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Abstract: Only 20% NSCLC patients benefit from immunotherapy with a durable response. Current biomarkers are 
limited by the availability of samples and do not accurately predict who will benefit from immunotherapy. To develop 
a unified deep learning model to integrate multimodal serial information from CT with laboratory and baseline 
clinical information. We retrospectively analyzed 1633 CT scans and 3414 blood samples from 200 advanced 
stage NSCLC patients who received single anti-PD-1/PD-L1 agent between April 2016 and December 2019. Multi-
dimensional information, including serial radiomics, laboratory data and baseline clinical data, was used to develop 
and validate deep learning models to identify immunotherapy responders and nonresponders. A Simple Temporal 
Attention (SimTA) module was developed to process asynchronous time-series imaging and laboratory data. Using 
cross-validation, the 90-day deep learning-based predicting model showed a good performance in distinguishing 
responders from nonresponders, with an area under the curve (AUC) of 0.80 (95% CI: 0.74-0.86). Before immuno-
therapy, we stratified the patients into high- and low-risk nonresponders using the model. The low-risk group had sig-
nificantly longer progression-free survival (PFS) (8.4 months, 95% CI: 5.49-11.31 vs. 1.5 months, 95% CI: 1.29-1.71; 
HR 3.14, 95% CI: 2.27-4.33; log-rank test, P<0.01) and overall survival (OS) (26.7 months, 95% CI: 18.76-34.64 
vs. 8.6 months, 95% CI: 4.55-12.65; HR 2.46, 95% CI: 1.73-3.51; log-rank test, P<0.01) than the high-risk group. 
An exploratory analysis of 93 patients with stable disease (SD) [after first efficacy assessment according to the Re-
sponse Evaluation Criteria in Solid Tumors (RECIST) 1.1] also showed that the 90-day model had a good prediction 
of survival and low-risk patients had significantly longer PFS (11.1 months, 95% CI: 10.24-11.96 vs. 3.3 months, 
95% CI: 0.34-6.26; HR 2.93, 95% CI: 1.69-5.10; log-rank test, P<0.01) and OS (31.7 months, 95% CI: 23.64-39.76 
vs. 17.2 months, 95% CI: 7.22-27.18; HR 2.22, 95% CI: 1.17-4.20; log-rank test, P=0.01) than high-risk patients. 
In conclusion, the SimTA-based multi-omics serial deep learning provides a promising methodology for predicting 
response of advanced NSCLC patients to anti-PD-1/PD-L1 monotherapy. Moreover, our model could better differen-
tiate survival benefit among SD patients than the traditional RECIST evaluation method.
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Introduction

Lung cancer is the leading cause of mortality 
globally. Non-small-cell lung cancer (NSCLC) 
accounts for 80%-85% of lung cancer cases 
[1]. In recent years, immunotherapy has signifi-
cantly improved the overall survival (OS) and 

quality of life of NSCLC patients [2-7]. Never- 
theless, only 20% of NSCLC patients benefit 
from immunotherapy with a durable response. 
Some biomarkers, such as tumor mutation bur-
den [8, 9], PD-L1 expression, tumor-infiltrating 
lymphocytes, and gut microbiome diversity 
have been reported to be associated with favor-
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able responses to anti-PD-1/PD-L1 therapy 
[10]. However, the application of these poten-
tial biomarkers to a broader patient population 
in the clinical setting are limited by the avail-
ability of samples and the fact that none of the 
current biomarkers is applicable to all anti-
PD-1/PD-L1 drugs [11]. Therefore, with rapid 
development of immunotherapy and its eco-
nomic benefit analysis, the combination of bio-
markers that can be easily obtained and fol-
lowed up are urgently needed in the real-world 
clinical setting. 

A growing body of evidence suggests that artifi-
cial intelligence (AI) could assess response to 
immunotherapy through recognition of radiomic 
biomarkers in NSCLC [12]. Radiomics, AI-en- 
hanced high-dimensional radiological features, 
has a number of advantages such as noninva-
siveness and easy and automated serial moni-
toring [13]. Radiographic images provide com-
plete and comprehensive information of the 
entire tumor compared with biopsy. It could 
help identify early lung cancer and epithelial 
growth factor receptor (EGFR) and KRAS muta-
tions in NSCLC [14, 15]. It could reveal tumor 
heterogeneity and a possible heterogeneous 
treatment response [16]. Grossmann et al. 
reported two radiomics features: region dis-
similarity and entropy, were associated with OS 
after second-line treatment with nivolumab 
[17]. The integration of radiomics data into  
conventional clinical and laboratory data could 
provide complementary patient- and tumor-
specific information for the management and 
prognostic determination of patients with 
NSCLC [18, 19]. Previous studies have demon-
strated the value of radiomics in predicting the 
response of advanced NSCLC patient response 
to immunotherapy [17, 20], but its survival ben-
efit and effect on patients with stable disease 
(SD) are unclear. In addition, immunotherapy 
has introduced new response patterns such 
that long-term survival benefits for patients are 
not solely related to tumor shrinkage [21]. The 
value of multi-omics marker in predicting sur-
vival benefits in patients indistinguishable by 
conventional response criteria has not been 
explored.

