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Abstract

The mechanisms through which tau and amyloid-beta (Aβ) accumulate in the brain of Alzheimer’s disease patients may
differ but both are related to neuronal networks. We examined such mechanisms on neuroimaging in 58 participants with
atypical Alzheimer’s disease (posterior cortical atrophy or logopenic progressive aphasia). Participants underwent Aβ-PET,
longitudinal tau-PET, structural MRI and resting-state functional MRI, which was analyzed with graph theory. Regions with
high levels of Aβ were more likely to be functional hubs, with a high number of functional connections important for
resilience to cascading network failures. Regions with high levels of tau were more likely to have low clustering coefficients
and degrees, suggesting a lack of trophic support or vulnerability to local network failures. Regions strongly functionally
connected to the disease epicenters were more likely to have higher levels of tau and, less strongly, of Aβ. The regional rate
of tau accumulation was associated with tau levels in functionally connected regions, in support of tau accumulation in a
functional network. This study elucidates the relations of tau and Aβ to functional connectivity metrics in atypical
Alzheimer’s disease, strengthening the hypothesis that the spread of the 2 proteins is driven by different biological
mechanisms related to functional networks.
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Introduction
Amyloid β (Aβ) extracellular senile plaques and intracellular
aggregations of hyperphosphorylated tau protein known as
neurofibrillary tangles are key pathological hallmarks of
Alzheimer’s disease (AD) (Braak and Braak 1991). Amyloid
and tau are present in the typical amnestic variant of the
disease as well as in atypical variants like logopenic progressive

aphasia (LPA) and posterior cortical atrophy (PCA), with
topographical patterns differing across variants, particularly
for tau (Ossenkoppele et al. 2016; Jones et al. 2017; Tetzloff et al.
2018; Sintini et al. 2020). Large-scale brain networks, such as
the default mode network, are also affected in AD, and again
differences exist across disease variants, with the involvement
of syndrome-specific networks like the language network for
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LPA and the higher visual network for PCA (Seeley et al. 2009;
Lehmann et al. 2013, 2015; Whitwell et al. 2015).

The notion that, in AD, neuronal networks are intertwined
with neurodegeneration and pathologic proteins has been vastly
discussed in the literature (Brettschneider et al. 2015). From
an imaging perspective, existing multimodal studies combine
resting-state functional MRI (fMRI) to measure task-free func-
tional connectivity across brain regions, structural MRI for atro-
phy and Aβ- and tau-PET (Zhou et al. 2012; Jones et al. 2017;
Mutlu et al. 2017; Cope et al. 2018; Hoenig et al. 2018; Ossenkop-
pele et al. 2019; Pereira et al. 2019; Franzmeier et al. 2020; Vogel
et al. 2020). Having different spatiotemporal patterns of deposi-
tion, Aβ and tau do not relate to functional connectivity in the
same way (Jones et al. 2017). This was also shown in a recent
animal model, demonstrating that the former induces neuronal
hyperactivity while the latter suppresses neuronal activity, and
the 2 together synergize to impair neuronal networks (Busche
et al. 2019). According to the cascading network failure (CNF)
hypothesis (Jones et al. 2016), large-scale brain networks are
implicated in the pathophysiology of tau deposition in AD and
amyloid is a mediator in this relationship, with tau deposition
patterns closely resembling those of functional networks (Jones
et al. 2017). The CNF model hypothesizes a tau-associated local
network failure followed by a global compensatory phenomenon
associated with Aβ: after global functional hubs saturate their
ability to offer resilience to local network failures, tau accumu-
lation within those failing networks rapidly accelerates (Jones
et al. 2016; Jones et al. 2017). Functional hubs are areas of the
cortex that contain a large number of functional connections
that are not unimodal, but instead integrate information from
diverse sources (Mesulam 1998; Sporns et al. 2007; Buckner
et al. 2009). This is why the CNF model predicts that func-
tional ‘hubness’ will associate with Aβ deposition irrespective
of the clinical phenotype, but tau accumulation will vary by
clinical phenotype within specific functional networks related
to the cognitive function impaired. Graph-theoretical analy-
sis of resting-state fMRI signal allows a quantification of the
topographical properties of the regions that compose the brain
networks involved in AD (Bullmore and Sporns 2009), which can
subsequently be used to model the spatial associations between
functional connectivity and pathological protein burden. Three
main alternatives to the CNF model exist on these associa-
tions that can be investigated with graph-theoretical metrics:
1) functional network failure via molecular spread (i.e., patho-
logic proteins spread through functional networks in a prion-
like manner), 2) metabolic susceptibility (i.e., functional hubs,
like the precuneus and posterior cingulate cortex, are more
susceptible to pathologic proteins because of high metabolic
demand), and 3) the trophic failure hypothesis (i.e., deteriorated
functional networks weaken inter-regional trophic support and
pathologic proteins spread more easily within regions lacking
trophic factors) (Zhou et al. 2012). On the other hand, the CNF
model predicts that all graph-theoretical metrics will be related
to measures of AD pathology, but these associations will be
different for Aβ (i.e., functional ‘hubness’) and tau (i.e., specific
functional network connections) and may vary by disease stage.
It is worth mentioning that these hypotheses on mechanisms
of protein spreading are not mutually exclusive and different
mechanisms could be simultaneously playing a role in the dis-
ease course. Imaging and experimental studies have shown that
neural activity stimulates Aβ production and therefore Aβ depo-
sition maps onto functional hubs (Cirrito et al. 2005; Buckner
et al. 2009; Bero et al. 2011; Mutlu et al. 2017; Busche et al.

2019), in agreement with the cascading failure model. On the
contrary, findings on the association between tau and functional
connectivity metrics are more complex. It has been suggested
that, in AD, tau spreads trans-neuronally (Clavaguera et al. 2009;
de Calignon et al. 2012; Liu et al. 2012; Ahmed et al. 2014),
possibly from disease-specific epicenters, since the topological
patterns of tau deposition in the brain closely resemble the
functional networks obtained using such epicenters as seeds in
resting-state fMRI analyses (Hoenig et al. 2018; Pereira et al. 2019;
Ossenkoppele et al. 2019). Disease epicenters may be intended as
preferential locations of pathology accumulation and sources of
pathology spreading but it is unknown whether they represent
the very genesis point of the disease. A positive correlation
between regional tau pathology and the number and strength
of regional functional connections has also been reported in
a study that employed the graph-theoretical approach (Cope
et al. 2018). A recent longitudinal study has suggested that
the accumulation of tau pathology occurs through functional
networks, rather than spatial proximity (Franzmeier et al. 2020),
which is a concept also supported by observations in animal
models (Clavaguera et al. 2009; Liu et al. 2012; de Calignon et al.
2012; Ahmed et al. 2014).

