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Abstract

Age-related differences in dorsolateral prefrontal cortex (DLPFC) structure and function have each been linked to working
memory. However, few studies have integrated multimodal imaging to simultaneously investigate relationships among
structure, function, and cognition. We aimed to clarify how specifically DLPFC structure and function contribute to working
memory in healthy older adults. In total, 138 participants aged 65–88 underwent 3 T neuroimaging and were divided into
higher and lower groups based on a median split of in-scanner n-back task performance. Three a priori spherical DLPFC
regions of interest (ROIs) were used to quantify blood-oxygen-level-dependent (BOLD) signal and FreeSurfer-derived surface
area, cortical thickness, and white matter volume. Binary logistic regressions adjusting for age, sex, education, and scanner
type revealed that greater left and right DLPFC BOLD signal predicted the probability of higher performing group
membership (P values<.05). Binary logistic regressions also adjusting for total intracranial volume revealed left DLPFC
surface area that significantly predicted the probability of being in the higher performing group (P = 0.017). The left DLPFC
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BOLD signal and surface area were not significantly associated and did not significantly interact to predict group
membership (P values>.05). Importantly, this suggests BOLD signal and surface area may independently contribute to
working memory performance in healthy older adults.

Key words: cognitive aging, dorsolateral prefrontal cortex, multimodal neuroimaging, structural and functional magnetic
resonance imaging, working memory

Introduction
The number of older adults in the general population is rapidly
increasing, representing the fastest growing cohort in the United
States of America. Specifically, the number of adults aged 65 and
older is expected to almost double by the year 2050, generating
an increased interest in promoting healthy aging (Roberts et al.
2018). Cognition has been shown to decline in advancing age,
even in the absence of pathology. Working memory is a cognitive
domain particularly vulnerable to the cognitive aging process
(Baddeley 1992; Bizon et al. 2012; Glisky 2007; Goldman-Rakic
1995; Heinzel et al., 2014; Park et al. 2002; Schulze et al. 2011;
Wang et al. 2011). Working memory is a limited-capacity system
that allows for the manipulation and short-term storage of infor-
mation while performing complex tasks (Baddeley 1992; Gold-
man-Rakic 1995). Age-related deficits in working memory result
in poorer attention, planning, and reasoning abilities important
for performing activities of daily living (i.e., taking medication,
handling personal finances, and organization and planning of
daily routines and appointments) (Stern et al. 1990; Yam and
Marsiske 2013; Nissim et al. 2017).

The dorsolateral prefrontal cortex (DLPFC) is a functional
neuroanatomical region central to working memory processes
and has been shown to undergo structural declines that may
contribute to working memory deficits in older age (Barbey
et al. 2013; Dotson et al. 2016; Funahashi 2017; Goldman-Rakic
2011; Nissim et al. 2017; Salat et al. 1999). In advancing age, the
DLPFC demonstrates marked reductions in gray matter surface
area and cortical thickness (Lemaitre et al. 2012; Salat 2004).
Cortical surface area is a measure of structural integrity that is
susceptible to age-related atrophic changes (Dotson et al. 2016;
Fischl et al. 1999a; Lemaitre et al. 2012; Nissim et al. 2017; Salat
2004), while cortical thickness is an indirect measure of neuronal
density and may reflect neuronal loss due to neurodegenerative
disease (Fischl and Dale 2000; Shefer 1973). Cortical surface area
may be more sensitive in capturing brain changes due to non-
pathological, healthy aging compared to cortical thickness. Nis-
sim et al. (2017) demonstrated this pattern of frontal structural
differences in association with working memory performance in
older adults. Low performers had lower frontal cortical surface
area compared to high performers, but there were no significant
group differences in cortical thickness (Nissim et al. 2017). This
further suggests surface area may be a more sensitive neural
correlate to detect working memory deficits in healthy aging.

Age-related reductions in white matter volume may also
occur and may decline at a faster rate within the frontal lobes,
including regions like the DLPFC (Brickman et al. 2006; Good et al.
2001; Salat et al. 1999, 2001). Guttmann et al. (1998) demonstrated
that age-related cortical white matter volume reductions can
occur even in the absence of decreases in total gray matter. How-
ever, decreased white matter volume could lead to disrupted
neuronal communication and subsequent cognitive difficulties.
While emerging evidence demonstrates age-related white mat-
ter reductions in frontal regions are associated with working

memory deficits (Golestani et al. 2014; Liu et al. 2017; Salat
et al. 1999, 2001), few studies have investigated how differences
in white matter underlying the DLPFC contribute to working
memory difficulties in advancing age. Therefore, it is crucial
to better characterize how white matter volumetric differences
underlying the DLPFC influence working memory in the context
of healthy, non-pathological aging.

Functional magnetic resonance imaging (fMRI) studies have
demonstrated that the DLPFC plays a critical role in work-
ing memory. Numerous fMRI studies have shown alterations
in blood-oxygen-level-dependent (BOLD) activation within the
DLPFC during working memory task performance (Owen et al.
2005; Spreng et al. 2010; Barbey et al. 2013; Funahashi 2017;
Finn et al. 2019). Cabeza et al. (2002) found that young adults
with higher working memory task performance demonstrated
a right lateralized pattern of BOLD activation in frontal brain
regions, including the DLPFC. However, higher performing older
adults exhibited a bilateral pattern of BOLD activation in the
same frontal regions (Cabeza et al. 2002), suggesting that older
adults potentially employ a compensatory mechanism. In this
case, inefficient neural activation in response to increasing cog-
nitive demands may necessitate recruitment of additional brain
regions (Cabeza 2002; Cabeza et al. 2002).