The emerging deep learning technology [22] 

has dominated medical image analysis in a 
wide range of data modalities [e.g., ultrasound 
[23], computed tomography (CT) [24], and mag-

netic resonance imaging (MRI) [25] on several 
tasks [26-28]]. This study aimed to develop a 
unified deep learning model to integrate multi-
modal serial information from CT with labora-
tory and baseline clinical information. The asyn-
chronism of clinical time series poses challeng-
es to the design of deep learning models. 
Inspired by the recent advances in natural lan-
guage processing [29], this study proposed a 
novel attention mechanism, named Simple 
Temporal Attention (SimTA), to process multi-
modal asynchronous time series from serial 
clinical data. The SimTA module was evaluated 
using serial radiographic and blood test infor-
mation, as well as patient clinical data, for  
predicting clinical outcomes in patients with 
advanced NSCLC who received second-line  
and above anti-PD-1/PD-L1 monotherapy. The 
study also evaluated whether this multi-omics-
based model could further detect patients with 
the same SD assessed by RECIST 1.1 who may 
derive a real long-term survival benefit from 
immunotherapy.

Patients and methods

Patients

This retrospective study included pathologically 
or cytologically proven stage IIIB and IV (2009 
AJCC, 8th edition) NSCLC patients who received 
single-agent anti-PD-1/PD-L1 therapy between 
2016 and 2019 at Shanghai Lung Cancer 
Center, Shanghai Chest Hospital, Jiao Tong 
University. Patients received 3 mg/kg nivolum-
ab every 2 weeks, 200 mg pembrolizumab 
every 3 weeks, or 1200 mg atezolizumab every 
3 weeks. We utilized 4 datasets in this study: 1) 
the datasets from the CheckMate-870 trial 
(ClinicalTrials.gov NCT03195491) with images 
acquired between January 2018 and July 2018, 
2) the CheckMate-078 trial (Clinicaltrials.gov 
NCT02613507) with images acquired January 
2016 and April 2016 [6], 3) the OAK (YO29232) 
trial (Clinicaltrials.gov NCT02008227) with 
images acquired between July 2016 and May 
2017 [5], and 4) a real-world population with 
images acquired between June 2019 and 
December 2019. 

The main inclusion criteria were 1) an Eastern 
Cooperative Oncology Group (ECOG) score of 0 
or 1; 2) measurable lung lesions detected by CT 
scan as per the Response Evaluation Criteria in 
Solid Tumors (RECIST 1.1) [30]; 3) disease pro-
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gression despite previous platinum-based che-
motherapy for patients without EGFR mutation 
or disease progression during or after second-
line or above platinum-based chemotherapy 
following first-line treatment with tyrosine 
kinase inhibitors for patients with EGFR muta-
tion; 4) complete laboratory and radiological 
data on disease progression were available, 
and routine blood and biochemical tests were 
performed at baseline within 14 days of the 
first dose of anti-PD-1/PD-L1 and 3 days before 
each subsequent immunotherapy cycle, and 
chest CT scan was available at baseline and 
every 6 to 8 weeks after treatment initiation; 5) 
follow-up data were complete and endpoint 
events and status were clearly noted in the 
charts. 

The study was approved by the ethics commit-
tee of Shanghai Chest Hospital (Approval No.: 
KS 1732) and informed consent was waived.

Data extraction 

Patient demographics including age and sex, 
medical history including smoking history, and 
baseline data, routine laboratory investiga-
tions, and CT scans at baseline and follow  
ups were extracted from the hospital’s elec-
tronic medical records system. Baseline data 
included ECOG performance status, American 
Joint Committee on Cancer (AJCC) stage, histol-
ogy, EGFR and KRAS mutational status, and 
concurrent therapy (chemotherapeutic regi- 
men and line, and radiotherapy). Blood cell 
counts included white blood cell, neutrophil, 
lymphocyte, monocyte, eosinophil, and baso-
phil counts and percentages; hemoglobin; red 
blood cell counts; hematocrit; mean corpuscu-
lar hemoglobin concentration; red blood cell 
distribution width; red blood cell distribution 
width standard deviation; platelet count; plate-
let-larger cell ratio; plateletcrit; mean platelet 
volume; platelet distribution width. Blood bio-
chemistries included total protein, albumin,  
lactate dehydrogenase, alanine aminotransfer-
ase, aspartate aminotransferase, urea, and cre- 
atinine.

CT data 

Chest CT scans were carried out according to 
standardized scanning protocols at our institu-
tion using a 64-layer LightSpeed Volume CT 
scanner (GE Healthcare, WI, USA). All imaging 

data were reconstructed using a medium-sharp 
reconstruction algorithm with a thickness of 
3-5 mm. Tumor segmentation was perform- 
ed to select the essential primary lesions of 
NSCLC cases after image acquisition. All nod-
ules were manually delineated by two oncolo-
gists (Supplementary Methods). Target lesions 
were defined as any tumor that was well demar-
cated on both baseline and follow-up CT scans 
with a diameter ≥5 mm. Based on the evalua-
tion of follow-up CT scans, patients with com-
plete response (CR), partial response (PR) or 
SD were considered responders and patients 
with progressive disease (PD) were consider- 
ed nonresponders according to RECIST 1.1 
(Supplementary Figure 2). All CT scans were 
reviewed by two independent oncologists.

