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Summary
Hybrid breeding has been shown to effectively increase rice productivity. However, identifying

desirable hybrids out of numerous potential combinations is a daunting challenge. Genomic

selection holds great promise for accelerating hybrid breeding by enabling early selection before

phenotypes are measured. With the recent advances in multi-omic technologies, hybrid

prediction based on transcriptomic and metabolomic data has received increasing attention.

However, the current omic-based hybrid prediction has ignored parental phenotypic informa-

tion, which is of fundamental importance in plant breeding. In this study, we integrated parental

phenotypic information into various multi-omic prediction models applied in hybrid breeding of

rice and compared the predictabilities of 15 combinations from four sets of predictors from the

parents, that is genome, transcriptome, metabolome and phenome. The predictability for each

combination was evaluated using the best linear unbiased prediction and a modified fast HAT

method. We found significant interactions between predictors and traits in predictability, but

joint prediction with various combinations of the predictors significantly improved predictability

relative to prediction of any single source omic data for each trait investigated. Incorporation of

parental phenotypic data into various omic predictors increased the predictability, averagely by

13.6%, 54.5%, 19.9% and 8.3%, for grain yield, number of tillers per plant, number of grains

per panicle and 1000 grain weight, respectively. Among nine models of incorporating parental

traits, the AD-All model was the most effective one. This novel strategy of incorporating parental

phenotypic data into multi-omic prediction is expected to improve hybrid breeding progress,

especially with the development of high-throughput phenotyping technologies.

Introduction

Hybrid breeding facilitates crop production by taking advantage

of heterosis. Hybrid rice and maize are the most successful cases

that have greatly mitigated the global food crisis. However,

finding the desirable hybrids from all potential crosses is a

tremendous challenge in hybrid breeding. It is practically impos-

sible to evaluate the performance of all potential hybrids in multi-

year and multi-location trials due to limited resources. Genomic

selection (GS) has been proposed as a promising strategy to

confront these challenges. GS uses genome-wide DNA markers

and phenotypes from a training sample to predict the genetic

values of candidates in a test sample, where the latter have been

genotyped but not phenotyped (Crossa et al., 2017). As a result,

GS enables early selection before phenotypes of traits are

collected (Hickey et al., 2017). In hybrid breeding, GS is more

effective because genotypes of hybrids are deduced from

genotypes of their parents rather than sequenced anew, which

has greatly reduced the cost of hybrid breeding (Xu et al., 2014).

Several simulation and experimental studies have confirmed that

GS is effective for hybrid prediction (Cui et al., 2020; Zhao et al.,

2015). A GS model is often judged by its predictability, which is

mainly calculated as the squared correlation coefficient between

the predicted and observed phenotypic values. High predictability

is a prerequisite for a successful application of GS. However,

predictability is affected by many factors, including genetic

architecture and heritability of traits, marker density, sample size,

genetic diversity of the training sample, the relationship between

training and test samples, and statistical models (Desta and Ortiz,

2014; Guo et al., 2019). Many researchers have been struggling

to improve the predictability for some complex traits like grain

yield in rice, but with little success. This may be due to the fact

that GS has limitations in capturing the effects of gene interac-

tions and downstream regulations (Ritchie et al., 2015).

Fortunately, downstream omes such as transcriptome, pro-

teome and metabolome can capture interactions within and

between different biological strata (Westhues and Schrag, 2017).

With the rapid development in molecular technologies, transcrip-

tomic and metabolomic information has been available for

prediction (Li et al., 2018). Frisch et al. (2010) predicted hybrid
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performance and heterosis in maize based on transcription

profiles from parental lines and concluded that the transcrip-

tome-based prediction outperforms genomic prediction. Based

on the same data set, Fu et al. (2012) further assessed the

accuracy of four different models in predicting maize hybrid

performance using parental transcriptomic data. Zenke-Philippi

et al. (2017) found that transcription profiles are good alterna-

tives to DNA markers for trait prediction under a ridge regression

model. In addition to transcriptomic prediction, metabolomic

prediction has also attracted attention from the GS community.

By crossing 285 inbred lines with two testers, Riedelsheimer et al.

(2012) predicted combining abilities for biomass-related traits and

found that the predictability with 130 metabolites is nearly as

efficient as that with 56 110 SNPs. When parental metabolomic

data were used to predict rice hybrid performance, the pre-

dictability of yield from a training sample of 278 hybrids is almost

doubled compared with that of genomic prediction (Xu et al.,

2016). Dan et al. (2016) reported high predictabilities of

metabolomic prediction for plant height, heading date and grain

yield based on a complete diallel cross experiment derived from

18 rice inbred lines. These studies suggest that both transcrip-

tomic and metabolomic data are effective predictors for hybrid

prediction.

Recently, there has been great interest in integrating multi-

omic data into a single model for trait prediction. Westhues and

Schrag (2017) demonstrated the benefit of combining transcrip-

tomic and genomic data in predicting important agronomic traits

of hybrid maize. By comparing predictabilities from all combina-

tions of three omic data using eight conventional prediction

methods, Wang et al. (2019) concluded that the combination of

genomic and metabolomic data generally provides the best

prediction in rice. Despite the progress in hybrid prediction based

on omic data, it remains a challenge regarding how to maximize

the predictability from multiple sources of omic data. Previous

omic prediction for hybrid performance mainly focused on

genomic, transcriptomic and metabolomic data, but overlooked

the phenotypic information of parents (phenome). In fact,

phenotypes are the core of crop breeding; experienced breeders

can, to some degree, guess the performance of hybrids based on

the phenotypes of their parents (Furbank et al., 2019). Although

previous studies showed that hybrid prediction solely based on

the performance of parental lines per se is not as good as

genomic prediction (Guo et al., 2013; Zhao et al., 2015), it

remains unclear whether integrating parental phenotypic infor-

mation into an omic prediction model can improve hybrid

prediction.

