]. The
mucosal epithelial cells line the upper respiratory tract, GIT, and
uterus and are the primary responders to the microorganisms
[103]. The mucosal immune system contains various physical
and chemical barriers as well as pattern recognition receptors
(PRRs), which enable the mucosal epithelium to coexist with its
resident symbiotic microorganisms and provides protection
against invading pathogens [104–106]. Notably, these signalling
cascades are essential for maintaining the intestinal homoeostasis,
integrity, antimicrobial peptide expression, and modulation of the
mucosal barrier functions and immune responses [91,107,108].
The immune response at the mucosal surface is generally initiated
by mucosa-associated lymphoid tissues (MALTs) [38,103]. In rumi-
nants, the initiation of MALT development occurs in uterowhen the
microbial communities are not yet established [109]. These in utero
MALTs are capable of initiating specific immune responses through
secretory IgA production [110]. However, IgA+ and IgG+ cells
appear in Peyer’s patches (PPs) only after birth due to the absence
of in utero infections [109]. The complete development of germinal
centres of PPs requires exposure to the gut microbiome [18]. In the
absence of gut microbial exposure, the ileal PPs of new-born lambs
showed pre-mature lymphoid follicle involution; however, when
the gut microbiome was restored at four weeks, the involution
was reversed [111]. This finding demonstrates that the gut micro-
biome provides signals for the production of a vast variety of pre-
immune B cells (Fig. 2A). In addition to the gut microbiome, diet
(colostrum, intensive feeding of milk or MR), and environment
(toxins) were also found to have a strong influence on the mucosal
immune system development in neonatal calves [112]. Extended
colostrum feeding during early life resulted in higher abundances
of active mucosa-associated Lactobacillus and E. coli and upregu-
lated the expressions of serotonin and adrenergic receptors genes
in the calf’s intestines (Fig. 2B) [113]. These receptors are involved
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in the regulation of glucagon-like peptide-2 secretion by enteroen-
docrine L cells, which decreases the apoptosis of epithelial cells,
reduces the motility and permeability of the gut, and increases
mesenteric blood flow, intestinal growth, and nutrient absorption
[114]. A positive correlation was observed between the abun-
dances of Lactobacillus and E. coli and serotonin receptor gene
expression in the colon, suggesting that the early feeding regimen
may affect the host–microbe interactions, and thus play a critical
role in host immune system development in new-born calves
[113]. Likewise, the intensive feeding of milk or MR during the
pre-weaning period stimulated the expression of long noncoding
RNAs with a potential role in the synthesis of tight junction pro-
teins in the jejunal mucosa of calves [115]. The tight junctions
are protective mucosal barriers whose breakdown results in leaky
gut syndrome (Fig. 2C) [103,116]. In addition, it was shown that an
ample supply of nutrients is essential for maturation of the intesti-
nal immune system [117], suggesting that the pre-weaning period
is critical for the development and maturation of the mucosal
immune system in calves [39].

The host identifies commensal microorganisms using PRRs such
as toll-like receptors (TLRs) [107]. Mucosa-attached bacteria can
also alter the expression of TLRs [118] and cause PRR-dependent
activation of the host immunity [14]. In contrast, pathogen-
dependent activation of TLR signalling generally activates inflam-
matory responses [107]. Furthermore, an age-dependent decrease
in mucosal TLR gene expression [119] and an increase in T lympho-
cytes such as CD3+, CD4+, and CD8+ cells in the mucosa of the jeju-
num and ileum of calves were observed [120]. Such changes may
cause a decrease in the innate immunity and an increase in the
adaptive immunity with age. This age-dependent downregulation
of the innate immunity protects the host from harmful inflamma-
tory responses [121]. It has been suggested that TLRs act as a pri-
mary mechanism of innate immunity in neonatal calves. They are
substituted by antimicrobial-peptide-dependent innate immune
mechanisms over time and protect the animal from unnecessary
inflammatory responses [119]. Additionally, a potential link
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between age-dependent alteration in mucosal immune mecha-
nisms and the gut microbial communities was shown by the neg-
ative correlation between TLRs (TLR2, TLR6, and TLR9) in the
mucosa of the rumen, jejunum, and caecum and the mucosa-
attached bacterial population [119]. Moreover, the host–microbe
interactions play a crucial role in the regulation of GIT develop-
ment, as demonstrated by bovine transcriptome analyses [122].