The majority of existing studies are cross-sectional and
focused on typical amnestic AD, while little is known about
associations between pathologic protein deposition and resting-
state functional connectivity in the atypical presentations of the
disease. This is a key research question, since the mechanisms
of protein spreading through various brain networks can
potentially explain the heterogeneity in the neurodegeneration
patterns of AD variants. As we and others have reported,
cross-sectional tau maps onto cognitive dysfunctions and
discriminates well between AD variants (Ossenkoppele et al.
2016; Tetzloff et al. 2018; Sintini et al. 2020), while longitudinal
accumulation partially converges to common areas (Sintini
et al. 2019). How these patterns of tau deposition relate to
the graph-theoretical properties of the brain regions that they
cover has not yet been studied in atypical AD. Atypical AD
also provides an ideal cohort to assess these relationships
since tau appears to be a strong driver of neurodegeneration
(Sintini et al. 2018), with less influence of other proteins, such
as the TAR DNA binding protein of 43 kDa (Sahoo et al. 2018),
which plays an important role in typical AD, particularly in
older patients (Josephs et al. 2014). In addition, the CNF model
also makes testable predictions based on phenotype in that
amyloid will have the same relationship to functional ‘hubness’
across phenotypes, but tau will vary its relationship to match
the functional network that is impaired in an individual roughly
captured by clinical phenotype.

We aimed to address these questions in a cohort of 58 partic-
ipants with biomarker-supported diagnoses of PCA or LPA, using
cross-sectional resting-state fMRI, Aβ-PET and longitudinal tau-
PET images. We hypothesized that regional Aβ, baseline tau
and longitudinal rates of change in tau will relate differently to
graph-theoretical and functional connectivity metrics.

Materials and Methods
Participants

Fifty-eight atypical AD participants (31 meeting clinical criteria
for PCA; Crutch et al. 2012 and 27 meeting clinical criteria for LPA;
Gorno-Tempini et al. 2011) were included in the study. Partici-
pants were recruited by the Neurodegenerative Research Group
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(NRG; PI’s Josephs and Whitwell) between 2016 and 2019 and
underwent structural MRI and resting-state fMRI, [11C]Pittsburgh
Compound B PET for Aβ, and [18F]flortaucipir PET for tau. Thirty-
four participants (15 PCA and 19 LPA) also underwent 1-year
follow-up structural MRI and [18F]flortaucipir PET. The Aβ PET
scans were analyzed to determine Aβ positivity as previously
described (Jack et al. 2017) and all participants were determined
to be Aβ(+). Participants were excluded from the study if they
had a stroke or tumor that could explain their symptoms, if
they had poor vision (20/400), if MRI was contraindicated (e.g.,
metal in head, cardiac pace maker), if there were conditions that
may confound brain imaging studies (e.g., structural abnormal-
ities, including subdural hematoma or intracranial neoplasm),
or if they met specific criteria for another neurodegenerative
disorder. All participants underwent a clinical and neuropsy-
chological evaluation (Tetzloff et al. 2018), including: Montreal
Cognitive Assessment Battery (MoCA) to assess general cogni-
tive function; Clinical Dementia Rating (CDR) scale to assess
functional impairment; Boston Naming Test (BNT) to assess
naming; Boston Diagnostic Aphasia Examination (BDAE) repe-
tition to assess sentence repetition; Wechsler Memory Scale-
III (WMS-III) Visual reproduction test to assess visual memory;
Visual Object and Space Perception Battery (VOPS) incomplete
letters test to assess visual perception. Apolipoprotein E (APOE)
genotyping was performed on 44 participants. Demographics
and clinical scores were compared between PCA and LPA with
t-test or Fisher’s exact test. Twelve cognitively unimpaired (CU)
individuals were also recruited by the NRG and included in the
study as a control group. The median age of the CU individuals
was 59 (inter-quartile range: 57, 64); 8 were female; the median
MoCA score was 27 (inter-quartile range: 25, 28). The study was
approved by the Mayo Clinic IRB, and all participants provided
written informed consent to participate in this study.

Image Acquisition

All PET scans were acquired using PET/CT scanners (GE Health-
care, Milwaukee, Wisconsin) operating in 3D mode. For tau-PET,
an intravenous bolus injection of approximately 370 MBq (range
333–407 MBq) of [18F]flortaucipir was administered, followed by a
20-min PET acquisition performed 80 min after injection. For Aβ-
PET, participants were injected with [11C]Pittsburgh Compound B
(PiB) of approximately 628 MBq (range 385–723 MBq) and, after a
40–60-min uptake period, a 20-min PiB scan was obtained. Both
PiB and flortaucipir PET scans consisted of four 5-min dynamic
frames following a low dose CT transmission scan. Standard
corrections were applied. Emission data were reconstructed into
a 256 × 256 matrix with a 30-cm field of view (in-plane pixel
size = 1.0 mm). Flortaucipir PET scans were performed at base-
line and at 1-year follow-up. All participants also underwent
a 3 T head MRI protocol at both time-points that included a
magnetization prepared rapid gradient echo (MPRAGE) sequence
(TR/TE/TI, 2300/3/900 ms; flip angle 8◦, 26-cm field of view;
256 × 256 in-plane matrix with a phase field of view of 0.94,
and slice thickness of 1.2 mm; Jack et al. 2008) and resting-
state gradient echo-planar imaging (TR/TE = 3000/30 ms, 90◦ flip
angle, slice thickness 3.3 mm, in-plane resolution 3.3 mm, and
160 volumes). Participants were instructed to keep their eyes
open during the resting-state fMRI scanning. The MRI scans
were performed on one of 2 GE scanners (GE Healthcare, Milwau-
kee, Wisconsin) with identical protocols. The MRI scans were
performed a median of 1 day from the PET scans at both baseline
and follow-up.

Image Processing: Structural MRI and PET

Each PET image was rigidly registered to its corresponding
MPRAGE using SPM12 (Wellcome Trust Centre for Neuroimag-
ing). Standard uptake value ratios (SUVR) were calculated
normalizing each Aβ- and tau-PET image to the cerebellar crus
gray matter. Using ANTs (Avants et al. 2008), the Brainnetome
atlas (http://www.brainnetome.org/), which has been validated
for both structural and functional images (Fan et al. 2016; Brown
et al. 2019), was propagated to the native MPRAGE space and
median Aβ and tau SUVR were calculated in each region-of-
interest (ROI), in the gray and white matter segmentations
binarized at 0.5. The Brainnetome atlas has 246 cortical and
subcortical ROIs; however, in our analyses, we included only
the 210 cortical ROIs in the frontal lobe (superior, middle and
inferior frontal gyri, orbital gyrus, precentral gyrus, paracentral
lobule), insular lobe, limbic lobe (cingulate gyrus), temporal lobe
(superior, middle and inferior temporal gyri, fusiform gyrus,
parahippocampal gyrus, posterior superior temporal sulcus),
parietal lobe (superior and inferior parietal lobule, precuneus,
postcentral gyrus), and occipital lobe (medio-ventral and lateral
occipital cortex). Subcortical ROIs were excluded from the main
analyses due to the issue of off-target binding of the tau-PET
tracer; additionally, atypical AD pathology affects primarily
the cortex. Masking atlas ROIs based on the segmentation
avoids outlying voxels that are mostly non-tissue, and it thus
reduces the effects of partial volume. Tissue probabilities were
determined for each MPRAGE using Unified Segmentation
(Ashburner and Friston 2005) in SPM12, with the Mayo Clinic
Adult Lifespan Template (MCALT) tissue priors and settings
(Schwarz et al. 2017). Annualized rates of change in tau SUVR
were calculated as the difference in regional SUVR between
follow-up and baseline, divided by the scan interval in years.