Follow up

Patients were followed up every 3 months by 
telephone, outpatient visit, or review of medical 
records. The date of diagnosis was the start 
date of follow-up, the first clinical efficacy 
assessment was between 6 and 8 weeks in the 
four datasets and the cutoff date was May 31, 
2020.

Deep learning

The mean interval between baseline CT scan 
and the first dose of anti-PD-1/PD-L1 was 14 
days (1-29 days). We collected 1633 CT scans 
of nodule markers and 3414 blood sampl- 
es. Due to a limited number of CT scans, 
radiomics was used to represent the radio-
graphic features instead of end-to-end convolu-
tional neural networks. The radiomic featur- 
es were extracted with PyRadiomics (Python 
3.7.3, PyRadiomics 2.2.0) [31-35] with spatial 
normalization to 1 × 1 × 1 mm3. For each lesion, 
a radiomic feature of 107 dimensions was 
extracted from the CT scan as previously 
described [36]. The radiomic features were 
used as serial inputs to the module if CT scans 
were conducted more than once. Clinical and 
laboratory variables were categorized as se- 
rial and static. By filtering out fields with more 
than 10% missing information, the serial blood 
test features were of 22 dimensions and the 
static features were of 18 dimensions, where 
categorical features were one-hot encoded. 
Numeric features were normalized to enable 
more stable and better convergence for model 
training.
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Both radiomic and blood test features were 
regarded as asynchronous time-series data 
with varying time intervals between neighbor-
ing time steps. Hence, a novel attention mecha-
nism, named SimTA module, was developed to 
process the asynchronous clinical time series 
(Figure 1). The computation details of SimTA, 
model pipeline, and model training are provid-
ed in the following sections. Two SimTA mod-
ules were developed: 60- and 90-day response 
models. During the training phase, the models 
were trained with time-series data (radiomics 
and laboratory) 60 and 90 days prior to each 
efficacy assessment (responders/nonrespond- 
ers, respectively). In the evaluation phase, only 
the serial data prior to baseline immunothe- 
rapy were used to predict response after 60 
and 90 days. Deep learning models using only 
baseline PD-L1 expression, blood profile, 
radiomics, and recurrent neural network (RNN) 
[37, 38] were also tested for comparison with 
SimTA modules. 

Furthermore, deep neural networks were imple-
mented in PyTorch 1.2 [39]. We randomly split 
the dataset into 5 folds and performed 5-fold 
cross validation to evaluate the performance of 
the proposed method [40]. All hyper-parame-
ters, including multiple layer perceptron (MLP) 
structure, learning rate, batch size, and regular-
ization parameters, were selected with a ran-

dom search via an additional cross-validation 
within the training dataset of each fold. The 
evaluation results were reported on all the vali-
dation sets on 5 folds.

Simple temporal attention (SimTA) module

The SimTA module learned representation from 
asynchronous time series of arbitrary length 
and interval and output a single feature vector 
as a summary of this time series. Given an 
asynchronous time series X0 ∈ RT×c0, where T 
denoted the number of time steps in this se- 
ries and c0 denoted the input feature dimen-
sion of each time step, and τ ∈ RT-1 was denot-
ed as the time intervals between neighboring 
time steps. For synchronous time series, τ was 
a constant vector. First, the feature vector X0 
was transformed into X1 ∈ RT×c1 via MLP, where 
c1 was its feature dimension. Inspired by the 
relative position encoding in attention trans-
formers, the relations between time steps were 
learned via the time intervals [41]. Let 
, , ...,X X X1

(1)
1
(2)

1
( )T  ∈ Rc1 be the feature vectors 

from a time step, and τ(1),τ(2),...,τ(T-1) ∈ R be the 
time intervals, SimTA transformed feature vec-
tors by:

X X2
(1)

1
(1)=

([0, ]) [ , ]X softmax X X2
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1
(1)

1
(2)= - + $mx b

Figure 1. A deep learning model with Simple Temporal Attention (SimTA) modules. The SimTA modules process 
asynchronous clinical time series (i.e., the radiomics and blood tests) separately; the encoded features of these 
time series and static clinical information are then fused by a multiple-layer perceptron (MLP) to get the final output 
for the assessment prediction of responders/non-responders (R/non-R).
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Where λ and β were learnable scaling parame-
ters. X2=[ , , ..., ]X X X2

(1)
2
(2)

2
( )T  denoted the output by 

the SimTA module, which represented the 
transformed feature vectors for the time series. 
In the present study, X2( )T  was taken as a sum-
mary vector of the time series to input into sub-
sequent modules.