Various statistical models have been developed for prediction,

including the best linear unbiased prediction (BLUP), the least

absolute shrinkage selection operator (LASSO), Bayesian meth-

ods, random forest, neural networks, support vector machine

(SVM), and reproducing kernel Hilbert spaces regression (RKHS).

Several studies have compared these prediction methods with

empirical and simulated data (Xu et al., 2018; Xu et al., 2017).

Although there is no method that is globally best for all data, the

BLUP method often performs better than most other methods

with high computational efficiency. As a result, BLUP has been a

routine method for hybrid prediction. The predictability of BLUP is

often evaluated by a K-fold cross-validation (CV), where the

sample is randomly divided into K equal parts and each part is

predicted once based on parameters estimated from the other K

—1 parts. In a K-fold CV, the predictability depends on the

number of folds and the ways the sample is partitioned. To

reduce the variability due to sample partitioning, researchers

usually perform multiple rounds of K-fold CV with different ways

of sample partitioning and report the mean predictability over

multiple runs. The leave-one-out-cross-validation (LOOCV, also

called n-fold CV), a special case of K-fold CV with K equal to the

number of observations (n), can be used to quantify the

predictability without random errors due to sample partitioning

(Cheng et al., 2017). However, LOOCV has a high computational

cost for large data sets since the model has to be fit n times. Xu

(2017) developed a HAT method to evaluate the predictive

performance of BLUP, avoiding a lengthy process of CV analysis

and greatly increasing the computational efficiency. Compared

with a single omic prediction, multi-omic prediction takes

extended computing time with multiple kinship matrices. There-

fore, multi-omic prediction benefits the most from the HAT

method.

The objectives of this work are to (1) modify the original HAT

method for multi-omic prediction and verify its feasibility, (2)

evaluate the performance of hybrid prediction based on all

combinations of the four sets of predictors including genomic

data (G), transcriptomic data (T), metabolomic data (M) and

phenomic data (P) of the parents using BLUP with the modified

HAT method, (3) test whether incorporating parental phenotypic

data can improve hybrid prediction and (4) further investigate the

optimum model for incorporating parental phenotypic data.

Results

Comparison of the HAT method with the CV method

To demonstrate the suitability of the modified HAT method, we

compared the HAT method with the CV method under 10-fold

and n-fold using two publicly available data sets of wheat and

maize. The wheat data set, available in the R package BGLR,

consisted of 599 inbred lines genotyped with 1279 DArT

(Diversity Array Technology) markers (Perez and de los Campos,

2014). The target trait was grain yield (GY). This data set was

developed by the International Maize and Wheat Improvement

Center (CIMMYT) as described previously (Crossa et al., 2010;

Gianola et al., 2011). The predictabilities for the 10-fold HAT and

10-fold CV were averaged over 50 replicates. Regardless of the

fold number, the HAT method and the CV method produce very

similar predictabilities (Figure 1a). The difference between the 10-

fold HAT and the 10-fold CV is 0.0039 and the difference

between the n-fold HAT and the n-fold CV is 0.0035.

A similar comparison was also made in a maize population. The

maize data set consisted of 550 hybrids from 50 Dent and 41 Flint

inbred lines developed in a breeding program at the University of

Hohenheim (Schrag et al., 2018). The hybrids were evaluated for

grain dry matter yield (DMY) and grain dry matter content (DMC).

Genomic data and metabolomic data were collected from

parental lines. The genomic data contained 37 392 SNP markers

and the metabolomic data contained 284 metabolites from roots

measured 3.5 days after sowing. To test the effectiveness of the

HAT method for multi-omic prediction, we performed the

prediction with the combination of genomic and metabolomic

data. Figure 1b shows the predictabilities of DMY and DMC from

the CV and HAT methods. Differences between the 10-fold HAT

and 10-fold CV and those between the n-fold HAT and n-fold CV

are barely noticed for both traits. Here, the n-fold CV method

took about ten hours to complete the calculations, while the n-

fold HAT method took approximately two minutes. Overall, for

single omic prediction and multi-omic prediction, the HAT
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method can be an excellent alternative to the CV method for

evaluating predictability. In subsequent studies, we used the n-

fold HAT to evaluate the performance of hybrid prediction to

avoid the long CV process and eliminate variation due to random

partitioning of samples.

Evaluation of predictabilities

We evaluated the predictabilities of four traits using all 15

combinations of four sets of predictors (G, T, M, P, GT, GM, GP,

TM, TP, MP, GTM, GTP, GMP, TMP and GTMP) together with the

additive and additive-dominance models (Figure 2), where G, T,

M and P represent genome, transcriptome, metabolome and

phenome, respectively. Among these four traits, 1000 grain

weight (KGW) has the highest predictability, followed by number

of grains per panicle (GRAIN), number of tillers per plant (TILLER)

and lastly grain yield (YIELD). For YIELD, the additive-dominance

model exhibits a distinct advantage over the additive model, but

for other traits, the advantage of the additive-dominance model is

not obvious. The differences in predictability among the predic-

tors are small for high predictability traits and large for low

predictability traits. For instance, the predictability varies from

0.10 to 0.31 for trait YIELD and from 0.70 to 0.79 for trait KGW.