Image Processing: Functional MRI

All functional images were preprocessed using CONN functional
connectivity toolbox (www.nitrc.org/projects/conn). The pre-
processing included discarding the first 10 volumes to obtain
steady-state magnetization, slice time correction, re-alignment
and unwarp (i.e., subject motion estimation and correction),
outliers detection (i.e., excessive head motion), segmentation
and direct normalization to MNI template space, smoothing
using spatial convolution with a Gaussian kernel of 6-mm full
width half-maximum, nuisance regression (white matter and
CSF signal; head-motion parameters from the re-alignment
step and their first derivatives), bandpass filtering in the 0.009–
0.08-Hz frequency. The fMRI data sets with more than 3 mm
of absolute translational movement or 3◦ of absolute rotational
movement were excluded from the analyses. From the original
data (60 participants and 13 CU), 3 outliers (2 participants and
one CU individual) were detected and excluded. No significant
differences were observed across groups (PCA, LPA, CU) on
the mean 6 head motion parameters (x = 0.12, 0.11, 0.10 mm,
P = 0.78; y = 0.25, 0.14, 0.11 mm, P = 0.07; z = 0.30, 0.35, 0.30 mm,
P = 0.75; pitch = 0.4◦, 0.3◦, 0.3◦, P = 0.60; roll = 0.2◦, 0.2◦, 0.2◦,
P = 0.63; yaw = 0.3◦, 0.4◦, 0.2◦, P = 0.31). After preprocessing, the
functional images were parcellated with the Brainnetome atlas,
as the PET images. The mean blood-oxygen-level-dependent
(BOLD) time series within each ROI of the atlas was extracted,
and the Pearson’s R correlation coefficients were calculated
across all ROI pairs. The association matrices were generated
by transforming the R coefficients with the Fisher’s R-to-Z
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transformation. Functional connectivity between each pair
of ROIs was therefore quantified by their Z value. For each
participant, a non-directional unweighted adjacency matrix was
computed by thresholding the association matrix, interpreting
each ROI as a node, and each thresholded functional connection
as an edge. We computed the adjacency matrices using a
relative network density threshold of 0.05, meaning that in each
participant a fixed percentile (i.e., 5%) of edges was included.
This threshold was selected because it jointly maximized the
difference between global efficiency of our networks relative to
lattice graphs as well as their local efficiency relative to random
graphs, leading to brain networks with small-world properties.
This optimization was performed with the CONN toolbox. A
graph-theoretical analysis was then performed to investigate
the topological properties of each ROI within the graph. The
graph-theoretical metrics that were assessed were the degree,
which is the number of functional connections of each node and
provides a proxy for functional ‘hubness’, and the clustering
coefficient, which characterizes the level of connections among
all nodes within a node neighboring sub-graph and provides
a proxy for trophic support. All the results presented here
were obtained using the 0.05 threshold when computing the
graph-theoretical metrics; however, to test their robustness, we
repeated the main analyses with different threshold that led to
more sparse (0.02) and less sparse networks (0.10 and 0.15) and
these results are reported as supplemental.

Statistical Analyses

The group-average Fisher’s R-to-Z transformed association
matrices of the CU individuals and PCA and LPA participants
were compared by a pairwise subtraction. PCA and LPA func-
tional connectivity matrices were also compared to the matrices
derived from fMRIs of 50 young healthy individuals (age 21–
35) from the Human Connectome Project (HCP) (http://www.hu
manconnectomeproject.org/), using t-tests with FWE multiple
comparisons correction. HCP images were pre-processed using
the same pipeline applied to the atypical AD participants. To
describe the spatial patterns of tau and Aβ deposition, the
group-average PiB and flortaucipir SUVR voxel-based maps for
PCA and LPA were created. To test the validity of the 3 protein
spreading hypotheses (functional ‘hubness’, trophic failure and
trans-neuronal spread), we computed Pearson’s R correlation
coefficients on syndrome-specific group-average data, similarly
to previous studies (Cope et al. 2018; Franzmeier et al. 2020).
The first variables in the correlations were group-average
regional values of: 1) cross-sectional PiB SUVR, 2) cross-sectional
flortaucipir SUVR, and 3) rates of change in flortaucipir SUVR.
The second variables were group-average regional values of: 1)
degree, for the functional ‘hubness’ hypothesis; 2) clustering
coefficients, for the trophic failure hypothesis; and 3) functional
connectivity to a syndrome- and protein-specific epicenter,
for the trans-neuronal spread hypothesis. Epicenters were
defined as the ROIs with the highest SUVR within the group
at baseline (Mutlu et al. 2017; Ossenkoppele et al. 2019). As
an alternative approach, similarly to previous studies (Zhou
et al. 2012; Brown et al. 2019), we identified as epicenters those
ROIs whose functional connectivity to the other regions was
best correlated to regional protein SUVR and these results are
reported as supplemental. The epicenter analyses were repeated
using the first 5 ROIs with the highest SUVR or that led to highest
correlations, to investigate their stability. Correlations were
computed across all the cortical ROIs. Correlations including