The Scaffolding Theory of Aging and Cognition (STAC)
further provides a possible explanation for differential BOLD
patterns in young and older adults (Park and Reuter-Lorenz
2009; Reuter-Lorenz and Park 2014). STAC proposes older
adults engage in “compensatory scaffolding,” a compensation
mechanism for age-related structural and functional declines
that results in bilateral activation patterns and allows for main-
tenance of higher cognitive performance. Older adults, relative
to younger adults, demonstrate activation patterns including
the declining region and associated compensatory regions
recruited to meet the task demands (Park and Reuter-Lorenz
2009; Reuter-Lorenz and Park 2014).

However, few studies have investigated the direct effects
of structural deficits on functional activation and associated
cognitive performance. Structural and functional measures
have typically been treated separately when investigating their
associations with age-related cognitive decline. While many
studies have examined the biological underpinnings of cognitive
deficits in non-pathological older adults, there remains a
dearth in knowledge integrating multimodal approaches to
simultaneously investigate relationships among brain structure,
function and cognition. There is a need to leverage the
methodological strengths of these separate modalities by
using multimodal neuroimaging to concurrently examine the
contributions of brain structure and function to cognitive aging,
and how differences in structure may affect the influence of
brain function on cognition.

The objective of the present study was to investigate
how individual differences in brain structure and function
contribute to working memory performance in a large sample
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of older adults without clinically evident neurodegenerative
disease. Our first overall aim was to determine the independent
contributions of DLPFC function and structure to working
memory performance. Specifically, we aimed to examine the
relationship between working memory and DLPFC structure
(i.e., cortical thickness, cortical surface area, and white matter
volume). Given frontal structural patterns demonstrated by
prior studies (Nisism et al., 2017; Salat et al. 1999, 2001), we
hypothesized that greater DLPFC surface area and white matter
volume, but not cortical thickness, would significantly predict
the probability of higher working memory performance. We also
aimed to examine the relationship between working memory
and DLPFC function as measured by BOLD signal during a
working memory task. Considering the compensatory strategies
proposed by the STAC model, we hypothesized that greater
BOLD signal in the bilateral DLPFC would significantly predict
higher working memory performance. The second overall aim
was to determine whether DLPFC structure moderates the
relationship between DLPFC function (i.e., BOLD signal) and
working memory performance. We hypothesized structure
would moderate this relationship, such that those with greater
DLPFC BOLD signal and greater DLPFC surface area or white
matter volume would have significantly greater probability
of higher working memory performance. Importantly, such
results would provide novel insights into potential markers of
successful, healthy aging, elucidating whether DLPFC structure
and function interact or independently contribute to working
memory.

Materials and Methods
Participants

The current study utilized baseline data from participants
recruited for the Stimulated Brain (K01AG050707, n = 25) and
the Augmenting Cognitive Training in Older Adults (ACT,
R01AG054077, n = 113) studies with identical inclusion criteria
(Woods et al. 2018). In total, 167 healthy older adults between
ages 65 and 88 years old were recruited from the University
of Florida (n = 117) and the University of Arizona (n = 50).
All participants were right-handed, had no prior history of
neurological disease (i.e., mild cognitive impairment, dementia,
history of stroke, severe closed-head injury, neurodegenerative
disease), and had no magnetic resonance imaging (MRI)
contraindications. The Institutional Review Boards at the
University of Florida and at the University of Arizona approved
all study protocols, and all participants signed informed consent
forms prior to completing any study procedures.

At an in-person screening visit, participants completed the
National Alzheimer’s Coordinating Center (NACC) Unified Data
Set (UDS), a comprehensive neuropsychological battery assess-
ing various cognitive domains (Weintraub et al. 2009). The UDS
serves as a screening measure for dementia and mild cogni-
tive impairment (MCI), as defined by age, sex, and education
normed scores > −1.5 SD below the mean in any one of the
following five cognitive domains: general cognition, executive
function/working memory, episodic memory, visuospatial, and
language (Woods et al. 2018). Following the in-person screening
visit, participants were also excluded if they were color blind, or
had notable vision impairment (uncorrected vision worse than
20/80) or hearing loss (inability to hear a target at 20 dB or louder
within background noise). Participants were also excluded if

they had any abnormal findings on their baseline MRI brain
scan, including tumors or cysts.

Of the 167 participants originally included in the present
study sample, 8 participants did not complete the N-back task
and 13 participants did not have usable functional or structural
imaging data due to poor data quality (e.g., excess movement
and resulting incomplete surface parcellation). An additional 8
participants were excluded from subsequent statistical analyses
following examination of outliers across behavioral and neu-
roimaging variables (i.e., values greater than 3 standard devia-
tions from the mean). In total, 138 participants were included
in subsequent analyses (age: M = 71.41, SD = 5.19; 79 females;
education: M = 16.16; SD = 2.36).