No single source of predictors achieves consistent superior

predictability for all traits. For example, M is the best single

source predictor for YIELD and GRAIN but is the worst predictor

for TILLER and KGW, while P is the best single source of predictor

for TILLER and KGW but the worst predictor for YIELD. Combin-

ing the best single source of predictors of an individual trait with

other predictors can further improve predictability.

Analysis of variance for predictabilities

We performed an analysis of variance for the predictabilities of all

15 × 4×2 = 120 predictor-trait-model combinations. All the

main effects and two-way interaction effects are significant

(Table S1). We then made multiple comparisons for significant

main effects. The predictabilities of the 15 predictor combinations

are classified into eight significant levels with GTMP being the

best predictor and G being the worst predictor (Figure 3a).

Overall, combined multiple predictors have significantly higher

predictabilities than single predictors. For a single predictor, T, M

Figure 1 Comparison of predictabilities of the HAT and CV methods under 10-fold and n-fold. (a) Predictabilities of the HAT and CV methods for grain

yield (GY) in wheat inbred lines. (b) Predictabilities of the HAT and CV methods for grain dry matter yield (DMY) and grain dry matter content (DMC) in

maize hybrids. The predictabilities for 10-fold HAT and 10-fold CV were averaged over 50 replicates.
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and P predictors perform better than G. Among the combinations

of two predictors, TP, MP and GP predictors are significantly

superior over GT, GM and TM predictors. When three single

predictors are combined, the GMP, TMP and GTP predictors

outperform the GTM predictor. The results reveal that despite the

single source of predictor P performs poorly, the predictor

combinations comprising P are significantly better than those

without P. Besides, the predictabilities of the four traits are

significantly different. KGW is the best predictable trait and GY is

the worst one (Figure 3b). Comparing the two models, the

additive-dominance model provides significantly higher pre-

dictability than the additive model (Figure 3c).

Incorporating predictor P

According to the above studies, integrating predictor P with any

other predictors has significantly improved the predictability. How

to incorporate P into a current omic prediction model becomes an

important issue. The parental phenotypic data are regarded as

random variables so far in this study, while such data can also be

regarded as fixed effects. A total of nine models (Random, A-

One, D-One, AD-One, P-One, A-All, D-All, AD-All, P-All) of

incorporating predictor P were compared. Here, the Random

model treats the effects of predictor P as random effects, while

the other models treat the effects of predictor P as fixed effects.

In the A-One, D-One, AD-One and P-One models, we used

parental phenotypic data just from the target trait, while in the A-

All, D-All, AD-All and P-All models, we used parental phenotypic

data from all traits. A detailed description of the models is

provided in the Experimental procedures section. The predictabil-

ities of the four traits from the seven predictor combinations

containing predictor P (GP, TP, MP, GTP, GMP, TMP and GTMP)

were calculated using the nine models (Figure S1). For each trait,

Figure 2 Predictabilities of four traits from 15 combinations of four predictors with the additive model and the additive-dominance model. The four traits

are YIELD, TILLER, GRAIN and KGW. The 15 predictor combinations are G, T, M, P, GT, GM, GP, TM, TP, MP, GTM, GTP, GMP, TMP and GTMP, where G, T,

M and P represent genome, transcriptome, metabolome and phenome, respectively. ‘A’ denotes the additive model and ‘A + D’ denotes the additive-

dominance model. [Colour figure can be viewed at wileyonlinelibrary.com]
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there is a significant difference in the models (Table S2). The

results of multiple comparisons for these nine models are

depicted in Figure 4. For YIELD, the AD-All model is the best

and the Random model is the worst in terms of predictability. For

GRAIN, TILLER and KGW, the AD-All and P-All models have the

highest predictabilities, while the D-One and D-All models have

the lowest predictabilities. Overall, the AD-All model is the best

model for incorporating predictor P.

Based on the AD-All model, we integrated predictor P with

other predictors and then evaluated their predictabilities. The

predictabilities of the four traits from the predictor combinations

with P and those without P are illustrated in Figure 5. In all traits,

combining P with any other predictors increases the predictability,

with the largest improvement occurring for TILLER. For YIELD,

TILLER, GRAIN and KGW, the predictabilities with G, T, M, GT,

GM, TM and GTM increase on average by 13.6%, 54.5%, 19.9%

and 8.3%, respectively, when predictor P is added. The highest

gains in predictability for YIELD (40.3%), TILLER (65.5%), GRAIN

(28.1%) and KGW (12.5%) are obtained by integrating P into G,

T, G and M, respectively.

Predicting untested crosses

The training sample consisting of 278 hybrids represents a small

subset of all 21 945 crosses derived from 210 recombinant inbred

lines (RILs). Based on the parameters estimated from the training

sample, we predicted all potential crosses for the four traits. Due

to the low predictability of predictor P, we did not use predictor P

alone but combined predictor P with other predictors to predict

hybrids with the AD-All model. The predicted phenotypic values

of the 21 945 crosses from 14 predictors are listed in Data S1.