subcortical ROIs (amygdala, hippocampus, basal ganglia,
thalamus) are reported as supplemental. The correlation
analyses between protein SUVR and graph-theory metrics
were repeated using group-average degrees and clustering
coefficients derived from HCP young healthy individuals, in
order to better understand the role of temporal disease factors.
Linear regression on graph-theory metrics and protein SUVR
were also computed within each lobe and each network. For the
network-level correlations, which are reported as supplemental,
PET and graph-theory data were obtained using the 400 cortical
ROIs of the Schaefer atlas, organized in 7 functional networks
(visual, somatomotor, default mode, control, dorsal attention,
salience, limbic) (Schaefer et al. 2018). The rates of change in
tau SUVR were also correlated to the tau-weighted functional
connectivity metric proposed in a recent study (Franzmeier
et al. 2020) to test the trans-neuronal spread hypothesis. Tau-
weighted functional connectivity is calculated, for each ROI, as
the mean of functional connectivity values (Z values) between
the given ROI and all the other ROIs, divided by the baseline
flortaucipir SUVR of all the other ROIs. Unlike the study that
proposed this method (Franzmeier et al. 2020), we avoided
dividing by the Euclidean distances between the ROIs (i.e.,
tau- and distance-weighted functional connectivity) in order
to model the hypothesis that tau spreads through functional
connectivity, rather than proximity. Given that brain biological
regional quantities suffer from autocorrelation, we compared
all the group-level correlations P values with: 1) the exact
P values obtained using 1000 null-model functional connec-
tivity matrices, i.e., shuffling mean LPA and PCA functional
connectivity matrices while preserving weight- and degree-
distribution using functions of the Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/); 2) the exact P values
derived from 1000 surrogate brain maps with autocorrelated
spatial heterogeneity generated with BrainSMASH (Burt et al.
2020), i.e., shuffling SUVR maps while maintaining spatial
autocorrelation in the data. We also computed the exact
P values derived from 1000 spatially naïve surrogate brain
maps generated with BrainSMASH, i.e., randomly shuffling
SUVR maps. Within-subject correlations were also computed
as well as between-subject correlations across the average
cortex values of SUVR and clustering coefficient. The between-
subject correlation was not computed for the degree, since, by
definition, the average degree is constant across participants
(i.e., 5% of functional connections are taken into account to
build each graph). The group-average correlations involving
the degree were repeated using a different measurement of
the total functional connectivity of each node. To obtain the
group-level measure of this ‘total flow’ or ‘global connectivity’
(Zhou et al. 2012; Mutlu et al. 2017), the t-scores from group-level
one-sample t-tests were summed for each node, thresholding
at P < 0.05 after FWE correction (for baseline values) and at
P < 0.001 (for participants that had a follow-up scan). We further
examined the process of tau accumulation using a mixed-effect
model that predicted the rates of change in tau from baseline
tau and Aβ levels, tau-weighted functional connectivity and the
degree across all cortical ROIs of the 34 atypical AD participants
with follow-up images. All the variables were normalized, and
2 interaction terms were also included to model the interaction
between baseline tau and Aβ levels and between degree and
tau-weighted functional connectivity. For comparison purposes,
the mixed-effect model was also developed using tau- and
distance-weighted functional connectivity (Franzmeier et al.
2020). The mixed-effect model was developed in R version 3.6.0
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Table 1 Demographics and clinical scores

PCA (N = 31) LPA (N = 27) P

Female sex, N (%) 21 (68%) 17 (63%) 0.78
Age at baseline (years) 62 (59, 68) 67 (61, 72) 0.10
Disease duration (years) 4 (3, 5) 2.5 (2, 3) 0.17
Left handedness, N (%) 4 (13%) 4 (15%) 1.0
Global PiB SUVR 2.45 (2.20, 2.60) 2.42 (2.19, 2.90) 0.28
APOE ε4 frequency, N (%) 11 (48%)∗ 8 (38%)∗∗ 0.56
MoCA (/30) 16 (12, 21) 19 (16, 22) 0.86
CDR Dementia Staging Instrument (/18) 3 (2, 6) 1.5 (1, 3) 0.07
BNT 12 (10,14) 11 (6, 13) 0.04
BDAE repetition 9 (6, 10) 7 (6, 8) 0.006
WMS-III VR% retention MOANS 8 (5, 10) 9 (7, 12) 0.06
VOSP letters 13 (5, 16) 19 (18, 20) <0.001

Notes: Data are shown as median (inter-quartile range), or N (%). PiB SUVR, Pittsburgh Compound B standardized uptake value ratio; APOE, Apolipoprotein E; MoCA,
Montreal Cognitive Assessment Battery; CDR, Clinical Dementia Rating (sum of boxes); BNT, Boston Naming Test; BDAE, Boston Diagnostic Aphasia Examination;
WMS-III VR% retention MOANS, Wechsler Memory Scale-III Visual Reproduction % Mayo Older American Normative scale; VOSP, Visual Object and Space Perception
battery. P values were obtained with t-test for continuous variables and Fisher’s exact test for categorical variables. Significant P values are bolded
∗Data available for 23 participants
∗∗Data available for 21 participants

(http://www.r-project.org/), while all the other analyses were
performed in Matlab 2018a (The Mathworks, Inc.). In the mixed-
effect model, the T statistics were calculated with the R package
lme4, while the P values were calculated with the R package
arm.

Results
Participants

Demographics and clinical scores of the 2 syndromes are
reported in Table 1. LPA participants performed significantly
worse than PCA in BNT (P = 0.04) and BDAE repetition (P = 0.006)
and significantly better in VOSP letters (P < 0.001).

Regional Functional Connectivity

Atypical AD participants showed a general decline in the
strength of within- and between-lobe functional connections
relative to the older CU individuals (Fig. 1A,B). Similarly, relative
to HCP young healthy individuals, PCA and LPA participants
showed marked diffuse reductions in functional connectivity,
particularly in the occipital and limbic lobes for PCA and in the
temporal lobe for LPA (Supplementary Fig. 1). Both phenotypes
also showed regions of increased functional connectivity
compared to both HCP individuals (Supplementary Fig. 1) and
older CU individuals (Fig. 1B), particularly in the frontal and
parietal lobes. Differences between the PCA and LPA groups
were more subtle, with PCA having weaker connections in the
occipital lobe (in blue) and LPA having weaker connections in the
frontal lobe (in red) (Fig. 1B, ‘PCA minus LPA’). Mean functional
connectivity for each group (PCA, LPA, CU) are reported as
supplemental (Supplementary Fig. 2). Mean connectivity was
lower for participants relative to CU individuals, particularly for
PCA (P = 0.004) and less strikingly for LPA (P = 0.06); no differences
were found between PCA and LPA (P = 0.30).