Working Memory Performance: N-Back Task

The N-Back task is an established working memory paradigm
that requires participants to continuously monitor a series of
stimuli. Generally, the participant is asked to respond when
the presented stimulus is the same as the one presented n-
trials previously. The N-back task used in the present study was
created with E-Prime version 2.0 (Psychology Software Tools,
Inc., Pittsburgh, PA, USA) and included both 2-back and 0-back
versions of the task. Participants completed practice sessions
of the N-back task prior to the MR scan to ensure a complete
understanding of the instructions and ability to perform the
task. Images of a series of letters were presented onto a screen
outside the scanner and viewed through a mirror mounted on
the head coil. Four blocks of the 0-back task and four blocks
of the 2-back task were presented, with fifteen letters in each
block. For both the 0-back and 2-back versions of the task,
each letter stimulus was identical in font, size, and color and
was presented for 1000 ms, followed by a fixation cross hair
presented for 3000 ms. The ordering of 0-back and 2-back blocks
were randomized within the task.

The participant responded via an MRI-compatible button
box. During the 0-back version of the task, they were asked to
press a button with their index finger when the letter presented
was an “X” and to press a different button with their middle
finger when the presented stimulus was any letter other than
“X.” During the 2-back task, the participant was asked to press
a button with their index finger when the letter was the same
as the one presented two trials previously (i.e., targets) and
to press a different button with their middle finger for letters
that did not match the one presented two trials previously
(i.e., distractors).

MRI Acquisition

All participants underwent magnetic resonance imaging (MRI)
in a 3-Tesla Siemens Magnetom Prisma scanner with a 64-
channel head coil at the University of Florida and in a 3-Tesla
Siemens Magnetom Skyra scanner with a 32-channel head coil
at the University of Arizona. T1-weighted MPRAGE structural
scans were collected prior to BOLD fMRI for all participants
using the following parameters at both sites: repetition time
(TR) = 1800 ms; echo time (TE) = 2.26 ms; flip angle = 8o; field of
view = 256 × 256 × 176 mm; voxel = 1 × 1 × 1 mm. A task-based
BOLD fMRI sequence was collected using the following param-
eters: repetition time (TR) = 3000 ms; echo time (TE) = 30.0 ms;
flip angle = 70o; field of view = 240 × 240 × 132 mm; voxel = 3 ×
3 × 3 mm.
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Table 1 DLPFC regions of interest (ROIs), Montreal Neurological Institute (MNI) coordinates, volume and radius for spherical ROIs

ROI x y z Volume (mm3) Radius (mm)

Left DLPFC −37.75 50.19 13.6 992 6.2
−46.26 22.71 18.6 12 024 14.2

Right DLPFC 44.53 38.76 24.43 8120 12.5

Regions of Interest (ROI) Selection

Owen et al. (2005) identified 14 regions of interest (ROIs) in a
quantitative meta-analysis of 24 studies utilizing N-back tasks
as measures of working memory. Three ROIs were selected a pri-
ori from this meta-analysis (Owen et al. 2005) to represent dor-
solateral prefrontal cortical regions within the working memory
network in our analyses (Table 1). Across the literature, there has
been considerable variability in defining the precise location of
the DLPFC. Anatomically, the DLPFC theoretically corresponds
to Brodmann areas (BA) 9 and 46 (Cieslik et al. 2013). Given the
DLPFC is a functional neuroanatomical region, we defined the
spherical ROIs using functionally derived coordinates reported
by Owen et al. (2005). Spherical ROIs were generated using
the WFU PickAtlas GUI in SPM12 (Maldjian et al. 2003, 2004).
The spherical ROIs were centered at corresponding Montreal
Neurological Institute (MNI) coordinates, and ROI radius was
calculated using volume (mm3), as reported by Owen et al.
(2005). Upon visual inspection, each of the three spherical ROIs
appears to fall within BA 9 and 46. Additionally, each of the three
spherical ROIs was encompassed within the whole brain 2-back
>0-back BOLD activation pattern across the sample (n = 138)
(Fig. 1). None of the three generated spherical ROIs overlapped
and all three were utilized in both functional and structural MR
data extraction.

Functional MRI Processing and Regional BOLD
Response Extraction

Pre-processing of functional images was performed using
CONN Toolbox 17a and SPM12 running in MATLAB 2015b
(Penny et al. 2007; Whitfield-Gabrieli and Nieto-Castanon
2012). Pre-processing steps included slice-timing correction,
realignment, normalization, and smoothing using a Gaussian
smoothing kernel of 8 mm. Additionally, T1-weighted structural
volumes were segmented into gray matter, white matter, and
cerebrospinal fluid. Following segmentation, structural volumes
underwent normalization and registration to MNI space. The
mean functional image was co-registered to the registered T1-
weighted structural image. The registration matrix produced in
this step was then used to register the pre-processed functional
volumes to MNI space. Motion outliers or artifacts were detected
using the artifact detection toolbox (ART) 97th percentile
settings, with the mean global-signal deviation threshold set
at z = +/− 5 and the subject-motion threshold set at 0.9 mm.
Motion information and frame-wise outliers were later included
as covariates in first-level analyses. Denoising of the BOLD fMRI
signal was also performed to reduce noise due to physiological
fluctuations.

Model contrasts were created utilizing the timing files gen-
erated in E-Prime for the 2-back and 0-back blocks of the N-
back task. The task instructions were included in the model as a
contrast of no interest. Subtraction contrasts were modeled for
2-back task periods over 0-back task periods for each participant

Figure 1. 2-back>0-back subtraction contrast depicting whole-brain BOLD acti-
vation patterns in regions within the working memory network, including the

DLPFC (n = 138, family wise error; FWE < 0.05).