Subsequently, the predicted phenotypic values were sorted in

descending order. The means and standard deviations of

predicted phenotypic values of the top 200 and bottom 200

selected crosses are displayed in Table 1. The average predicted

values of the top 200 crosses are far higher than those of the

bottom 200 crosses for all predictors of each trait. For example,

when predictor GTMP is used, the average predicted values of the

top 200 selection for YIELD, TILLER, GRAIN and KGW have been

increased by 46.4%, 40.6%, 90.7%, 41.4%, respectively,

compared with the average predicted phenotypic values of the

bottom 200. Compared to the predictor combinations without P,

Figure 3 Multiple comparisons of predictabilities

illustrated by boxplots. In each boxplot, different

letters (in lower case) above the group labels

indicate significant differences between groups.

Positions of the plus sign represent the mean

predictabilities. (a) Comparison of mean

predictabilities of 15 predictors across four traits

and two models. (b) Comparison of mean

predictabilities for the four traits across 15

predictors and two models. (c) Comparison of

mean predictabilities of the two models across 15

predictors and four traits. [Colour figure can be

viewed at wileyonlinelibrary.com]
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the predictor combinations with P provide higher predicted values

for the top 200 crosses and lower predicted values for the bottom

200 crosses. The predicted values for YIELD of the top 200 and

the bottom 200 crosses are 49.3 and 37.6 on average across the

seven predictor combinations without P, while the corresponding

values across the predictor combinations with P are 53.3 and

34.5. Theoretically, the selected top crosses using the predictor

combinations with P are expected to achieve a higher gain than

those without P.

Discussion

For the first time, we integrated parental phenotypic information

(phenome) into current multi-omic prediction models for hybrid

breeding of rice. The traits incorporated so far are all agronomic

traits. Advanced phenotype facilities allow investigators to

measure phenotypes of thousands of traits simultaneously. The

biological functions of many such traits may not be known, but

they can be used collectively to predict agronomic traits, just like

SNPs of genome. If the predictor includes a large array of

phenotypes, the method is called phenomic prediction. Although

hybrid prediction from the phenotypes of inbred parents alone is

not very effective (Smith, 1986), we found that combining

parental phenotypic data with other predictors considerably

improves hybrid prediction. Although P is a poor predictor for

YIELD, as expected from the literature (Guo et al., 2013; Schrag

et al., 2009), the predictor GP compared with G increases the

predictability by up to 41%. These gains may be attributed to

Figure 4 Multiple comparisons of mean predictabilities from nine models of incorporating predictor P across seven predictor combinations for four traits.

The seven predictor combinations are GP, TP, MP, GTP, GMP, TMP and GTMP. [Colour figure can be viewed at wileyonlinelibrary.com]
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additional genetic information and genotype–environment inter-

actions intrinsically captured by the phenotypic data (phenome).

Therefore, parental phenotypic information should not be

ignored in hybrid prediction. We also compared the predictive

performances of 15 predictor combinations for hybrid prediction

and found a significant interaction for predictabilities between

predictors and traits. Among the single source predictors, the

predictor M provides the best prediction for YIELD and GRAIN but

the worst prediction for TILLER and KGW. Such interactions

between predictors and traits have also been reported previously

Figure 5 Comparison of predictabilities from the predictor combinations with predictor P (red) and the combinations without predictor P (blue) using the

AD-All model to incorporate predictor P. The predictor combinations with P are GP, TP, MP, GTP, GMP, TMP and GTMP, and the combinations without P

are G, T, M, GT, GM, TM and GTM. [Colour figure can be viewed at wileyonlinelibrary.com]

Table 1 Average predictabilities of four traits for the top 200 and bottom 200 crosses selected from all 21 945 potential crosses using 14