The relation learning formula -λτ(t)+β was based 
on the assumption that a measurement closer 
to assessment time was more important than a 
measurement further from the assessment 
time. Theoretically, a complex nonlinear tempo-
ral relation learning is of importance with MLP 
or self-attention. Besides, it is possible to stack 
more MLP and SimTA modules subsequently; 
however, a single MLP and a single SimTA mod-
ule were used in this study to avoid the risk of 
overfitting. The softmax operation was defined 
as

( )softmax x e
e
1i

n x

x

i

1,2,...,n

=
=/

Model pipeline, training and tuning

The proposed SimTA module processed the 
input of asynchronous time series and output a 
summary vector. The whole model is illustrated 
in Figure 1. Multimodal information, including 
radiomics, blood tests and other clinical infor-
mation, was processed separately. Two SimTA 
modules with MLPs processed the asynchro-
nous radiomics time series (blue in Figure 1) 
and blood test time series (red in Figure 1), 
respectively, and integrated the information 
obtained with clinical information (yellow in 
Figure 1). A binary flag of 0/1, indicating wheth-
er a time step was before or after the interven-
tion, was concatenated with each step of both 
time series, before inputting into the MLPs and 
SimTA modules. The summary vectors (of both 
radiomics series and blood test series) from 
SimTA modules, together with the static clinical 
information (yellow in Figure 1) and time inter-
vals (i.e., δt1 and δt2 in Figure 1) between the 
last time steps and assessment time step, 
were fused with a final MLP to output the final 
prediction of R or non-R, with a final sigmoid 
activation function. 

The neural network was trained on all assess-
ment time steps. The optimization target was 

the assessment result of treatment response 
(responder versus nonresponder), while the 
network input was twofold: static and serial 
(i.e., the time series). Static input included 
patient clinical data. The time series input 
included all radiomic features and blood test 
data collected 30, 60, and 90 days prior to 
assessment. The neural network was optimized 
with an Adam optimizer [42], and the loss func-
tion was binary cross-entropy: 

BCE=-ylogŷ-(1-y)log(1-ŷ)

Where y and ŷ were ground-truth and predicted 
score, respectively. 

When a neural network with limited data is 
trained, special care should be taken to prevent 
the network from overfitting. For time series 
model training, we applied data augmentation 
including random time step dropout, time scal-
ing, and time shifting. Random time step drop-
out arbitrarily discarded features at certain 
time steps with a given dropout probability. 
Time scaling randomly scaled time interval, and 
time shifting added a random bias to it. The 
data augmentation rendered the model less 
prone to overfitting.

All hyper-parameters, including MLP structure, 
learning rate, batch size, and regularization 
parameters, were selected with a random 
search via an additional cross-validation within 
the training dataset of each fold. Crucially, this 
ensured that we did not violate the assumption 
of independence between the datasets used 
for developing and evaluating our method.

Statistical analysis

Data were analyzed using SPSS 22.0 (IBM, 
Armonk, NY, USA). Patient characteristics were 
analyzed using chi-square or Fisher’s exact 
test, where appropriate. To fairly evaluate the 
performance of SimTA, we conducted both 
receiver operating characteristic (ROC) and sur-
vival analyses using the proposed module. In 
the ROC analysis, module predictions of treat-
ment response were compared with the ground 
truth (responders/nonresponders) in a binary 
classification fashion. 

In survival analysis, patients were stratified into 
the low and high-risk groups for failure to 
respond to immunotherapy with a default 
threshold of 0.5 using model predictions, as we 
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formalized the problem in this study as a bin- 
ary classification of responders and nonre-
sponders. Survival for each group was estimat-
ed using the Kaplan-Meier method and com-
pared using log-rank test. Hazard ratios (HRs) 
and 95% confidence intervals (CIs) for the high 
and low risk groups were calculated using a  
Cox proportional-hazards model. OS was calcu-
lated from the start of immunotherapy to death 
from any cause or the final cutoff date. 
Progression-free survival (PFS) was defined as 

py data input, for predicting response at 60 
(SimTA60d) and 90 days (SimTA90d) post immuno-
therapy. The module showed a good perfor-
mance in distinguishing responders from non-
responders, with an area under the curve (AUC) 
of 0.77 (95% CI: 0.70-0.84) and 0.80 (95% CI: 
0.74-0.86), respectively (Figure 2A). At the 
same time, the proposed model was compared 
with other corresponding methods to demon-
strate the effectiveness of the SimTA module. 
Both the deep learning model incorporating 

Table 1. Patient demographics, baseline and treatment charac-
teristics
Variables Responders* Nonresponders* P
N (%) 115 (57.5) 85 (42.5)
Median age (95% CI), years 62 (61-64) 64 (61.5-66.5) 0.56
Male sex 97 (84.3) 68 (80.0) 0.42
ECOG performance status
    0 15 (13) 0 <0.01
    1 100 (87) 85 (100)
Smoking Status#