(2-Back>0-Back; Fig. 1). A visual quality check was conducted
to confirm full overlay of the spherical ROIs on the task-based
BOLD activation maps. Employing REX software in SPM12, the 2-
Back>0-Back subtraction contrast was used to extract individual
subjects’ average beta values for each of the three DLPFC ROIs to
represent the hemodynamic response during the 2-back task.

Structural MRI: T1 Pre-Processing

Structural T1 images underwent cortical reconstruction and vol-
umetric segmentation using FreeSurfer version 6.0 image anal-
ysis suite. Technical details of these procedures are described
elsewhere (Dale et al. 1999; Dale & Sereno 1993; Fischl 2004;
Fischl et al. 1999a, 1999b, 2001; Fischl & Dale 2000; Fischl et al.
2002, 2004; Han et al. 2006; Jovicich et al. 2006; Reuter et al. 2010,
2012; Ségonne et al. 2007). Briefly, this FreeSurfer processing
pipeline involves intensity correction and normalization, auto-
mated Tailarach affine transformation, removal of non-brain
tissue, segmentation of white and gray matter structures, tessel-
lation of the surface, surface smoothing and deformation, and
automated topology correction. Manual edits were performed
as necessary to remove non-brain tissue and correct any seg-
mentation errors. Specifically, manual edits included removal of
non-cortical matter included in the gray matter surface, removal
of gray or non-cortical matter included in the white matter
surface, and extension of the white matter surface. Whole brain
intracranial volume (ICV) was then extracted and later included
as a covariate in analyses to account for potential individual
differences in head or brain size.
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Figure 2. DLPFC surface created in FreeSurfer Analysis Suite v6.0. The spherical DLPFC ROIs were linearly registered to subject surfaces to extract cortical thickness
and surface area values. S = Superior, I = Inferior, A = Anterior, P = Posterior. (A) Right DLPFC centered at MNI coordinates (44.53, 38.76, 24.43); (B) Left DLPFC; purple:
centered at MNI coordinates (−37.75, 50.19, 13.6); blue: centered at MNI coordinates (−46.26, 22.71, 18.6).

Cortical Thickness and Surface Area Data Extraction

Cortical thickness and surface area values were obtained for
each of the three DLPFC ROIs. FreeSurfer version 6.0 image
analysis suite was used to generate surface labels from the
spherical volume-defined ROIs (see Fig. 2). The WFU PickAtlas T1
image was linearly registered to the FreeSurfer fsaverage subject
template T1 structural volume using the Oxford Centre for Func-
tional Magnetic Resonance Imaging of the Brain (FMRIB) Linear
Registration Tool (FLIRT) in the FMRIB’s software library (FSL)
(Smith et al. 2004; Jenkinson et al. 2012). The FreeSurfer fsaverage
subject is a template in MNI305 standard space, created by using
the spherical average of 40 subjects (Fischl 2012). The volume
files for each volumetric (spherical) ROI were linearly registered
to the fsaverage subject surface using FLIRT in FSL to create an
fsaverage-ROI surface overlay. Each subject’s thickness and area
files were linearly registered using FLIRT in FSL to the fsaverage
brain to make sure each subject’s files were in the same standard
space (MNI305). FreeSurfer was then used to extract cortical
thickness and surface area values from each fsaverage-ROI mask
for each subject.

White Matter Volume Data Extraction

White matter volume was obtained from each of the three DLPFC
spherical ROIs originally generated in SPM12. The WFU PickAtlas
T1 image was linearly registered to each subject’s T1 structural
volumes using FLIRT in FSL, generating a registration matrix that
was then applied to each of the three spherical volume-defined
ROIs. FreeSurfer was then used to extract subject white matter
volume for each ROI.

Statistical Analyses

SPSS version 25 was used for all statistical analyses. The total
percent of targets correctly identified during the 2-back task was
not normally distributed and therefore does not meet the gen-
eral linear model normality assumptions. Given the distribution
was negatively skewed even following power transformations,
two groups were created using a median split in 2-back task
performance to evaluate relative higher and lower performance.
Participants were divided into two groups based on a median

split in the total percent of correctly identified targets during the
2-back task (higher performers n = 76; lower performers n = 62).
Notably, 23 participants correctly identified the median percent
of 2-back targets (87.5%) and were included in the “higher” group
following the median split, resulting in an uneven number of
participants in each performance group.

Chi-squared tests were conducted to examine group dif-
ferences in sex and scanner location. Independent samples t-
tests were performed to examine group differences in 2-back
task accuracy (percent targets correctly identified), age, and
education. Separate binary logistic regressions adjusting for age,
sex, education, and scanner type were conducted to evaluate
whether DLPFC BOLD signal, cortical thickness, surface area,
or white matter volume each predicted 2-back performance
group membership (higher vs. lower). In the regression mod-
els containing cortical surface area or white matter volume,
total ICV was included as an additional covariate to control for
individual differences in total brain volume. Variation in brain
volume due to differences in head size is strongly associated
with surface area and white matter volume, but not cortical
thickness or BOLD signal measures (Barnes et al. 2010). Thus, ICV
was included as a covariate for structural measures that have
been shown to scale with head size (i.e., surface area and white
matter volume) and not thickness or BOLD indices. For struc-
tural measures (i.e., cortical thickness, surface area, or white
matter volume) that significantly predicted 2-back performance
group, variables were mean-centered and multiplied to create
a structure by function (BOLD) interaction term (Aiken et al.
1991). Follow-up binary logistic regressions adjusting for age,
sex, education, scanner type, and total ICV were then conducted
to evaluate whether brain structure and function interact to
predict working memory performance group.