predictor combinations

Predictor

YIELD TILLER GRAIN KGW

Top 200 Bottom 200 Top 200 Bottom 200 Top 200 Bottom 200 Top 200 Bottom 200

G 47.61 � 0.39 39.24 � 0.50 17.25 � 0.11 13.94 � 0.09 135.19 � 1.65 95.81 � 1.50 27.79 � 0.15 22.49 � 0.21

T 49.67 � 0.87 37.63 � 0.21 17.30 � 0.12 13.61 � 0.20 138.81 � 0.65 92.20 � 2.17 27.60 � 0.10 22.19 � 0.13

M 49.91 � 0.65 37.06 � 0.56 17.31 � 0.19 13.83 � 0.14 139.38 � 1.82 89.22 � 2.90 27.93 � 0.27 22.09 � 0.28

GT 49.18 � 1.17 37.83 � 0.25 17.34 � 0.18 13.61 � 0.16 137.39 � 0.79 91.82 � 1.77 27.80 � 0.18 22.22 � 0.21

GM 49.46 � 0.70 37.16 � 0.47 17.37 � 0.13 13.91 � 0.09 137.19 � 1.48 90.77 � 2.01 27.59 � 0.14 22.30 � 0.22

TM 49.99 � 0.57 37.26 � 0.46 17.35 � 0.14 13.62 � 0.19 139.36 � 1.73 90.02 � 3.01 27.63 � 0.16 22.11 � 0.23

GTM 49.46 � 0.70 37.16 � 0.47 17.38 � 0.15 13.63 � 0.14 137.58 � 1.49 90.87 � 2.26 27.67 � 0.16 22.19 � 0.22

GP 52.58 � 1.21 35.11 � 0.76 17.97 � 0.25 12.99 � 0.36 152.82 � 5.32 80.42 � 3.12 29.20 � 0.41 20.72 � 0.48

TP 54.69 � 1.68 33.67 � 0.93 18.18 � 0.25 12.95 � 0.27 156.29 � 5.89 77.43 � 3.84 29.20 � 0.41 20.80 � 0.46

MP 54.91 � 1.81 33.39 � 1.04 17.92 � 0.24 13.04 � 0.33 158.77 � 6.61 76.38 � 3.77 29.15 � 0.42 20.84 � 0.47

GTP 51.94 � 1.11 35.50 � 0.74 18.18 � 0.25 12.92 � 0.27 152.11 � 4.96 80.47 � 3.45 29.30 � 0.42 20.63 � 0.48

GMP 51.86 � 1.15 35.42 � 0.79 17.95 � 0.25 12.98 � 0.34 154.32 � 5.61 79.50 � 3.35 29.32 � 0.43 20.59 � 0.50

TMP 55.36 � 1.88 33.11 � 1.04 18.16 � 0.25 12.97 � 0.27 156.13 � 5.79 77.91 � 3.81 29.17 � 0.41 20.83 � 0.46

GTMP 51.86 � 1.15 35.42 � 0.79 18.16 � 0.25 12.92 � 0.27 152.93 � 5.07 80.18 � 3.54 29.26 � 0.42 20.69 � 0.48
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(Guo et al., 2016; Schrag et al., 2018). Although no single source

of predictors preforms the best universally across all traits,

combinations of these predictors provide consistently higher

predictabilities than any of the components. The predictor

combination GTMP is superior over the other combinations for

all traits. The downstream predictors are expected to capture

complex upstream interactions, so it is assumed that the

downstream predictors can be a supplement to the upstream

predictors. Essentially, genetic information flows from the

genome to the phenotype via transcriptome, proteome and

metabolome. To confirm the above assumption, we used

genomic data as a baseline for prediction and then successively

added transcriptomic, metabolomic and phenotypic data (i.e.

predictors G, GT, GTM and GTMP). Figure S2 shows that the

predictabilities for all traits increase from G to GTMP in turn. For

example, for YIELD, the predictabilities of GT, GTM and GTMP

increase by 38.9%, 61.6% and 69.7%, respectively, compared

with G. A similar trend is also observed for other traits. Evidently,

hybrid prediction benefits from the complementation of these

predictors.

Despite the benefits of combining multiple predictors for

hybrid prediction, the costs of obtaining omic data should not be

ignored in practical breeding. Therefore, it is necessary to balance

the improvement of predictability and cost. Results from this

study show the benefits of incorporating parental phenotypic

data for hybrid prediction. Combining genomic data and parental

phenotypic data seems to be a cost-effective choice for hybrid

prediction. Although the joint predictor GTMP has the highest

predictability, some problems exist in practical use of transcrip-

tome and metabolome. Generally, transcript and metabolite

profiles are dynamic and susceptible to environmental variation. A

particular challenge in prediction based on transcriptomic and

metabolomic data is the selection of appropriate tissue and

sampling time (Westhues and Schrag, 2017). Since metabolites

and transcripts suffer from measurement errors, multiple repli-

cates are needed to neutralize these errors and this will

substantially increase the cost. Furthermore, transcriptomic and

metabolomic data are not collected from hybrids, but indirectly

inferred from their parents. Unlike genomic data, the relationship

between the transcript and metabolite levels of parents with

those of hybrids is not clear, which may limit the application of

such data.

How to effectively incorporate parental phenotypic information

into the current prediction model is also an important issue. We

used nine different models to add predictor P and compared their

predictive performances. The result reveals that the AD-All and P-

All models possess overall good performance (Figure 4). The AD-

All model incorporates both the mid-parent value and the

parental difference. In parent breeding, the parents selection

should generate a population that meets the criterion of

usefulness (Utz et al., 2001). Usefulness takes into consideration

both the progeny mean and the genetic variance. Prediction of

the progeny mean is often based on the mid-parent value.

Phenotypic and genetic distances between parents have been

used to predict the genetic variance of progeny (Yao et al., 2018).

Obviously, both the mid-parent value and the parental difference

are important factors for parental selection in hybrid breeding. In

addition, the coding system for the AD-All model matches the

coding for the additive plus dominance model in genomic

prediction. Since the P-All model uses the original parental

phenotypic values as predictors, the relationship between the

hybrids and their parents can be directly estimated in the training

population. This model allows the two parents to have different

effects on the progeny, which may capture some of the maternal

effects from the female parent (cytoplasmic inheritance). In

general, both the AD-All and P-All models are viable choices for

incorporating predictor P. We also found that using parental

phenotypic data of all traits is more effective than using the target

trait alone. This may be contributed by the consideration of the

genetic and residual correlations among multiple traits. By using

genomic data and multiple auxiliary traits of hybrids to predict

target traits, Wang et al. (2017) found that the average

predictabilities of the multi-trait model with two auxiliary traits

and eight auxiliary traits are 6.4% and 26.7% higher than those

of the single-trait model, respectively. In the present study, only

four traits of parental lines were collected as predictor P. If

phenotypes of more traits are used for prediction, the pre-

dictability is likely to increase. Such a phenomic prediction

represents a new direction of hybrid breeding and further study

is needed.

Recently, several statistical models of genomic prediction have

been extended to multi-omic prediction, including BLUP, random

forest and SVM (Acharjee et al., 2016; Fu et al., 2012; Hu et al.,

2019). However, overfitting problems arise when thousands of

variables are trained over a relatively small sample. BLUP seems to

be the most effective approach in handling multi-omic data and

is least influenced by overfitting compared with LASSO, PLS, SVM

and SSVS (Wang et al., 2019). The BLUP method estimates the

polygenic variance rather than the effect of each variable.