A positive correlation was observed between the gene copy
numbers of Lactobacillus or Bifidobacterium spp. and microRNAs
(miRNA) expression levels. These miRNAs act as promoters of GIT
development and include miR-15/16 (immune cells development),
miR-29 (maturation of dendritic cells), and miR-196 (lymphoid tis-
sue development) [122]. Likewise, the microbial-driven transcrip-
tional regulation of developing rumen in calves via miRNAs was
suggested recently [9]. They identified three miRNA-mRNA pairs
involved in the development of rumen ‘‘miR-25 and fatty acid-
binding protein 7, miR-29a and platelet-derived growth factor a
polypeptide, and miR-30 and integrin-linked kinase” [9].
8. Role of the microbiota in gut health and treatment strategies

The previous sections have summarised the current knowledge
about the essential co-evolution of GIT in ruminants and the
colonising microbiome. Disturbances result in an imbalanced sym-
biosis, leading to gut microbial dysbiosis which can induce several
enteric disorders [123]. The pre-weaning period is critical due to
the high susceptibility of neonatal calves to a vast variety of bacte-
rial and viral infections, which cause diarrhoea (the major cause of
death in neonatal calves) [124]. A decreased incidence of diarrhoea
was correlated with a higher abundance of Faecalibacterium in fae-
cal samples of one-week-old calves and in the large intestine of
three-week-old calves [13,14,58]. F. prausnitzii promotes anti-
inflammatory responses, maintains intestinal homoeostasis [125]
and produces butyrate in the large intestine [13]. A high abun-
dance of this species during the pre-weaning period may provide
health benefits to the neonates by decreasing their susceptibility
to enteric infections. More recently, the idea of a microbiota trans-
plantation to stabilise the gut microbiome was applied in rumi-
nants by transferring the rumen microbiome of adult animals
orally to young calves. Although the overall microbiome structure
was not affected, the incidence of calf diarrhoea decreased [126].
8.1. Early life antimicrobial treatments and emergence of resistant
bacterial strains in the calf gut

The dairy industry relies on the use of antimicrobials to cure
various diseases, resulting in the production of milk with residual
concentrations of antimicrobials [127,128]. In addition to the pres-
ence of antimicrobial residues in the milk, it may contain a high
number of pathogens and somatic cells [129]. Thus, the milk from
antimicrobial-treated cows is generally used by the dairy industry
as a feed for dairy calves [59,60]. Antimicrobials are also fed
directly to the calves as medicated MR to increase their growth
rate and prevent diseases [123,130]. Nevertheless, this direct or
indirect exposure of neonatal calves to antimicrobials modifies
their intestinal microbial community structure, resulting in the
emergence of resistant bacterial strains as well as the transfer of
resistance genes to other bacteria [131,132]. There is increasing
evidence of the presence of highly resistant enteric microbes in
young animals compared to adults [133–135], probably due to
high faecal–oral transmissions and higher antimicrobial usage in
young animals [136]. Several studies have reported the effects of
antimicrobial usage on the gut microbial composition [137–142],
the development of antimicrobial-resistant bacterial strains
[132,143–149], genes involved in antimicrobial resistance
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[133,148,150], and antimicrobial-dependent changes in the func-
tional profile of gut microbiota [151].