Results
2-Back Task Group Characteristics

Independent samples t-tests confirmed the higher perform-
ing group had significantly greater performance on the 2-back
task relative to the lower performing group (t(70.99) =−12.829;
P < 0.001). Chi-squared analyses revealed that there were no
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Table 2 Group characteristics

Total sample n = 138 High performers n = 76 Low performers n = 62 P

Mean (SD) Mean (SD) Mean (SD)
2-back accuracy 82.52% (16.44%) 93.67% (4.84%) 68.85% (15.29%) <.001 ∗
Age 71.41 (5.19) 71.25 (5.46) 71.60 (4.87) .697
Sex (M:F) 59:79 36:40 23:39 .233
Education 16.16 (2.36) 16.22 (2.25). 16.08 (2.51) .725
Scanner location (UF: UA) 98:40 55:21 43:19 .710
ICV (mm3) 1474980.87

(133783.695)
1492067.00
(137676.155)

1454036.59 (125817.801) .097

M = Male; F = Female; UF = University of Florida; UA = University of Arizona; ICV=Intracranial Volume
∗P < 0.001

Table 3 Binary logistic regressions: structure & function

MNI coordinates [x, y, z] B Sig. Exp(B) 95% CI for Exp(B) [Lower, Upper]

BOLD signal
Left DLPFC [−37.75, 50.19, 13.6] .497 .017∗ 1.644 [1.094, 2.469]

[−46.26, 22.71, 18.6] .579 .004∗∗ 1.785 [1.206, 2.640]
Right DLPFC [44.53, 38.76, 24.43] .488 .009∗∗ 1.629 [1.129, 2.351]
Cortical thickness
Left DLPFC [−37.75, 50.19, 13.6] .056 .762 1.058 [.736, 1.521]

[−46.26, 22.71, 18.6] −.024 .900 .976 [.673, 1.417]
Right DLPFC [44.53, 38.76, 24.43] −.231 .233 .794 [.543, 1.160]
Surface area
Left DLPFC [−37.75, 50.19, 13.6] .477 .017∗ 1.611 [1.088, 2.386]

[−46.26, 22.71, 18.6] .315 .112 1.370 [.930, 2.019]
Right DLPFC [44.53, 38.76, 24.43] −.135 .468 .874 [.607, 1.258]
White matter volume
Left DLPFC [−37.75, 50.19, 13.6] −.046 .812 .955 [.654, 1.395]

[−46.26, 22.71, 18.6] .069 .772 1.071 [.672, 1.708]
Right DLPFC [44.53, 38.76, 24.43] .306 .140 1.358 [.905, 2.039]

Note: Values standardized to z-scores ∗P < 0.05
∗∗P < 0.01

significant group differences in sex or scanner location (sex:
χ2(1) = 1.472, P = 0.225; scanner: χ2(1) = 0.151, P = 0.698). Indepen-
dent samples t-tests revealed there were also no significant
group differences in age, total number of years of completed
education, and intracranial volume (age: t(136) = 0.390, P = 0.697;
education: t(136) = −.353, P = 0.725, ICV: t(136) = −1.672, p = -.097).
See Table 2 for complete group characteristics.

White Matter Volume

Binary logistic regressions adjusting for age, sex, education, and
scanner type demonstrated DLPFC white matter volume did not
significantly predict 2-back performance group for any of the 3
DLPFC ROIs. Specifically, those with greater white matter volume
in either the left or the right DLPFC did not have a significantly
greater probability of being in the higher performing group (P
values>.05, see Table 3).

Cortical Thickness and Surface Area

Binary logistic regressions adjusting for age, sex, education, and
scanner type revealed cortical thickness did not significantly
predict 2-back performance group for any of the 3 DLPFC
ROIs (P values>.05, see Table 3). Yet, cortical surface area did

significantly predict 2-back performance group for the left
DLPFC centered at MNI-coordinates (−37.75, 50.19, 13.6).
Specifically, greater left DLPFC surface area significantly
predicted the probability of being in the higher performing group
(Exp(B) = 1.611, 95% CI = [1.088, 2.386], P = 0.017, see Table 3).
For every 1 standardized unit increase in left DLPFC surface
area, there was 1.611 times greater odds of being in the higher
performing group.

Regional BOLD Response

Binary logistic regressions adjusting for age, sex, education,
and scanner type revealed that the level of BOLD signal
significantly predicted 2-back performance group for the left
and right DLPFC. Greater BOLD signal in the left and right
DLPFC each significantly predicted the probability of being
in the higher 2-back performance group (P values< 0.05, see
Table 3). Specifically, for every 1 standardized unit increase in
DLPFC BOLD signal, there was 1.629 to 1.785 times greater odds
of being in the higher performing group (Left DLPFC [−37.75,
50.19, 13.6]: Exp(B) = 1.644, 95% CI = [1.094, 2.469]; Left DLPFC
[−46.26, 22.71, 18.6]: Exp(B) = 1.785, 95% CI = [1.206, 2.640]; Right
DLPFC [44.53, 38.76, 24.43]: Exp(B) = 1.629, 95% CI = [1.129, 2.351];
see Table 3).
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Table 4 Left DLPFC centered at (−37.75, 50.19, 13.6) surface area by BOLD interaction

B Sig. Exp(B) 95% CI for Exp(B) [Lower, Upper]

Surface area .491 .017∗ 1.635 [1.093, 2.444]
BOLD .497 .014∗ 1.644 [1.105, 2.446]
Surface area × BOLD −.053 .794 .948 [.636, 1.414]

∗P < 0.05; values standardized to z-scores.