    Current or former smokers 70 (60.9) 49 (57.6) 0.65
    Never smokers 45 (39.1) 36 (42.4)
Tumor histology
    Squamous 40 (34.8) 28 (32.9) 0.79
    Adenocarcinoma/NOS 75 (65.2) 57 (67.1)
AJCC stage
    IIIB 26 (22.6) 15 (17.6) 0.39
    IV 89 (77.4) 70 (82.4)
EGFR mutation
    Positive 16 (13.9) 14 (16.5) 0.62
    Negative/NOS 99 (86.1) 71 (83.5)
KRAS mutation
    Positive 9 (7.8) 6 (7.1) 0.84
    Negative/NOS 106 (92.2) 79 (92.9)
Treatment
    PD-1 93 (80.9) 70 (82.4) 0.79
    PD-L1 22 (19.1) 15 (17.6)
Line of therapy
    2nd line 80 (69.6) 61 (71.8) 0.74
   >2nd line 35 (30.4) 24 (28.2)
Radiation
    Yes 43 (37.4) 32 (37.6) 0.97
Data are presented as N (%) unless otherwise specified. *Best response was 
defined as complete or partial response or stable disease or progressive dis-
ease according to RECIST 1.1 throughout the course of nivolumab single drug 
immunotherapy. #Never smokers are defined as smoking <100 cigarettes/life-
time, and former smokers are defined as abstinence from smoking for at least 
15 years on the day before the start of therapy. EGFR, Epidermal growth factor 
receptor; NOS, not otherwise specified.

the time from the start of immu-
notherapy to disease progres-
sion per RECIST 1.1 or death. All 
tests were two sided, where 
applicable, and considered sig-
nificant when P<0.05.

Results 

Patient characteristics

The study flowchart is shown in 
Supplementary Figure 1. Totally 
308 stage IIIB and IV patients 
received anti-PD-1/PD-L1 mono-
therapy. We excluded 108 pa- 
tients with incomplete data; fin- 
ally, 200 patients were included 
in the current analysis. Patient 
demographics, baseline and tre- 
atment characteristics are pre-
sented in Table 1. Their median 
age was 63 (range 23 to 82) 
years and 82.5% of them were 
male. Furthermore, 20.5% and 
79.5% patients had stage IIIB 
and IV NSCLC, respectively. In 
addition, 57.5% patients were 
responders to anti-PD-1/PD-L1 
monotherapy. Thirteen percent 
of the responders had an ECOG 
performance status score of 0 
versus 0% in the nonresponders 
(P<0.001). The responders and 
nonresponders were comparable 
in the other demographic, base-
line and treatment variables. 

SimTA outperforms other mod-
els in distinguishing responders 
vs. nonresponders

In our study, we used the SimTA 
module, with pre-immunothera-
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baseline blood test data and the model incor-
porating baseline radiomics performed poor- 
ly in distinguishing responders from nonre-
sponders, with an AUC of 0.57 (95% CI: 0.49-
0.65) and 0.64 (95% CI: 0.56-0.72), respective-
ly (Figure 2B). Furthermore, the RNN model 
only fairly distinguished responders from non-
responders, with an AUC of 0.69 (95% CI: 0.62-
0.76) (Figure 2B).

Immunohistochemical data on PD-L1 expres-
sion in tumor tissues was available in 102 
patients (Supplementary Methods). PD-L1 per-
formed poorly in distinguishing responders 
from nonresponders (Supplementary Figure 3A 
and 3B). SimTA60d had an AUC of 0.81 (95% CI: 
0.73-0.90, P<0.001) versus an AUC of 0.45 
(95% CI: 0.34-0.56, P=0.37) for baseline PD-L1 
expression. SimTA90d had an AUC of 0.82 (95% 
CI: 0.73-0.90, P<0.001) versus an AUC of 0.38 
(95% CI: 0.27-0.49, P=0.04).

Risk of nonresponding to immunotherapy and 
PFS and OS

The median duration of follow up was 12.7 
(range 1.1 to 46.3) months. When SimTA60d was 
used for risk stratification, patients at low risk 
for nonresponding to immunotherapy were sig-
nificantly more likely to have longer PFS and OS 
than patients at high risk [PFS: HR 2.49 (95% 
CI: 1.82-3.41); OS: HR 2.33 (95% CI: 1.61-

3.37)] (Figure 3A and 3B). In addition, when 
SimTA90d was used for risk stratification, pa- 
tients at low risk for nonresponding to immuno-
therapy were significantly more likely to have 
longer PFS and OS than patients at high risk 
[PFS: HR 3.14 (95% CI: 2.27-4.33); OS: HR 2.46 
(95% CI: 1.73-3.51)] (Figure 3C and 3D). 
Patients at low risk had significantly longer 
median PFS than patients at high risk (8.4 
months, 95% CI: 5.49-11.31) vs. 1.5 months, 
95% CI: 1.29-1.71; log-rank test, P<0.01). They 
also had significantly longer median OS (26.7 
months, 95% CI: 18.76-34.64 vs. 8.6 months, 
95% CI: 4.55-12.65; log-rank test, P<0.01]. 