Feeding calves with WM containing residual antibiotics (oxyte-
tracycline, ceftiofur, ampicillin, and penicillin) resulted in lower
abundances of faecal Clostridium and Streptococcus in pre-weaned
calves [139]. Similarly, when calves were fed with medicated MR
containing tetracycline, ceftiofur, penicillin, and streptomycin,
reduced abundance of E. coli in the ileum [140] and Prevotella in
the rumen [142] was observed. However, feeding calves with MR
supplemented with only ceftiofur reduced the abundance of Coma-
monas in the ileum [140]. Decreased abundance of beneficial bac-
teria (Faecalibacterium, Roseburia, Prevotella, and Eubacterium) and
increased abundance of pathogenic bacteria (Shigella, Escherichia,
and Enterococcus) in calf faeces were observed using the antibiotic
bacitracin methylene disalicylate antibiotics [137]. Enrofloxacin
treatment decreased the abundance of Bacteroides and increased
the abundance of Blautia, Desulfovibrio, and Coprococcus in calf fae-
ces [141]. As the concentration of residual antibiotics in the WM
increases, a higher number of antibiotic-resistant bacterial strains
emerge in the gut [144]. A higher prevalence of antimicrobial-
resistant faecal E. coli phenotypes and the increased detection of
b-lactamase resistance genes in these populations was observed
in WM-fed calves than in bulk milk or MR-fed calves
[132,147,148]. Feeding drug residues containing milk to the pre-
weaned calves also resulted in lower abundance of genes involved
in regulation and cell signalling, stress response and nitrogen
metabolism [151]. In addition, the direct treatment of calves with
antibiotics may also result in the emergence of antibiotic-resistant
bacterial strains [149]. However, other studies have reported that
the occurrence of multi-drug resistant bacterial strains is not
dependent on recent antimicrobial usage but rather on other envi-
ronmental variables, age, and diet [145–147]. A decreased preva-
lence of multi-drug resistant faecal E. coli with increasing age of
calves indicated that the underdeveloped digestive system of
neonatal calves serves as an excellent niche for the growth of resis-
tant microbes due to limited competition for resources [146].
However, Thames et al. reported an age-dependent increase in
tetracycline resistance genes in calf faeces [150]. These studies
suggest that the direct and indirect exposure of the gut of neonatal
calves to the antimicrobials modifies the composition and func-
tional profile of the microbiome and the development of antibiotic
resistance is mainly influenced by host-specific factors.

8.2. Improvement of calf gut health by feed supplements

The use of antimicrobials to support calves’ health and to pre-
vent or treat certain diseases can be avoided by using direct-fed
microbes, prebiotics, and probiotics. This has been widely practised
in order to improve gut health and productivity of livestock
[152,153]. Supplementation of new-born calves with Lactobacillus
and Bifidobacterium within the first seven days of life decreased
diarrhoea and increased feed conversion ratio and weight gain
[154]. Similarly, supplementation with F. prausnitzii in the first
week of calf life decreased the calf death rate and diarrhoea
[155]. Administration of Lactobacillus spp. to young calves also
increased their serum IgG levels, suggesting a potential role of
the host–microbe interactions in modulating calf health [156].
Apart from influencing host health, microbial manipulations also
affect the gut microbial community structure. Feeding pre-
weaned calves with probiotic strains decreased their intestinal
colonisation with pathogenic E. coli [157]. Similarly, a decrease in
faecal E. coli load was observed using direct-fed microbes [158].
Supplementation of the diet of neonatal calves with Saccharomyces
cerevisiae boulardii immediately after birth increased the abun-
dance of beneficial bacteria (F. prausnitzii and Lactobacillus) in the
intestinal microbiota, as well as increasing the concentrations of