Brain Structure & Function Interaction

Since the surface area for the left DLPFC centered at MNI-
coordinates (−37.75, 50.19, 13.6) was the only structural measure
that significantly predicted 2-back performance group, follow-
up analyses examined whether surface area and BOLD signal in
this region interact to predict working memory group. However,
results demonstrated that the left DLPFC BOLD signal and sur-
face area did not interact to predict 2-back performance group.
Specifically, those with greater left DLPFC BOLD signal and sur-
face area did not have a significantly greater probability of being
in the higher performing group (P values>.05, see Table 4, Fig. 3).
Although they did not significantly interact, left DLPFC BOLD
signal and surface area still each significantly predicted the
probability of being in the higher performing group (P = 0.794,
see Table 4). Given this, post hoc linear regression analyses
were conducted for each group (higher and lower performers)
adjusting for age, sex, education, scanner type, and total ICV
to determine whether left DLPFC BOLD signal and surface area
were significantly associated in higher and in lower performers.
Collapsed across groups, left DLPFC BOLD signal and surface
area were not significantly associated (β = 0.043, P = 0.639). Left
DLPFC BOLD signal and surface area were also not significantly
associated in either the higher performers (β = −.048, P = 0.707)
or the lower performers (β = 0.049, P = 0.728), further suggest-
ing BOLD signal and surface area independently contribute to
2-back performance.

To further evaluate potential compensatory mechanisms as
proposed by the STAC model, exploratory follow-up analyses
were conducted to determine relationships between contralat-
eral DLPFC surface area and BOLD signal. Linear regression
adjusting for age, sex, education, scanner location, and total ICV
demonstrated that across the entire sample, surface area for
the left DLPFC centered at MNI-coordinates (−37.75, 50.19, 13.6)
did not significantly predict right DLPFC BOLD signal (β = 0.137,
P = 0.128). Left DLPFC surface area also did not significantly
predict right DLPFC BOLD signal in either the higher performers
(β = 0.088, P = 0.483) or lower performers (β = 0.123, P = 0.392),
suggesting greater right DLPFC BOLD signal is not necessarily
a compensatory response to lower left DLPFC surface area. This
provides further evidence that BOLD signal and surface area may
independently contribute to 2-back performance.

Site-Specific Follow-Up Analyses

Although scanner location was included as a covariate, analyses
were replicated within the sample recruited from UF (n = 98; the
larger sample between the 2 study sites) to ensure findings were
not driven by potential differences in MRI scanner. Consistent
with results across the entire sample, binary logistic regressions
adjusting for age, sex, education, and ICV revealed that cortical
surface area significantly predicted 2-back performance group
for the left DLPFC centered at MNI coordinates (−37.75, 50.19,

13.6). Specifically, greater left DLPFC surface area significantly
predicted the probability of being in the higher performing group
(Exp(B) = 1.966, 95% CI = [1.192, 3.244], P = 0.008). White matter
volume and cortical thickness each did not significantly pre-
dict 2-back performance group for any of the 3 DLPFC ROIs (P
values>.05). Additionally, binary logistic regressions adjusting
for age, sex, education, and scanner type revealed that the
level of BOLD signal significantly predicted 2-back performance
group for the left DLPFC (−46.26, 22.71, 18.6) (Exp(B) = 1.612, 95%
CI = [1.036, 2.507], P = 0.034). There was a trend for the left DLPFC
centered at MNI-coordinates (−37.75, 50.19, 13.6) (Exp(B) = 1.533,
95% CI = [.986, 2.385], P = 0.058, which is likely due to the much
smaller sample size relative to the entire sample. Furthermore,
follow-up analyses demonstrated that left DLPFC BOLD signal
and surface area did not interact to predict 2-back performance
group (Exp(B) = 0.971, 95% CI = [.563, 1.677], P = 0.917). Altogether,
these follow-up analyses within the UF sample resulted in pat-
terns largely consistent with findings across the entire sample.

Discussion
Aging is associated with alterations in both brain structure and
function that contribute to cognitive decline. Measures of brain
structure and function have been investigated as independent
modalities, yet little is known about how they may interact to
contribute to the cognitive aging process. The present study
leveraged multimodal neuroimaging to provide novel insight
into the contributions of DLPFC surface area and BOLD signal
to working memory in a large, well-characterized sample of
healthy older adults. Here, we demonstrated that left DLPFC sur-
face area and BOLD signal did not interact, but rather, indepen-
dently predicted working memory performance in healthy, non-
pathological aging. Importantly, these findings demonstrate
that age-related differences in brain structure and function may
not be directly related in their contributions to working memory
in older adults. Altogether, results from the present study inform
the identification of successful aging markers that can serve as
potential targets for intervention strategies.