Ninety-three patients achieved SD. At the first 
efficacy assessment of anti-PD-1/PD-L1 thera-
py, 73 patients were at low risk and 20 patients 
were at high risk for nonresponding to immuno-
therapy. When SimTA60d was used for risk strati-
fication, there was no statistical difference in 
both PFS and OS between patients at low risk 
and those at high risk (Supplementary Figure 
4). When SimTA90d was used for risk stratifica-
tion, patients at low risk had significantly longer 
median PFS than patients at high risk (11.1 
months, 95% CI: 10.24-11.96 vs. 3.3 months, 
95% CI: 0.34-6.26; HR 2.93, 95% CI: 1.69-
5.10; log-rank test, P<0.01) (Figure 4A). 
Patients at low risk had significantly longer 
median OS than patients at high risk (31.7 

Figure 2. Model performance for response prediction in 200 patients. A. The AUC for the 60-day and 90-day re-
sponse model. B. The AUC using the deep learning model incorporating baseline blood test data, baseline radiomics 
and using the RNN model. AUC, area under the ROC curve; ROC, receiver operating characteristic.
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months, 95% CI: 23.64-39.76 vs. 17.2 months, 
95% CI: 7.22-27.18; HR 2.22, 95% CI: 1.17-
4.20; log-rank test, P=0.01) (Figure 4B). 

Discussion

In the present study, multidimensional serial 
information integrated with inputs from clinical 
data, laboratory tests and radiomics by deep 
learning could predict the response patterns of 
advanced stage NSCLC patients receiving anti-
PD-1/PD-L1 monotherapy. Kaplan-Meier analy-
sis further showed that when the 90-day model 

(SimTA90d) was used to stratify the risk of nonre-
sponding to anti-PD-1/PD-L1 monotherapy, low 
risk patients had significantly longer median 
PFS and OS than high risk patients. Distinct 
from earlier similar studies, our study is novel in 
developing and validating a multi-omics-based 
serial deep learning approach for predicting 
clinical outcomes of advanced stage NSCLC 
patients receiving anti-PD-1/PD-L1 monothera-
py, allowing more precise targeting of select 
advanced stage NSCLC patients who could 
truly benefit from anti-PD-1/PD-L1 immuno-
therapy. Particularly, the study is first in risk 

Figure 3. Deep learning prediction of PFS and OS in 200 patients. The prediction models stratify patients into high- 
and low-risk nonresponders using a default cutoff. A and B. PFS and OS according to risk stratification using the 
60-day response model. C and D. PFS and OS according to risk stratification using the 90-day response model. HR, 
Hazards ratio; PFS, progression-free survival; OS, overall survival. 
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stratifying advanced NSCLC patients who have 
achieved SD and has successfully established 
a model that is capable of more precisely iden-
tifying which subset of SD patients could derive 
long term survival benefit from single-agent 
anti-PD-1/PD-L1 immunotherapy than the tra-
ditional RECIST evaluation method. 

As a biomarker, radiomics is automated and 
noninvasive, and based on readily available 
imaging data. Some previous studies applied 
deep learning to predict treatment response of 
NSCLC patients using single-time-point or seri-
al medical imaging [20, 43, 44]. Our study 
focused not only on the analysis of response 
patterns but also survival benefits. The previ-
ous deep learning models used only radiomics 
data and failed to integrate easily accessible 
clinical data and peripheral blood profiles whi- 
ch were also associated with clinical outcomes 
[18, 19]. The present study showed that the 
multi-omics-based serial deep learning model 
integrating pretreatment patient data could 
predict survival benefits in patients with 
advanced NSCLC treated with anti-PD-1/PD-L1 
monotherapy. The SimTA prediction model in 
this study is also more accurate than PD-L1 
expression. Recently, a radiomic signature 
based on tumor-infiltrating CD8 cells has been 
demonstrated to predict OS of patients with 

solid tumors including lung cancer who received 
immune checkpoint inhibitors, showing a medi-
an OS of 24.3 months for patients with a high 
radiomic score and 11.5 months (HR=0.58, 
95% CI: 0.39-0.87) for patients with a low 
radiomic score [36]. In our study, when the 
90-day model was used to stratify risk of non-
responding to anti-PD-1/PD-L1 monotherapy, 
the low risk group had a median OS of 26.7 
months versus 8.6 months for the high risk 
group (HR=2.46, 95% CI: 1.73-3.51). Some 
patients receiving immunotherapy experience 
severe toxicity or rapid progression. The rapid 
deterioration of clinical status prevents these 
patients from receiving a subsequent poten-
tially effective treatment and results in a worse 
OS [45]. Indeed, 47 (23.5%) nonresponders in 
our dataset had an OS <6 months; of these, 18 
(9%) could not receive later-line treatment due 
to the deterioration of their performance sta-
tus. In contrast, durable disease control is 
often observed for responders to cancer immu-
notherapy [3, 46]. In addition, immunotherapy 
could sensitize patients to subsequent chemo-
therapy [45], thereby contributing to the nota-
ble difference in survival outcome between 
responders and nonresponders.