Baseline Associations between Tau, Aβ

and Connectivity

All correlations reported here were obtained with a graph-theory
threshold of 0.05 while correlations obtained using 0.02, 0.10

and 0.15 are reported in Supplementary Table 1. Figure 2A shows
the average voxel-based maps of baseline PiB and flortaucipir
SUVR in PCA and LPA for reference. PiB SUVR was positively
associated to the degree (PCA: R = 0.51, P < 0.001; LPA: R = 0.38,
P < 0.001), in support of the functional ‘hubness’ hypothesis for
Aβ. An analogous positive association was found when using
the degree calculated from the functional connectivity matrices
of the young healthy HCP individuals (Supplementary Table
2). PiB SUVR was also positively associated to the clustering
coefficient in PCA (R = 0.30, P < 0.001). The correlation between
PiB SUVR and degree in LPA was not significant when com-
pared to either the null-models of functional connectivity or the
surrogate autocorrelated brain SUVR maps, while, on the con-
trary, the same correlation in PCA survived both autocorrelation
tests (Table 2). Flortaucipir SUVR was negatively associated to
the degree (PCA: R = −0.16, P = 0.02; LPA: R = −0.20, P = 0.004) and
the clustering coefficient (PCA: R = −0.15, P = 0.03; LPA: R = −0.34,
P < 0.001), in support of the trophic failure or vulnerability to
failure hypothesis for tau. However, among these correlations,
only the one between flortaucipir SUVR and clustering coef-
ficient in LPA survived the autocorrelation tests (Table 2). A
negative correlation between tau and clustering coefficient in
LPA was also present when using HCP functional connectiv-
ity, while, on the contrary, the negative correlation between
tau and degree was not present in either phenotype (Supple-
mentary Table 2). The positive association between Aβ and
degree and the negative one between tau and clustering coef-
ficient were consistent across graph-theory thresholds for both
phenotypes (Supplementary Table 1). The functional ‘hubness’
hypothesis for Aβ was strengthened by the correlation of PiB
SUVR with the ‘total flow’ (PCA: R = 0.35, P < 0.001; LPA: R = 0.31,
P < 0.001), while the same measure had a negative association
to flortaucipir SUVR (PCA: R = −0.41, P < 0.001; LPA: R = −0.29,
P < 0.001) (Supplementary Fig. 3). The within-subject correla-
tions performed across all ROIs of each participant revealed
extensive inter-subject variability but confirmed the significant
differences (P < 0.001) between tau and Aβ associations to degree
and clustering coefficient, with Aβ having more positive asso-
ciations to these metrics and tau more negative associations
(Fig. 2C). For tau, part of the variability in the within-subject

http://www.r-project.org/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa319#supplementary-data
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Figure 1. Group-average Fisher’s Z transformed functional connectivity matrix (i.e., association matrix) for CU, PCA and LPA (A). Pairwise subtractions of the matrices
(B).

correlations was explained by the characteristics of the patients:
patients that were younger, with a more aggressive disease and
more extensive cortical tau pathology, had less negative correla-
tions between tau and degree or tau and clustering coefficient,
potentially due to saturation effect (Supplementary Fig. 4). These
trends were not observed for the within-subject amyloid correla-
tions, potentially due to amyloid being extremely widespread. At
the whole-brain level, a negative correlation between the mean
cortex SUVR and the mean clustering coefficient was present
for tau (R = −0.27, P = 0.04), while no significant relationship was
found for Aβ (R = 0.22, P = 0.09) (Fig. 2D). Differences in these
relationships existed across lobes and networks (Table 3 and
Supplementary Table 3). The positive association between Aβ

and degree was strongest in the limbic lobe and in the limbic
network for both variants. The negative association between tau
and clustering coefficient was strongest in the occipital and lim-
bic network for PCA and in the parietal lobe and somatomotor
network for LPA. PCA had positive associations between tau and
clustering coefficient in the limbic, insular and temporal lobe,
which led to a low R2 calculated across all the cortical ROIs
(Table 3).

The disease epicenters were located in the right precuneus
(PCA) and left precuneus (LPA) for Aβ and in the left lateral
occipital (PCA) and left posterior superior temporal sulcus (LPA)
for tau (Fig. 3A). The regional burden of both Aβ and tau was
proportional to the strength of the regional functional con-
nectivity to the disease epicenters. However, the proportion-
ality was considerably stronger in tau (PCA: R = 0.71, P < 0.001;
LPA: R = 0.58, P < 0.001) than in Aβ (PCA: R = 0.30, P < 0.001; LPA:
R = 0.18, P = 0.009), pointing to the validity of functional network
failure and the trans-neuronal spread hypothesis for tau more

than Aβ. All these correlations survived the comparison with
null-models of functional connectivity (Table 2). These correla-
tions exhibited similar trends when correcting for the Euclidean
distance of each ROI to the epicenter (Fig. 3B). This same trend
was confirmed by the within-subject correlations, which were
statistically higher for tau than Aβ when using subject-specific
epicenters, but not when using group-level epicenters (Fig. 3C).
Supplementary Table 4 shows the correlations obtained using
as epicenters the 5 ROIs with highest PiB and flortaucipir SUVR:
while regions with similarly high levels of tau led to similarly
high correlations, the same was not true for Aβ. Supplementary
Table 5 shows the results obtained using an alternative defini-
tion of epicenters, i.e., those ROIs whose functional connectivity
was most strongly correlated to the other regions’ SUVR. For
tau, such epicenters were located in the expected ‘signature’
regions, with high tau burden (occipital for PCA and left temporal
for LPA), but the same was not true for Aβ. The combined
findings from Figure 3, Supplementary Tables 4 and 5 support
the notion that tau spreads within the functional networks of
regions with high tau levels. Including the subcortical ROIs did
not alter the results obtained for Aβ and tau in the cortical
regions (Supplementary Fig. 5).

Associations between Connectivity and Longitudinal
Tau Accumulation

The rate of change in flortaucipir SUVR was averaged across
the 15 PCA and 19 LPA participants that had follow-up data
and the voxel-based maps revealed high rates of accumulation
in the bilateral frontal regions (PCA, LPA), lateral temporal
regions (PCA, LPA), right medial occipital regions (PCA), and right

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa319#supplementary-data
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Figure 2. Group-average PiB and flortaucipir SUVR for PCA and LPA (A). Group-average ROI-level associations of PiB SUVR and flortaucipir SUVR with degree and
clustering coefficient (B). Within-subject ROI-level Fisher’s Z transformed correlations between SUVR, degrees and clustering coefficients (C). Whole-cortex clustering

coefficient versus whole-cortex PiB and flortaucipir SUVR (D).

temporo-parietal regions (LPA) (Fig. 4A). In both phenotypes,
the tau-weighted functional connectivity was the metric most
strongly correlated to the regional rates of change in tau (PCA:
R = 0.24, P < 0.001, LPA: R = 0.30, P < 0.001) (Fig. 4B). In LPA, ROIs
that experienced higher rates of tau accumulation were likely
to have higher degree (R = 0.23, P < 0.001) (Fig. 4B) and higher
‘total flow’ (R = 0.21, P = 0.003) (Supplementary Fig. 3). These
relationships were not present in PCA. The rate of change in
tau was not correlated to the clustering coefficient in either
phenotype (Fig. 4B). Among these correlations on the rates
of change in tau, only the one with tau-weighted functional

connectivity in LPA survived the comparison with null-models
of functional connectivity (Table 2). In LPA, the rate of change in
tau and the functional connectivity to the disease epicenter (i.e.,
ROI with highest baseline flortaucipir SUVR) were moderately
positively correlated (R = 0.16, P = 0.02); however, interestingly,
in PCA they were negatively correlated (R = −0.17, P = 0.017)
(Fig. 4B). These correlations between tau rates of change and
functional connectivity to the epicenters were significant
when compared to the null models of functional connectivity
(Table 2). The ROIs whose functional connectivity led to the
highest correlation to the rates of change in tau throughout