DLPFC Structural and Functional Correlates
of Working Memory

As hypothesized, DLPFC cortical surface area, but not cortical
thickness, significantly predicted the probability of higher work-
ing memory performance. Cortical thickness is considered an
indirect measure of neuronal density, which is affected more
by neurodegenerative processes than in non-pathological aging
(Du et al., 2007; Fischl & Dale, 2000; Kabani et al., 2001; Shefer,
1973). Cortical surface area is representative of the integrity
and complexity of gray matter and may therefore be more
vulnerable to the aging process (Dotson et al., 2016; Fischl &
Dale, 2000; Lemaitre et al., 2012; Nissim et al., 2017; Salat, 2004).



Aging and Working Memory Evangelista et al. 1739

Figure 3. The left DLPFC surface area by BOLD interaction did not significantly predict 2-back performance group. Follow-up regression analyses revealed that BOLD

signal and surface area in this region are not significantly associated in either the higher or lower performers.

Given the DLPFC is central to working memory, reduced DLPFC
surface area, and thereby compromised structural integrity and
complexity, may result in poorer working memory ability in
older age.

Although a prior study demonstrated that less right DLPFC
surface area is associated with poorer working memory (Nis-
sim et al. 2017), the present study did not demonstrate sig-
nificant associations between right DLPFC surface area and
working memory performance. However, there is at least one
notable difference that may be associated with discrepant find-
ings between the prior and current study. While Nissim et al.
(2017) excluded for mild cognitive impairment or neurodegen-
erative brain disease, this study relied only on performance on
a cognitive screening measure (Montreal Cognitive Assessment;
MoCA) to exclude for cognitive impairment (i.e., MoCA Total
Score < 20). As such, discrepencies between left versus right
lateralized findings may be a result of variability in cognitive
criteria. In addition, the total sample size in Nissim et al. 2017,
totaled 56 participants, versus 138 participants in the current
study—representing significant differences in power between
studies. The present study included a large, well-classified sam-
ple of healthy older adults without mild cognitive impairment,
as defined by performance > − 1.5 SD below the mean in any
one of five cognitive domains on a comprehensive cognitive
battery. As such, our findings that the left DLPFC surface area
is predicitive of working memory may be characteristic of a
healthy aging sample.

Our results also indicated greater BOLD signal in both the left
and right DLPFC is predictive of higher working memory perfor-
mance in non-pathological aging. This confirms prior research

that suggests greater BOLD signal is representative of more
resources required in that particular brain region to achieve
higher task performance (Cabeza et al. 2002; Owen et al. 2005;
Dennis & Cabeza 2011). The STAC model supports the notion
that greater BOLD signal (i.e., overactivation of the DLPFC) is a
marker of the brain engaging in compensatory scaffolding in
response to declines in neuronal structure and function (Park
and Reuter-Lorenz 2009; Reuter-Lorenz and Park 2014). Greater
DLPFC BOLD activation may therefore reflect older adults’ abil-
ity to compensate for structural declines to maintain higher
working memory performance.

Further, Cabeza et al. (2002) theorized that bilateral activation
in older adults, compared to younger adults with activation
lateralized to the right hemisphere, is reflective of a compen-
satory mechanism. Cabeza et al. (2018) noted that increased
BOLD activation in associated regions is linked to insufficiency
in available neural resources relative to cognitive task demands.
Park & Reuter-Lorenz (2009) proposed that older adults who have
experienced regional structural declines may engage associated,
more structurally intact regions, resulting in bilateral activation
patterns (Park and Reuter-Lorenz 2009; Reuter-Lorenz and Park
2014). It is possible that higher performing older adults in the
present study may have compensated for potential structural
deficits in associated regions (e.g., right DLPFC) by recruiting
cognitive resources from the structurally intact left DLPFC.

We demonstrated that greater surface area within only the
left DLPFC, and not the right DLPFC, is predictive of higher work-
ing memory performance. Preserved structural integrity of the
left DLPFC in older age may promote successful aging and the
potential capacity for compensatory engagement. Conversely,
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older adults with less surface area across both the right and left
DLPFC may have a decreased ability to compensate for such age-
related structural deficits. Indeed, Cabeza et al. (2018) proposed
that compensation would be greatest in those with significant
structural declines, but advanced degeneration would result in
reduced capacity for compensation. Future longitudinal studies
should continue to study how preserved structural integrity in
older age contributes to the ability to engage associated brain
regions as a potential compensatory mechanism.

Left DLPFC Surface Area by BOLD Interaction

While considerable evidence suggests greater surface area and
greater BOLD signal are each associated with better working
memory performance (Courtney et al. 1998; Cabeza et al. 2002;
Barbey et al. 2013; Nissim et al. 2017; Suzuki et al. 2018), previous
studies have not evaluated their interactive effect on cognition.
Here, we show that cortical surface area and BOLD signal in the
left DLPFC do not significantly interact to predict higher working
memory performance. In both higher and lower performers,
left DLPFC BOLD signal and surface area were not significantly
related, suggesting differences in surface area do not directly
affect the level of the BOLD signal within that region. However,
BOLD and surface area were each still significant predictors of
higher performance above and beyond the interaction term. This
further supports that greater left DLPFC BOLD signal and surface
area, or other underlying factors influencing these metrics, are
distinct contributors to higher working memory performance.