Fig. 3. Combination of big data repositories with machine learning algorithms to create prediction tools for sustainable animal productions strategies.
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endogenous secretory IgA, thus enhancing immunity and intestinal
homoeostasis of calf GIT [159]. Feeding heated colostrum soon
after birth benefited young calves with increased colonisation with
Bifidobacterium and decreased colonisation with E. coli in the small
intestine, suggesting the potential role of colostrum as a natural
prebiotic associated with reduced risk of diarrhoea [41,53]. Prebi-
otics supplementation immediately after birth was found to have
more prominent effects than supplementation at a later stage.
Higher abundances of Bifidobacterium and Lactobacillus were
detected in the colon of two-week-old than in four-week-old
calves fed with galactooligosaccharides [160]. Supplementation
of grazing calf diet with cellooligosaccharides decreased the pro-
portions of archaea at weaning and Fibrobacter within the first four
weeks post-weaning. In contrast, an increase in Fibrobacter was
detected using kraft pulp as prebiotics at four weeks post-
weaning [161]. Addition of astragalus root extract in the diet of
early weaned calves at a dose of 2% dry matter intake, increased
the body weight, average daily gain, serum concentrations of
interleukin-2 (IL-2), IgG, superoxide dismutase, and the abundance
of fibrolytic bacteria [162]. Increasing the dose of astragalus root
extract to 5% and 8% dry matter intake fortified these effects
[162]. Supplementation of calf diet with zinc oxide (104 mg/d)
effectively reduced the incidence of diarrhoea from days 1–3,
increased the abundance of beneficial Faecalibacterium and Lacto-
bacillus within the first seven days of life and improved the immu-
nity by increasing the concentrations of serum immunoglobulins
(IgM and IgG) [163]. However, when zinc methionine (457 mg/d)
was supplemented, a prolonged reduction in diarrhoea was
observed from days 1–14, and increased abundances of Faecalibac-
terium and Collinsella (day 7), and Ruminococcus (2 weeks) were
detected [163]. These results suggest the essential role of zinc in
the treatment of neonatal calf diarrhoea. In addition, calcium pro-
pionate supplementation increased the body weight and decreased
the relative abundance of Bacteroidetes in both pre- and post-
weaning groups, but increased Proteobacteria (Succinivibrionaceae)
and Methanobrevibacter only the post-weaning group [164]. These
studies suggest that microbial manipulations are easier to perform
during early life, and these effects may persist longer when manip-
ulations are performed in early life of animal.
9. Summary and outlook

Understanding the pattern of microbial succession throughout
the GIT of pre-weaned calves is essential as it influences the devel-
opment and maturation of the host gut, immune system, and
health. The microbial colonisation of the GIT of neonatal calves
begins during the birthing process or even in utero, but the micro-
bial community structure changes rapidly within the first few
weeks of life and is strongly affected by the genetic background,
rearing environment, early life antibiotic treatments, age and feed-
ing conditions. The majority of the studies reported the early life
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microbial succession patterns using DNA-based methods without
any information about the viability, genetic potential (metage-
nomics), or even gene or protein expression (metatranscriptomics
and metaproteomics) of the detected microbial communities. Thus,
there is still a lot to understand the underlying mechanisms of the
possible interactions between the gut microbial communities and
their mammalian host. In addition, the results obtained by various
DNA-based studies are limited by different sample types and loca-
tions, extraction methods, gene regions being sequenced, sequenc-
ing methods, sequence depth, and the pipeline used for the
analysis. In addition to the region-specific establishment of micro-
bial communities along the GIT of calves, the microbiota associated
with the epithelial mucosa was clearly different from those occu-
pying the luminal digesta and had a potential role in host immune
system development [113]. Thus, to better understand the host–
microbe interactions, a thorough knowledge of microbial segrega-
tion between mucosal epithelium and luminal digesta throughout
the pre-weaning period is of utmost importance. In the future,
genome-wide association studies should be conducted to track
the possible associations between host single nucleotide polymor-
phisms and the abundances of commensal bacterial taxa. Further-
more, more emphasis should be placed on the microbial dysbiosis
caused by in-feed antimicrobials and the possibility of using the
gut microbiome, prebiotics, and probiotics as antimicrobial substi-
tutes. In addition to the control of neonatal calf diseases using
antimicrobial alternatives, one can also predict the onset of dis-
eases based on early life gut microbiota composition, and the pre-
dictive modelling approach was recently suggested by Ma et al.
[165]. The combination of collecting big data with machine learn-
ing algorithms can support the establishment of prediction tools
for output targets or disease outbreaks, and helps to design preven-
tive treatment strategies (Fig. 3). We conclude by mentioning that
future studies must focus on the ecologic as well as metabolic
activity of the detected microbiome based on advanced machine
learning and prediction modelling approaches.
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