Therefore, the computational efficiency of BLUP largely relies on

the number of variance components and sample size. For the

combined model with both additive and dominant effects,

multiple variance components need to be estimated, which has

considerably increased the computing time of BLUP. We have

demonstrated the effectiveness of the fast HAT method by using

two publicly available data sets of wheat and maize. We also

compared the predictabilities of the HAT method with CV under

n-fold and 10-fold for all predictor combinations with the

additive model (Table S3). Although the predictabilities obtained

from the HAT method are slightly higher than those of the CV

method, the Pearson correlation coefficients (r) between the 10-

fold CV and 10-fold HAT and between n-fold CV and n-fold HAT

for all the four traits are approximately equal to 1, indicating very

strong consistency between the two methods. The computa-

tional speed of the n-fold HAT method is approximately n times

faster than that of n-fold CV. To reduce the computation burden,

a modified multi-omic HAT method can be used instead of the

lengthy CV to measure the predictability of BLUP. Here, we

focused on the HAT method for BLUP, and we will try to modify

this method for other prediction models like LASSO and Bayesian

methods. Previously, Gianola and Schön (2016) extended a

similar approach to evaluating the predictability of RKHS and

Bayesian methods, but they did not validate its effectiveness in

multi-omic prediction.

Our findings have successfully demonstrated the distinct

benefit of incorporating parental phenotypic information for

hybrid prediction in rice breeding. This novel strategy of incor-

porating parental phenotype coupled with the continuous devel-

opment of high-throughput phenotyping platforms and

prediction models are expected to improve hybrid breeding

progress not only for rice but also for other crop species with

hybrid breeding as the main production mechanism.
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Experimental procedures

Rice data set

The rice population of 360 crosses was generated from three

rounds of pairing of 240 recombinant inbred lines (RILs) derived

from a cross between Zhenshan 97 and Minghui 63. The mating

design and genetic characteristics of the population were

described in detail previously (Hua et al., 2003; Hua et al., 2002).

Only 210 of the 240 RILs were available in the genomic,

transcriptomic, metabolomic and phenotypic data. Totally, 278

hybrids derived from the 210 RILs were used in hybrid prediction.

The phenotypic data of grain yield (YIELD), number of tillers per

plant (TILLER), number of grains per panicle (GRAIN) and 1000

grain weight (KGW) of the 278 hybrids and their parents were

collected from the experimental farm at Huazhong Agricultural

University in 1998 and 1999 (Hua et al., 2003). Each year, the field

experiment followed a randomized complete block design with

two replicates. For each replicate, eight plants from every cross

were sampled and the average trait values were treated as the

original data. The average phenotypic values of the four replica-

tions were used for data analysis. Genomic, transcriptomic and

metabolomic data were only collected from the 210 RILs. The

genomic data were represented by 1619 recombinant bins

inferred from 270 820 high-quality SNPs identified in the rice

genome (Xie et al., 2010; Yu et al., 2011). The transcriptomic data

with 24 994 gene expression traits were quantified from the flag

leaves. For each RIL, flag leaves were randomly selected from three

plants at the heading stage in 2008 with two biological replicates,

and the RNA samples of the two replicates were pooled for

expression profiling (Wang et al., 2014). The metabolomic data

contained 317 metabolites detected from germinated seeds and

683 metabolites detected from flag leaves harvested at the

heading dates. Seeds from 15 seedlings per line were harvested in

2009 and 2010with one biological replicate each year. In addition,

flag leaves from three random plants per line were harvested at the

heading dates in 2009 with two biological replicates (Gong et al.,

2013). The original transcriptomic and metabolomic data were

log2-transformed for further analysis.

Coding the hybrid predictors

Let M¼ Mjk and F ¼ Fjk be n�m predictor matrices for the

male and female parents of the corresponding hybrids, respec-

tively, where n is the sample size (n = 210 for RILs and n = 278

for hybrids) and m is the number of independent variables for

each set of predictors in the model (m = 1619, 24 994, 1000 and

4 for G, T, M and P, respectively). For the genomic data, the

numerical code of marker k (k = 1, 2,. . .,m) for individual j (j = 1,

2,. . ., n) is defined as Mjk ¼ Fjk ¼ 1 for the homozygote of the

major allele A1, Mjk ¼ Fjk ¼ 0 for the heterozygote A1A2, and

Mjk ¼ Fjk ¼�1 for the homozygote of the minor allele A2. The

additive genotype of the hybrid is defined asZjk ¼ 1

2
ðMjkþ FjkÞ,

and the dominance genotype is defined as Wjk ¼ 1

2
jMjk�Fjkj.

Assume that the genotypes of Zhenshan 97 and Minghui 63 are

A1A1 and A2A2, respectively. The corresponding hybrid predictors

are defined as

Zjk ¼

1¼ 1

2
ð1þ1Þ

0¼ 1

2
ð1�1Þ

�1¼�1

2
ð1þ1Þ

for A1A1

for A1A2

for A2A2

0
BBBBBB@

1
CCCCCCA

Wjk ¼

0¼ 1

2
j1�1j for A1A1

1 ¼ 1

2
j1�ð�1Þj for A1A2

0¼ 1

2
j�1�ð�1Þj for A2A2

0
BBBBBB@

1
CCCCCCA

(1)

The coding for transcriptomic, metabolomic and phenotypic

data is consistent with the coding for genomic data. The additive

coding of T, M and P is defined as Zjk ¼ 1

2
ðMjkþ FjkÞ, and the

dominance coding is defined asWjk ¼ 1

2
jMjk�Fjkj, whereMjk and

Fjk represent the measurements of the corresponding predictor

(T, M or P) for male and female parents, respectively. Details of

coding system were described in our previous study (Xu et al.,

2016). These predictors were standardized prior to the data

analysis.