Furthermore, the STAC model seemingly assumes structural
declines directly influence bilateral activation patterns observed
in higher performing older adults via compensatory scaffolding
(Park and Reuter-Lorenz 2009; Reuter-Lorenz and Park 2014). We
present evidence that age-related structural deficits are not nec-
essarily directly related to greater BOLD activation in either the
higher or lower performers. Yet, these structural and functional
measures were still independently predictive of higher work-
ing memory performance in healthy older adults. One possible
explanation is that the STAC model represents an inverted U-
shaped function between brain structure and functional activa-
tion, such that higher performing adults with intact structure
may not require compensation and thus may not demonstrate
a heightened BOLD response. Additionally, the older adults in
the present study may have engaged in compensatory scaf-
folding to maintain higher working memory performance, but
there may be an underlying mechanism that mediates such
compensation.

Limitations and Future Directions

While findings from the present study provide novel insight into
the independent structural and functional contributions of the
DLPFC to higher working memory performance, the following
limitations should be considered. First, our sample of older
adults was highly educated, as 68.1% of participants obtained a
Bachelor’s degree or higher. While we covaried for education in
our analyses and there were no significant group differences in
education, future work should include older adults representing
various levels of education.

Notably, the present study examined associations within
a healthy non-pathological aging sample, with individuals
excluded for presence of mild cognitive impairment or demen-
tia, as determined by performance on the UDS (Weintraub
et al. 2009; Woods et al. 2018). Given the higher performing

nature of this healthy aging sample resulted in a negatively
skewed distribution even following power transformations,
participants were divided into two groups based on a median
split in 2-back task performance. Results from the present study
elucidate how measures of DLPFC structure and function relate
to higher and lower working memory performance in a healthy
older adult cohort (i.e., successful aging). However, we cannot
comment on how these structural and functional measures
contribute to declines in working memory observed in MCI or
pathological aging. Additionally, this was a cross-sectional study.
Future work should include longitudinal studies evaluating
associations between brain structure, function, and cognition,
and how these associations may predict progression to MCI or
neurodegenerative disease (i.e., Alzheimer’s Disease).

Furthermore, the present study did not evaluate differences
in DLPFC structure or function with parametric manipulation
of working memory load, as working memory was character-
ized based one 2-back task performance alone. As proposed
by Cabeza et al. (2018), compensation occurs via recruitment
of additional neural resources to meet cognitive demand. Prior
studies have shown that older adults reach maximum BOLD
activation at lower working memory load relative to younger
adults (Schneider-Garces et al. 2010; Heinzel et al. 2014; Iordan
et al. 2020). Such a ceiling for BOLD activation occurs at the
limit of available neural resources and is followed by a decline
in activation and performance once the limit of resources has
been exceeded (Cabeza et al. 2018). Given this, higher BOLD
activation with greater working memory load has been thought
to represent high neural capacity, which may be supportive of
successful aging and preserved cognitive performance. Future
studies including parametric manipulation of working memory
load would be beneficial to further characterize relationships
between BOLD activation and working memory performance
that support successful aging.

Contrary to our hypothesis, DLPFC white matter volume did
not significantly predict the probability of being in the higher
performing working memory group. It is possible white matter
volume may not be a sensitive enough metric to detect dif-
ferences in neuronal communication and associated cognitive
processes that occur in healthy, non-pathological aging. Rather,
differences in the integrity of white matter tracts underlying
such cognitive processes may have a greater impact on cogni-
tion in non-pathological aging. Specifically, differences in the
integrity of white matter pathways within a working memory
network, specifically those connecting the left and right DLPFC,
may underlie observed bilateral BOLD activation patterns and
mediate associations between structural deficits (i.e., surface
area), BOLD signal, and working memory performance. However,
white matter tract integrity data were not collected in the parent
study. Future studies should incorporate additional modalities
measuring white matter integrity (e.g., diffusion weighted imag-
ing metrics of fractional anisotropy, etc.) in addition to white
matter volume to further elucidate how white matter alterations
contribute to the cognitive aging process.

In addition, the current study did not assess magnetic
resonance spectroscopy to evaluate proton or phosphorus
nuclei-based markers of neural metabolism. Age-related
regional declines in cerebral adenosine triphosphate (ATP),
creatine, or other markers of energy metabolism may also
help explain structural and functional contributions to working
memory within the DLPFC (Bachelard 1979; Schmitz et al. 2018).
Future studies expanding multimodal assessment of the DLPFC
to include both microstructural and neurometabolic markers
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will help to further elucidate the neural processes underlying
working memory deficits in healthy older adults.

Conclusion
This study leverages multimodal structural and functional neu-
roimaging to provide important new insights into the indepen-
dent contributions of DLPFC structure and function to working
memory in cognitive aging. Out of all structural measures exam-
ined, only DLPFC surface area was predictive of the probability
of higher performance. Our findings suggest that preserved
structural integrity of the left DLPFC in older age may promote
successful aging and the potential capacity for compensatory
engagement, while older adults with less bilateral surface area
may have a decreased ability for compensation. However, we
present evidence that greater DLPFC BOLD signal and surface
area are not directly related or interact to influence working
memory. Rather, our results suggest these measures of structure
and function independently predict higher working memory
performance. There may be underlying microstructural or neu-
rometabolic mechanisms that mediate the structural and func-
tional differences and associated working memory performance
demonstrated in the present study. Expanded multimodal study
of the DLPFC will serve to determine whether alterations in
DLPFC structure and function relate to working memory are
truly independent or whether the present findings are represen-
tative of a more complex model that remains undefined.
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