In the present study, the 90-day response 
model better stratifies advanced stage NSCLC 

Figure 4. Deep learning prediction of survival in 93 patients with confirmed SD at the first efficacy assessment after 
anti-PD-1/PD-L1 treatment. The 90-day prediction model stratifies patients with SD into high- and low-risk nonre-
sponders using a default cutoff. A. PFS in relation to risk stratification. B. OS in relation to risk stratification. Tumor 
response was evaluated according to RECIST 1.1. HR, Hazards ratio; SD, stable disease.
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patients in survival outcomes than the 60-day 
response model. First of all, this is in line with 
the characteristics of immunotherapy, the 
effect of which is slow. Second, this could be 
attributed to the more accurate identification of 
nonresponders after 90 days with a confirma-
tive follow-up CT assessment after the first effi-
cacy evaluation. Response to immunotherapy 
involves infiltration of activated T cells into the 
tumor site, resulting in pseudoprogression in 
up to 10% patients with advanced cancer 
undergoing immunotherapy [45]. A total of 9 
(4.5%) cases of pseudoprogression were docu-
mented in this study.

Traditional tumor temporal monitoring is often 
limited to size-based metrics due to the ease of 
clinical implementation (e.g., RECIST 1.1). 
Nevertheless, the emergence of targeted 
immunotherapy leads to novel patterns of 
tumor response, which might not be fully cap-
tured by changes in tumor diameter on imaging 
[13]. The interpretation of tumor size could be 
complicated by changes in the inflammatory, 
stromal, or fibrotic components of the tumor. 
Concerns are especially pertinent to patients 
with SD according to RECIST because this 
patient population has marked variability in 
prognosis. In the present study, 93 patients 
had SD according to RECIST at the first efficacy 
assessment. Among them, 20 patients were 
identified as high-risk nonresponders and 73 
as low-risk nonresponders using the deep 
learning model. The lesion size increased in 8 
(40%), remained unchanged in 8 (40%), and 
decreased in 4 (20%) cases in the 20 high-risk 
patients; further, it increased in 15 (20.54%), 
remained unchanged in 26 (35.62%), and 
decreased in 32 (43.84%) cases in the 73 low-
risk patients. Interestingly, according to our 
90-day prediction model, we found that among 
the patients who were also evaluated with the 
same SD, 20% of the shrinkable lesions had a 
poor prognosis and 20.54% of the enlarged 
lesions had a good prognosis, which cannot be 
achieved by the current traditional RECIST 
imaging assessment. These results suggested 
that long-term survival might not just be supe-
rior in patients with a moderate decrease 
(<30%) in the lesion size compared with 
patients with a moderate increase (<20%) in 
the lesion size after immunotherapy. AI-based 
radiomics could help overcome the limitation of 
RECIST with the analysis of multidimensional 

quantitative features, including tumor size, 
shape, density, and textural patterns [13]. 
Indeed, the use of radiomics [36] could more 
accurately determine the correlation between 
the heterogeneity of tumor-infiltrating lympho-
cytes and survival benefits for patients after 
immunotherapy. The risk stratification using 
the 90-day model was significantly associated 
with PFS (HR: 2.93, 95% CI: 1.69-5.10) and OS 
(HR: 2.22, 95% CI: 1.17-4.20). Our findings are 
consistent to the study by Korrahmi et al. who 
investigated changes in the radiomic texture of 
CT patterns of NSCLC patients and found that 
the radiomic texture could predict response to 
immune checkpoint inhibitors and OS of NSCLC 
patients [47]. However, the study by Korrahmi 
et al. did not take into consideration of such 
factors like clinicopathologic variables of the 
patients. A recent study by He et al. only incor-
porated tumor mutational burden and CT imag-
es for predicant response to immune check-
point inhibitors in advanced stage NSCLC 
patients [48]. The present study is innovative in 
showing that the use of multidimensional serial 
information by deep learning could more accu-
rately identify patients who can achieve the 
survival benefit from immunotherapy among 
patients with the same critical SD using RECIST 
evaluation. Despite the small sample size, the 
preliminary result of this study showed that the 
deep learning-based approach was superior to 
current assessment methods in accurately pre-
dicting patient prognosis, which needs further 
exploration. 

The SimTA module developed in the present 
study combined serial imaging and laboratory 
data and the static clinical data through multi-
modal deep learning. It could process asyn-
chronous, multisource sequential data. It is a 
common data format in clinical practice. This is 
the first method to process a complex multi-
modal asynchronous time series in clinical 
application with proven superiority over stan-
dard RNN. The SimTA module was flexible 
enough to encode multiple time series of arbi-
trary length and interval into a single unified 
representation, with no need for prespecifi- 
ed variables. In the present study, this atten-
tion module effectively and efficiently allowed 
the learning of temporal information. Never- 
theless, the current formulation of SimTA 
encoded only linear temporal relations (by the 
attention weights). Although linear temporal 
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relation learning performed well for this model, 
the model could still be refined by exploring 
nonlinear and complex temporal relations via 
introducing nonlinear temporal functions and 
self-attention. The findings need further investi-
gation on more clinical applications and data 
modalities. 