Hybrid prediction model

The hybrid prediction model based on a single source of

predictors is defined as

y¼XβþZγaþWγdþ ɛ (2)

where y is an n�1 vector of the phenotypic values, X is an n × q

design matrix for the fixed effect β, Z ¼ Zjk is an n × m design

matrix for the additive effect γa (m × 1 vector), W ¼ Wjk is an

n × m design matrix for the dominance effect γd, and ɛ is a vector
of residual errors with an assumed Nð0, Iσ2Þ distribution. Assume

that γa ∼Nð0, 1
m
ϕ2
aÞ and γd ∼Nð0, 1

m
ϕ2
dÞ, where ϕ2

a and ϕ2
d are

polygenic variances of additive and dominance effects, respec-

tively. The expectation of y is EðyÞ¼Xβ and the variance–covari-
ance matrix is

varðyÞ¼V ¼ 1

m
ZZTϕ2

a þ
1

m
ZZTϕ2

dþ Iσ2 ¼Kaϕ
2
a þKdϕ

2
dþ Iσ2 (3)

where Ka and Kd are kinship matrices for additive and dominance

effects. The variance components ϕ2
a , ϕ

2
d, σ

2
� �

are estimated

with the restricted maximum likelihood (REML) method. The

whole sample is partitioned into a training sample and a test

sample. Parameters estimated from the training sample are used

to predict the phenotypic values of the test sample. Here, y1 is an

n1�1 vector of phenotypic values for the training sample and y2
is an n2�1 vector of phenotypic values for the test sample. The

partitioned model is written as

y1
y2

� �
¼ X1β

X2β

� �
þ Z1γa

Z2γa

� �
þ Z1γd

Z2γd

� �
þ ɛ1

ɛ2

� �
(4)
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and the variance–covariance matrix is partitioned accordingly as

var
y1

y2

" #
¼

V11 V12

V21 V22

" #
¼

Ka11 Ka12

Ka21 Ka22

" #
ϕ2
a

þ
Kd11 Kd12

Kd21 Kd22

" #
ϕ2
d þ

I 0

0 I

" #
σ2

(5)

where Ka11 and Kd11 are the kinship matrices for the training

sample, Ka22 and Kd22 are the kinship matrices for the test

sample, and Ka21 and Kd21 are the kinship matrices between

individuals in the test sample and individuals in the training

sample. The predicted phenotypic values for the test sample is

interpreted as the conditional expectation of y2 given y1, which is

expressed as

y
2
¼ E y2 y1ð Þð Þ¼X2 βþðKa21ϕ

a
2þKd21ϕ

d
2ÞV�1

11 ðy1�X1 βÞ (6)

The above prediction model includes additive and dominance

effects, so it is called the additive-dominance model. If only the

additive effect is involved, the model becomes the additive model.

When using multiple predictors, the fully combined model is

modified as

y¼XβþZGγGaþZTγTaþZMγMaþZPγPaþWGγGdþWTγTd
þWMγMdþWPγPdþ ɛ

(7)

where ZG, ZT, ZM and ZP are the design matrices for the additive

effects of G, T, M and P predictors, respectively; WG, WT, WM

and WP are the design matrices for the dominance effects of the

corresponding predictors. Let the polygenic variances of additive

effects γGa, γTa, γMa and γPa be ϕ
2
Ga, ϕ

2
Ta, ϕ

2
Ma and ϕ2

Pa, respectively,

and the polygenic dominance variances corresponding to the

dominance effects γGd, γTd, γMd and γPd be ϕ2
Gd, ϕ

2
Td, ϕ

2
Md and ϕ2

Pd,

respectively. The expectation of y is EðyÞ¼Xβ and the variance–-
covariance matrix is

varðyÞ¼V ¼KGaϕ
2
GaþKTaϕ

2
TaþKMaϕ

2
MaþKPaϕ

2
Pa

þKGdϕ
2
GdþKTdϕ

2
TdþKMdϕ

2
MdþKPdϕ

2
Pdþ Iσ2

(8)

The unknown parameters are estimated using the REML

method whose likelihood function is

LðθÞ¼�1

2
lnjV j�1

2
lnjXTV�1Xj�1

2
ðy�XβÞTV�1ðy�XβÞ (9)

Once the parameters are estimated based on the training

sample, the prediction of the test sample follows the procedure

described in equation (6) by integrating all variance components.

Such a prediction model is called the full model. Reduced models

include a subset of the four omic predictors.