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa319#supplementary-data
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Table 2 P values of the correlation between variable 1 and variable 2 obtained from: traditional Pearson’s correlations between variable
1 and variable 2, without taking into account autocorrelation; exact P values derived from the comparison with the null distribution
Pearson’s R coefficients calculated from variable 1 and 1000 null-model FC matrices, i.e., shuffling mean LPA and PCA functional connectivity
matrices while preserving weight- and degree-distribution; exact P values derived from the comparison with the null-distribution Pearson’s R
coefficients calculated from variable 2 and 1000 surrogate brain maps with autocorrelated spatial heterogeneity generated with BrainSMASH,
i.e., shuffling SUVR maps while maintaining spatial autocorrelation in the data; exact P values derived from the comparison with the null-
distribution Pearson’s R coefficients calculated from variable 2 and 1000 spatially naïve surrogate brain maps generated with BrainSMASH, i.e.,
randomly shuffling SUVR maps

Variable 1 Variable 2 Phenotype Pearson’s R, P value Exact P value
from null-model
FC matrices

Exact P value
from surrogate
autocorrelated
SUVR maps

Exact P value
from surrogate
spatially naïve
SUVR maps

Aβ Degree LPA R = 0.38, P < 0.001 P = 0.14 P = 0.118 P < 0.001
PCA R = 0.51, P < 0.001 P < 0.001 P = 0.018 P < 0.001

Clustering
Coefficient

LPA ns — — —

PCA R = 0.30, P < 0.001 P < 0.001 P = 0.131 P < 0.001
epicenter FC LPA R = 0.18, P = 0.009 P = 0.01 P = 0.138 P = 0.004

PCA R = 0.30, P < 0.001 P < 0.001 P = 0.034 P < 0.001
Tau Degree LPA R = −0.20, P = 0.004 P = 0.367 P = 0.434 P = 0.004

PCA R = −0.16, P = 0.02 P = 1 P = 0.466 P = 0.023
Clustering
Coefficient

LPA R = −0.34, P < 0.001 P < 0.001 P = 0.045 P < 0.001

PCA R = −0.15, P = 0.03 P = 0.188 P = 0.423 P = 0.028
epicenter FC LPA R = 0.58, P < 0.001 P < 0.001 P < 0.001 P < 0.001

PCA R = 0.71, P < 0.001 P < 0.001 P < 0.001 P < 0.001
Tau rates of
change

Degree LPA R = 0.23, P < 0.001 P = 0.175 P = 0.242 P < 0.001

PCA ns — — —
Clustering
Coefficient

LPA ns — — —

PCA ns — — —
Tau weighted FC LPA R = 0.30, P < 0.001 P < 0.001 P = 0.063 P < 0.001

PCA R = 0.24, P < 0.001 P = 1 P = 0.227 P = 0.001
epicenter FC LPA R = 0.16, P = 0.023 P = 0.011 P = 0.225 P = 0.017

PCA R = −0.17, P = 0.017 P = 0.020 P = 0.45 P = 0.018

Notes: P values less than 0.05 are bolded. ns, not significant; FC, functional connectivity

Table 3 Lobe-level linear regression on Aβ and degree and on tau and clustering coefficient (P < 0.05)

Amyloid and degree Tau and clustering coefficient

PCA LPA PCA LPA

All cortical ROIs R2 = 0.27 R2 = 0.14 R2 = 0.02(−) R2 = 0.11(−)
Frontal ns ns R2 = 0.10(−) R2 = 0.21(−)
Insular R2 = 0.50 ns R2 = 0.37 ns
Limbic R2 = 0.75 R2 = 0.55 R2 = 0.43 ns
Temporal R2 = 0.32 R2 = 0.33 R2 = 0.11 ns
Parietal ns ns R2 = 0.24(−) R2 = 0.47(−)
Occipital ns ns R2 = 0.49(−) R2 = 0.23(−)

Notes: ns, not significant. R-squared are reported. The (−) denotes a negative relationship

the cortex were located in the inferior temporal and frontal
lobes for PCA and in the frontal and parietal lobes for LPA
(Supplementary Table 5). The within-subject correlations of
the rates of tau accumulation with functional connectivity
metrics did not show statistically significant patterns (Fig. 4C).
This could be due to the annual rates of change in tau SUVR
being too subtle to show a clear within-subject pattern, as
in the group-average analyses. However, the mixed-effect
model that was fit on all the PCA and LPA participants with
follow-up data reinforced the findings of the group-average

correlations, revealing a positive effect of the tau-weighted
functional connectivity (P = 0.002) and of the degree (P = 0.03)
on the rates of tau accumulation (Table 3). The interaction term
between the degree and tau-weighted functional connectivity
was significant but did not invalidate the main effects (Sup-
plementary Fig. 6). The mixed-effect model also showed that
the baseline level of tau had a mild negative effect on the rates
of tau accumulation (P = 0.06). Note that clustering coefficient
was not included in the model variables because it was not
correlated with tau rates of change in either phenotype at the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa319#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa319#supplementary-data
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Figure 3. Group-average ROI-level correlations between PiB and flortaucipir SUVR and functional connectivity to the disease epicenter (A). Partial correlations between

the same quantities, regressing out the Euclidean distance to the epicenter (B). Within-subject ROI-level Fisher’s Z transformed correlations between PiB and flortaucipir
SUVR and functional connectivity to the subject-specific epicenter (i.e., ROI with the highest SUVR for the subject) and to the group-level epicenter (i.e., ROI with highest
group-average SUVR) (C).

group-level (Fig. 4). The tau- and distance-weighted functional
connectivity led to a slightly stronger relationship to tau rates of
changes (T = 4.9, P < 0.001) compared to tau-weighted functional
connectivity (T = 3.0, P = 0.002, Table 4).