The present study has several limitations. First, 
the dataset had a limited number of patients. 
Although the sample size was small, deep 
learning-based multidimensional serial model-
ing in the training dataset was used to carry out 
responder versus nonresponder judgment 
learning at each evaluation point for every 
patient, thus virtually increasing the training 
dataset. Through the learning of the training 
datasets, a significant predictive value between 
responders and nonresponders was achieved 
in the validation sets. Additional studies with 
larger patient populations may help elucidate 
the role of SimTA-based multi-omics in predict-
ing benefits of anti-PD-1/PD-L1 treatment in 
patients with advanced/metastatic NSCLC. 
Second, this is a retrospective study including 
patients only with intact blood tests, radio-
graphic data, and complete follow-up informa-
tion regarding assessment and survival after 
anti-PD-1/PD-L1 treatment. Although a propor-
tion of patients in our dataset were from a real-
world study, relatively strict inclusion criteria 
were applied. The usefulness of the model in a 
more prospective heterogeneous population 
should be examined. 

Conclusions

In conclusion, our study has shown that the 
multidimensional serial information with inputs 
from pretreatment clinical data, laboratory 
tests, and radiomics combined with deep learn-
ing could help predict response to single-agent 
immunotherapy and offer a highly feasible, 
practical and operable model for risk stratifica-
tion of advanced NSCLC patients. The pro-
posed model provides a promising noninvasive 
biomarker that could be applied to a wide 
patient population in routine clinical practice, 
with standard-of-care clinical information.
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Supplementary Methods 

PD-L1 immunohistochemistry (IHC)

Our pathology department evaluated PD-1 ligands (PD-L1) in tumor biopsy specimens prior to the first 
immunotherapy by using a validated automated immunohistochemical (IHC) assay (Nivolumab: PD-L1 
IHC 28-8 pharmDx, Dako; Pembrolizumab: PD-L1 IHC 22C3 pharmDx, Dako). Predefined expression 
levels were defined by tumor cell membrane staining (TPS) in a section containing at least 100 evalu-
able tumor cells. PD-L1 test data from 102 patients met the quality control requirements, including 97 
patients using Nivolumab and 5 patients using Pembrolizumab.

Data extraction, nodule labeling and features

A 64-layer LightSpeed Volume CT (GE Healthcare, WI, USA) was used for chest CT. All imaging data were 
reconstructed using a medium-sharp reconstruction algorithm with a thickness of 3-5 mm. All nodules 
were manually labeled by two oncologists.

Using medical image processing and navigation software 3D Slicer (version 4.8.0, Brigham and Women’s 
Hospital, MA, USA), a radiologist manually segmented the volume of interest (VOI) of the largest lesion 
in the lung at the voxel level (Lan Shen, with 10 years of work experience). Then, another oncologist Yi 
Yang (with 20 years of work experience) confirmed the VOI. An example is shown in Supplementary 
Figure 2. Large blood vessels and bronchioles were excluded from the volume of the nodule as much as 
possible. The images of lung computed tomography (CT) digital medical imaging and communication 
format were imported into the software for drawing, and then the images with VOI information were 
extracted in Neuroimaging Informatics Technology Initiative (NII) format for further analysis.

Due to limited CT scans, radiomics was used to represent the radiographic features, instead of end-to-
end convolutional neural networks. The radiomics were extracted with PyRadiomics (Python 3.7.3, 
PyRadiomics 2.2.0). For each lesion, a radiomic feature of 107 dimensions was extracted from the CT 
scan. The radiomic features were used as serial inputs to the module if CT examinations were con-
ducted more than once. The clinical and blood test information was categorized as serial and static. By 
filtering out the fields with more than 10% missing information, the serial blood test features were of 22 
dimensions and the static features were of 18 dimensions, where categorical features were one-hot 
encoded. Numeric features were normalized to enable more stable and better convergence for model 
training.
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Supplementary Figure 1. The study flowchart. 
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Supplementary Figure 2. Serial CT scans of representative patients. A-D. CT images of a responder (patient 11) in 
the training cohort; E-G. CT images of a nonresponder (patient 95) in the validation cohort. The red lines indicate 
labeled pulmonary nodules. CT, Computed tomography.
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Supplementary Figure 3. Model performance for response prediction in 102 patients. A. ROC AUC for the 60-day 
response model and PD-L1 expression. B. ROC AUC for the 90-day response model and PD-L1 expression. AUC, Area 
under the curve; ROC, receiver operating characteristic.

Supplementary Figure 4. Deep learning prediction of survival in 93 patients with confirmed stable disease (SD) at 
the first efficacy assessment after anti-PD-1/PD-L1 treatment. The 60-day prediction model stratified patients with 
SD into high- and low-risk nonresponse groups using a default cutoff. A. Progression-free survival in relation to risk 
stratification. B. Overall survival in relation to risk stratification. Tumor response was evaluated according to RECIST 
1.1.