The HAT method for multi-omic prediction

To simplify the argument, two predictors are considered in the

multi-omic prediction model. The prediction model with two

predictors is reformulated as

y¼Xβþξ1þξ2þ ɛ (10)

where y denotes a vector of the phenotypic values; Xβ represents

the fixed effects; ξ1 and ξ2 are random effects for two sets of

predictors with ξ1 ∼Nð0,K1σ2ξ1 Þ and ξ2 ∼Nð0,K2σ2ξ2 Þ distributions,
respectively; and ɛ∼Nð0, Iσ2Þ is a vector of residual errors. The

expectation of y is EðyÞ¼Xβ and the variance–covariance matrix of

y is varðyÞ¼V ¼K1σ2ξ1 þK2σ2ξ2 þ Iσ2, where K1 and K2 are kinship

matrices for the two sets of predictors. The parameters

β, σ2ξ1 , σ
2
ξ2
, σ2

n o
are estimated with the REML method. Let

ξ ¼ ξ1þξ2 ¼ y�X β be the ‘observed’ effects for predictors (these

are the phenotypic effects adjusted by the fixed effects), and let

ξ¼ ξ
1
þξ

2
¼y�X β be the predicted effects. By solving the mixed

model equations, ξ based on the whole sample is derived as

ξ¼ðK1σ
ξ1
2þK2σ

ξ2
2ÞV�1ðy�X βÞ¼ ðK1σ

ξ1
2þK2σ

ξ2
2ÞV�1ξ (11)

Corresponding to ξ¼Hξ, HR ¼ðK1σ
ξ1
2þK2σ

ξ2
2ÞV�1 should be

the HAT matrix of the random effects. For the K-fold HAT

method, the sample needs to be partitioned into K parts. Let

e¼ ξk�ξ
k
be the estimated residual error for the sample in the kth

part and HR
kk be the diagonal block of H

R for the sample in the kth

part (k = 1, 2,. . ., K). The predicted residual error for the kth part

is ek ¼ I�HR
kk

� ��1
e
k
, and this has been proved in (Xu, 2017).

Therefore, the predicted residual error sum of squares (PRESS) is

expressed as.

PRESS¼ ∑
K

k¼1

eTkek ¼ ∑
K

k¼1

e
k
T I�HR

kk

� ��2
e
k

(12)

The predictability is defined as

R2HAT ¼ 1�PRESS=SS (13)

Table 2 The formula for nine different fully combined models of genomic, transcriptomic, metabolomic and phenotypic data

Model Formula

Random y¼XβþZGγGaþZTγTaþZMγMaþZPγPaþWGγGdþWTγTdþWMγMd þWPγPdþ ɛ

A-One y¼Xβþ1

2
ðPM � OneþPF � OneÞ βaþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

D-One y¼Xβþ1

2
jPM � One�PF � OnejβdþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

AD-One y¼Xβþ1

2
ðPM � OneþPF � OneÞ βaþ

1

2
jPM � One�PF � OnejβdþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

P-One y¼XβþPM � OneβMþPF � One βFþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

A-All y¼Xβþ1

2
ðPM � AllþPF � AllÞ βaþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

D-All y¼Xβþ1

2
jPM � All�PF � AlljβdþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

AD-All y¼Xβþ1

2
ðPM � AllþPF � AllÞ βaþ

1

2
jPM � All�PF � AlljβdþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

P-All y¼XβþPM � AllβMþPF � All βFþZGγGaþZTγTaþZMγMaþWGγGdþWTγTdþWMγMdþ ɛ

The nine models include one random model (Random) and eight fixed models (A-One, D-One, AD-One, P-One, A-All, D-All, AD-All, P-All). The random model treats

parental phenotypic data as random variables and the fixed model treats parental phenotypic data as fixed variables.
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where SS is the total sum of squares of the y adjusted for the

mean. R2HAT is approximately equal to the commonly used

predictability measured by the squared correlation coefficient

between the predicted and observed phenotypic values (adjusted

by the fixed effects). Similar to CV, the n-fold HAT method is a

particular case of K-fold HAT with K = n. For the n-fold HAT,

PRESS is modified as.

PRESS¼ ∑
n

j¼1

e2j ¼ ∑
n

j¼1

e
j
2 I�Hjj

� ��2
(14)

where Hjj is the jth diagonal element of the HAT matrix. To avoid

sample partitioning errors, we used the n-fold HAT method to

evaluate the predictability in this study.

Incorporating phenotypic information of parental lines

The phenotypic data of parental lines are treated as random

variables in the prediction model described above, but such data

can also be considered as fixed variables. To explore the full

potential of parental phenotypic information, we incorporated

the phenotypic data using various models and compared their

predictive performances. These models include

ð1ÞP¼ 1
2ðPMþPFÞ βa, (2) P¼ 1

2 jPM�PFjβd, (3)

P¼ 1
2ðPMþPFÞ βaþ 1

2 jPM�PFjβdand (4) PMβMþPF βF, where P is

a set of phenotypic predictors, PM and PF are the phenotypic data

for the male and female parents of the corresponding hybrids; βa,
βd, βM and βF are the model effects. These four models are called

A, D, AD and P models, respectively. For the first three models,
1

2
ðPMþPFÞ represents the mid-parent value and

1

2
jPM�PFj

represents the difference between the two parents. Model (4),

the P model, does not involve any recoding but simply takes the

original phenotypic values of the parents as predictors. Addition-

ally, the PM and PF can be the parental phenotypic data from all

traits (PM � All and PF�All) or just from the target trait (PM�One and

PF�One). Here, a total of nine scenarios (Random, A-One, D-One,

AD-One, P-One, A-All, D-All, AD-All, P-All) were considered when

combining the phenotypic data of parental lines. The fully

combined models incorporating four sets of predictors are

summarized in Table 2. All statistical analyses were performed

using R software. The data and codes are available on GitHub

(https://github.com/yangxu89/GS2020).
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