Discussion
This study employed multimodal neuroimaging to describe
associations between resting-state functional connectivity and
the 2 hallmarks of Alzheimer’s disease pathology: tau and Aβ.
In 2 variants of atypical AD, i.e., posterior cortical atrophy and
logopenic progressive aphasia, we have shown that associations
with tau and Aβ differ, supporting the hypothesis that the
propagation mechanisms of these 2 proteins also differ. Even
though our analyses cannot prove any causal relationship, they
point to factors related to functional ‘hubness’ being key for
Aβ deposition and region-to-region functional connectivity
being key to the mechanism through which tau propagates.
Additionally, tau was higher in the regions with low clustering
coefficient, suggesting that tau propagation might be facilitated
by the lack of regional trophic support or poor resilience to
failure. Together, these findings are entirely consistent with
the CNF model of AD pathophysiology (Jones et al. 2016,

2017), but only partially consistent with a pure neuron-to-
neuron spreading model. The CNF model does not preclude nor
necessitate neuron-to-neuron spreading, but neuron-to-neuron
spreading alone is not able to account for all of the findings
in this study. Therefore, such spreading models represent an
incomplete mechanistic account of the relationship between
molecular pathology and functional connectivity in AD.

Amyloid-β was primarily correlated with 2 quantities derived
from resting-state fMRI: the degree and the functional con-
nectivity to the disease epicenter, defined as the region with
highest Aβ burden. These 2 measures may not be independent
of each other, since, for both PCA and LPA, the Aβ epicenter
was located in the precuneus, which is a functional hub and
is connected to other high degree hub areas. These findings
are in agreement with a previous study which included healthy
and AD participants (Mutlu et al. 2017), but they differ in the
order of importance of the correlations. In our analyses, for
both PCA and LPA, the positive association to the degree was
much stronger than the one to the functional connectivity to
the epicenter, suggesting the functional ‘hubness’ hypothesis
as the most likely for Aβ (Buckner et al. 2009). However, this
difference could be explained by the Aβ burden being much
more severe in our cohort of patients than in a cohort involving
participants that were healthy or at the initial stage of the
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Figure 4. Group-average rate of change in flortaucipir SUVR in PCA and LPA (A). Group-average ROI-level associations between rate of change in flortaucipir SUVR
and: degree, clustering coefficient, tau-weighted functional connectivity and functional connectivity to the disease epicenter (B). Within-subject ROI-level Fisher’s Z

transformed correlations between the same metrics (C).

Table 4 Mixed-effect model to evaluate the effect of baseline tau, amyloid, degree and tau-weighted functional connectivity (FC) on the rates
of tau accumulation across all the 210 cortical regions of the 34 atypical AD participants with follow-up tau-PET images

Rate of change in tau ∼ tau + amyloid + tau-weighted FC + degree + tau: amyloid + degree:
tau-weighted FC + (1 + tau + amyloid | id) + (1 | region)

T statistic P value Interpretation

Tau −1.9 0.06 Inversely proportional to tau change (ns)
Amyloid 1.4 0.18 Proportional to tau change (ns)
Tau-weighted FC 3.0 0.002 Proportional to tau change
Degree 2.3 0.03 Proportional to tau change
Tau: amyloid −1.6 0.11 Interaction term (ns)
Degree: tau-weighted FC −2.4 0.01 Interaction term

Notes: P values less than 0.05 and the corresponding T statistic are bolded. ns, not significant; FC, functional connectivity

disease (Mutlu et al. 2017). Additionally, it must be noted that
it remains unclear if the disease originates in one or more
epicenters and how to unequivocally define them: our analyses
provide some evidence in support of trans-neuronal spread
or network accumulation hypotheses for Aβ but do not rule
out other mechanisms (Ossenkoppele et al. 2019). In both phe-
notypes, functional connectivity to regions that did not dis-
play the highest group-average PiB SUVR, like inferior parietal

and middle frontal regions, was a strong predictor of Aβ in
the functionally connected regions, challenging the hypothesis
that Aβ propagates through the brain from a single epicenter.
Lastly, regions with high amyloid burden, such as frontal and
parietal regions, displayed increased functional connectivity in
the atypical AD groups relative to controls, consistently with
the CNF hypothesis. Interestingly, the positive associations of
group-average PiB SUVR with degree and clustering coefficient
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were weaker or absent using functional connectivity data from
young healthy individuals, particularly in PCA, hinting at a link
between amyloid and increased functional connectivity.

Our results on regional clustering coefficient and degree in
relation to tau support the validity of the trophic failure hypoth-
esis, as we found that regions with higher tau burden were more
likely to have low clustering coefficient and low degree. However,
such correlations were modest, with some of them not surviving
the autocorrelation tests, suggesting that other mechanisms
might play more determining roles in the propagation of tau.
Our results do not confirm the findings of a recent imaging
study, which reported a positive association between regional
tau burden and both degree and clustering coefficient in AD
participants (Cope et al. 2018), in agreement with experimental
work suggesting that tau could increase neural activity (Devos
et al. 2013; Pooler et al. 2013).These discrepancies might be due to
differences in disease stage of the participants, since a decrease
in trophic support and a disruption of functional connections
might be downstream events of tau accumulation (Cope et al.
2018). Another inconsistency between our 2 studies is that we
are investigating atypical AD cohorts, which show more exten-
sive patterns of cortical tau deposition than typical AD (van der
Flier et al. 2011; Whitwell et al. 2018; Whitwell et al. 2019). The
negative relationship we found between regional tau and both
degree and ‘total flow’ (i.e., a measure of the total functional
connectivity of a region, computed from the association matrix)
resembles the findings of a previous study on atrophy (Mutlu
et al. 2017). This is not surprising as atrophy patterns resemble
those of tau in AD (Sintini et al. 2018; Iaccarino et al. 2018). A
sensible explanation for this negative correlation could be that
regions with high levels of tau in PCA and LPA, e.g., occipital and
lateral temporal, do not belong to functional hubs but have more
specialized functional connections and are more vulnerable to
failure with limited options for compensation. Another potential
explanation is that, since tau is thought to disrupt functional
connectivity, as a result, the regions that have more tau have
also less functional connections. This explanation is backed up
by the observations we made on reduced functional connectivity
in PCA and LPA compared to CU individuals and by the absence
of a negative association between tau in atypical AD and degree
of connectivity in young healthy individuals. The fact that some
findings are significant in only one of the 2 phenotypes suggests
that the regions involved in the phenotype may play a primary
role, with the different expression of pathological proteins being
driven not necessarily by network properties, but by intrin-
sic molecular properties. Lastly, another potential explanation
for the negative association between tau and degree/clustering
coefficient is that, if the regions with high tau burden were
functional hubs, AD would be a much faster disease, assuming
that tau spreads trans-neuronally.

While we did not find a positive relationship between degree
and baseline levels of tau, we found it with longitudinal rates of
tau accumulation. This could suggest that the mere number of
functional connections in a region (i.e., degree) is not a primary
mechanism for tau deposition, as opposed to the strength of the
region’s functional connection to the syndrome-specific failing
network, but, as the disease evolves over time, regions that have
more functional connections are also more exposed to tau accu-
mulation, as tau transfers between regions trans-synaptically.
This is consistent with the fact that the regions that display
more tau are not the ones that experience the higher rates of
accumulation (Sintini et al. 2019). In other words, the spatial
disconnection between the regions with higher tau burden at

baseline and the regions with higher rates of tau accumulation
translates into different associations of these quantities to func-
tional connectivity measures. Regions functionally connected
to the disease epicenters showed level of tau pathology highly
correlated to the strength of this connection: such correlations
were relatively high even within-subject and statistically higher
for tau than for Aβ. Additionally, the correlations between tau
and functional connectivity to the epicenters were the only
ones that, in both phenotypes, survived both autocorrelation
tests, i.e., null models of functional connectivity and surrogate
autocorrelated SUVR maps. This aspect crucially points to a
trans-neuronal spread mechanism and/or accumulation in fail-
ing networks for tau. Particularly, the notion that more than
one region may serve as disease epicenter supports the CFN
hypothesis. Unlike baseline levels of tau, the longitudinal rates
of tau accumulation were only moderately predicted by the
strength of the functional connectivity to the disease epicen-
ter in LPA and negatively correlated to it in PCA, suggesting
again that other factors may play a role in the accumulation
of tau in a region, as the disease progresses. For example, the
mechanisms of tau accumulation might adapt as the initial
sites reach a plateau. It is likely that PCA participants were at a
more advanced disease stage and, therefore, the regions more
strongly functionally connected to the disease epicenter had
already a high tau burden and thus experienced lower rates of
accumulation. While the rate of change in tau accumulation was
not correlated to the connectivity to the sites with highest tau
SUVR, i.e., left temporal regions for LPA and occipital regions
for PCA, it was associated to functional connectivity to other
regions, i.e., frontoparietal regions for LPA and frontotemporal
for PCA. These findings support the hypothesis that, during
the course of the disease, the initial tau epicenter or seeding
region leads to other epicenters that cascade systematically
through the cortex (Vogel et al. 2020). The notion of epicenters
that evolve throughout the course of the disease is entirely
compatible with the predictions of the cascading network failure
hypothesis. We cannot exclude the fact that our results may be
dependent upon the window of the disease we are studying,
since it is likely that earlier in the disease process rates of
tau accumulation would have been greater in regions closer
to the epicenter. It also must be noted that PCA participants
were at a slightly more advanced stage of the disease compared
to LPA, although the disease durations between the 2 variants
was not significantly different, and they had more disrupted
functional connections relative to CU individuals. This aspect
might explain the differences we found on the relationships
between connectivity and tau accumulation between PCA and
LPA. On tau accumulation, our analyses are consistent with a
recently published study on typical AD (Franzmeier et al. 2020),
confirming that the best predictor of the rate at which a region
accumulates tau is the level of tau in all the regions functionally
connected to it and the strength of such connections. The fact
that including Euclidean distance in the tau-weighted func-
tional connectivity only moderately improved the predictions
points to functional connection rather than proximity being
a key factor in tau propagation. The dependence of tau rates
on functional connectivity in a network cannot differentiate a
neuron-to-neuron spreading mechanism from an accumulation
of tau within a failing network. Therefore, both mechanisms
may explain this phenomenon, but neuron-to-neuron spreading
is unable to explain the findings related to functional ‘hubness’
and clustering coefficient varying by protein and phenotype as
predicted by the CNF model.
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Healthy functional brain networks are often described as
small-world graphs, because they are characterized by a high
level of clustering and low shortest-path lengths between the
nodes. Alzheimer’s disease can alter such small-world proper-
ties (Stam et al. 2007; Supekar et al. 2008; Sanz-Arigita et al. 2010).
In the current study, we did not investigate how the disease-
related changes in resting-state functional connectivity in atyp-
ical AD might affect Aβ and tau propagation, as it was outside
of our primary scope. Future work will need to address this
aspect, including a larger population of cognitively unimpaired
individuals.

Our study elucidated differences in the relations of tau and
Aβ to the resting-state functional connectivity metrics in PCA
and LPA. The relationships between proteins and connectiv-
ity were consistent across these 2 atypical AD syndromes as
would be expected since they have the same underlying pathol-
ogy, although regional patterns of reduced connectivity and tau
uptake differed. A major strength of our study is that func-
tional connectivity measurements were derived from the same
patient population as Aβ and tau PET measurement, and not
from healthy controls. Several correlations that were significant
at P < 0.05 did not survive one or both autocorrelation tests.
This certainly raises questions on whether such correlations
were simply a product of the brain topological properties and
it emphasizes the importance of the comparison with null-
models in future functional connectivity studies. We believe that
the correlations that were not significant when compared to
the ones obtained with null-models of functional connectivity
matrices or with surrogate autocorrelated brain maps should
not be dismissed as meaningless but warrant more investiga-
tions with larger patients populations, e.g., the negative asso-
ciation between baseline tau levels and degree of functional
connectivity. The main strength of this study is that it combines
Aβ and longitudinal tau data with resting-state functional MRI
data in a large cohort of PCA (31 participants) and LPA (27 partic-
ipants). A limitation is that, in our main analyses, we employed
group-average data, assuming uniform effects within the dis-
ease groups. However, this assumption is in part justified by
having patient populations that are relatively large with unique
and characteristic clinical phenotypes. We performed within-
subject correlations between Aβ and tau SUVR and graph-theory
metrics, but the high variability in the results suggests that more
advanced analyses or novel MRI and PET acquisition protocols
might be needed in order to evaluate such relationships at the
patient level. A limitation in our workflow is the use of ROI-
based raw SUVR change to measure the longitudinal rate of
tau accumulation. We adopted this approach consistently with
previous studies (Jack et al. 2018; Harrison et al. 2018; Sintini
et al. 2019; Franzmeier et al. 2020), but it must be noted that
the ROI-based difference in SUVR between 2 time points can-
not distinguish between a steady accumulation (i.e., the voxels
inside the ROI increase their level of tau) and a sequential spread
(i.e., some of voxels inside the ROI that at baseline did not have
tau, do have tau at follow-up) (Jones et al. 2017). It also must
be noted that the calculation of longitudinal changes in SUVR
could be influenced by biological changes in the cerebellar crus
gray matter, which served as the reference region. Modeling
functional ‘hubness’ and trophic support with graph-theoretical
metrics (i.e., degree and clustering coefficient) is an approach
that relies on reasonable assumptions and has been employed
in several studies, but it has not been validated experimentally.
Specifically, clustering coefficient might be problematic as a
model of trophic support because fMRI measurements include

long-range functional connections. For this reason, final evi-
dence on spreading mechanisms of tau and Aβ will come only
from human clinical trials. Nevertheless, our findings shed light
on potential mechanisms of protein accumulation in atypical
AD. Understanding these mechanisms will be important in the
development of future treatment and interventions in AD.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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