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Abstract

Despite its central role in revealing the neurobiological mechanisms of behavior, neuroimaging research faces the challenge
of producing reliable biomarkers for cognitive processes and clinical outcomes. Statistically significant brain regions,
identified by mass univariate statistical models commonly used in neuroimaging studies, explain minimal phenotypic
variation, limiting the translational utility of neuroimaging phenotypes. This is potentially due to the observation that
behavioral traits are influenced by variations in neuroimaging phenotypes that are globally distributed across the cortex
and are therefore not captured by thresholded, statistical parametric maps commonly reported in neuroimaging studies.
Here, we developed a novel multivariate prediction method, the Bayesian polyvertex score, that turns a unthresholded
statistical parametric map into a summary score that aggregates the many but small effects across the cortex for behavioral
prediction. By explicitly assuming a globally distributed effect size pattern and operating on the mass univariate summary
statistics, it was able to achieve higher out-of-sample variance explained than mass univariate and popular multivariate
methods while still preserving the interpretability of a generative model. Our findings suggest that similar to the
polygenicity observed in the field of genetics, the neural basis of complex behaviors may rest in the global patterning of
effect size variation of neuroimaging phenotypes, rather than in localized, candidate brain regions and networks.
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Introduction
Neuroimaging is central to the search for neurobiological mech-
anisms of cognitive processes and psychopathology. However, by
far, neuroimaging studies that aim to reveal the biological corre-
lates of phenotypic variations have limited success in the identi-
fication of reliable biomarkers for clinical diagnoses or cognitive
functions. One of many reasons for this challenge is the reliance
on statistical thresholds and mass univariate statistical models
for many neuroimaging studies. In traditional neuroimaging
analyses, the association between an imaging phenotype and
phenotypic variation is assessed with mass univariate statistical
models where the associative effect is estimated independently
at each measured unit of the brain data, for example, vertex,
voxel, or region of interest. The magnitude of the generalizable
brain-behavior association is usually inferred from the effect
size estimates of “only the most significant” vertices/regions
of interests (ROIs) using the mass univariate estimators. Such
an approach assumes that the underlying true association is
sparse and localized in the cortex, and hence that clusters of
vertices/ROIs with minimum P values (min-P) form the basis
of generalizable signals. Although study designs and covariates
are controlled for in mass univariate statistical models used to
detect brain-behavior associations, the resulting regions only
explain minimal variation in behavior (Poldrack et al. 2017;
Stanfield et al. 2008). With a sample size of more than 14 000
participants, Smith and Nichols (2018) demonstrated that a sta-
tistically significant imaging composite measure, surviving Bon-
ferroni correction of 14 million tests, explained less than 1% of
the variance in behavior.

In reaction to the difficulty in finding reproducible, local-
ized brain-behavior associations using mass univariate models,
neuroimaging researchers have turned to multivariate machine
learning methods that utilize all available imaging features for
behavioral prediction, where the most predictive imaging fea-
tures are interpreted post hoc (Dosenbach et al. 2010; Lebedev
et al. 2014; Niu et al. 2020). This multivariate machine learn-
ing approach has shown success at capturing generalizable
brain-behavior associations (Kragel et al. 2018; Sui et al. 2020),
including applications in understanding individual variability
in brain maturation (Brown et al. 2012), intelligence (Finn et al.
2015), emotional processing (Chang et al. 2015), and symptoms
of psychiatric disorder (Rosenberg et al. 2016), to name a few.
However, many machine learning models rely on the raw imag-
ing phenotype (Smith et al. 2015; Sripada et al. 2019; Hong
et al. 2020), which prevents cross-study applications of mass
univariate statistics. Some multivariate statistical methods also
lack one important benefit of the statistical parametric brain
mapping approach, that is, the unbiased estimation and inter-
pretation of a brain-behavior association with proper control for
confounds. The concern of black-box applications of multivari-
ate prediction methods has arisen (Davatzikos 2019; Efron 2020)
due to the data-driven approach, and the lack of hypothesis-
driven, generative models. Cautious interpretation of predictive
models is needed since the predictive features can be ephemeral
rather than important and generalizable (Scheinost et al. 2019;
Efron 2020).

Inspired by the success of the field of genetics in imple-
menting generative models to identify generalizable genotype–
phenotype mapping (Visscher et al. 2017; Efron 2020), we intro-
duce a novel multivariate prediction method, the polyvertex
score (PVS), that captures the many generalizable effect sizes
across all vertices. It has several innovations. First, the PVS is a

generative model that explicitly takes a global prior such that all
vertices contribute to the observed brain-behavior association.
No statistical threshold or dimension reduction of the imaging
phenotype is necessary for the calculation of the PVS. Second,
the PVS can be thresholded to reflect the user’s hypothesis on
the underlying signal sparsity of a brain-behavior association of
interest. Comparing the predictive performance of PVSs of vary-
ing statistical thresholds yields empirical insights into the true
sparseness of a brain-behavior association. Last but not least,
the PVS can be applied directly to statistical parametric maps
derived from mass univariate analysis, setting it apart from
existing multivariate statistical methods. It can be deployed
in smaller sample studies to boost predictive power when the
mass univariate summary statistics can be obtained from large
neuroimaging consortiums.

For comparison purpose, two versions of the PVS were devel-
oped. The mass univariate PVS (PVSU) is a summary measure of
all the mass univariate effect sizes across the cortex, which is
readily available for most neuroimaging analyses. The Bayesian
PVS, on the other hand, is a multivariate extension of the PVSU

that accounts for correlation across vertices as well as the
nonsparseness of the brain signal on behavior. Previous research
have shown that ignoring the correlation structure among
vertices results in biased estimation of the parameter of interest
(Thompson et al. 2015), limiting the ability of mass-univariate
approaches to localize effects and to make accurate predictions.
The Bayesian PVS (PVSB) (Fig. 1) incorporates the covariance
structure of the imaging phenotype during parameter estima-
tion. Leveraging the unprecedented large sample size of the
Adolescent Brain Cognitive Development (ABCD) Study, we
demonstrated the utility of the PVSB as a reliable multivariate
method with great out-of-sample prediction performance, by
comparing it to the PVSU, the min-P, and popular multivariate
methods, including lasso regression, random forest, and support
vector regression (SVR) with linear kernel. In addition to its good
predictive performance, the property of the PVSB enables us to
demonstrate that the generalizable brain-behavior association
is distributed in the global patterning of effect sizes across the
cortex.

Materials and Methods
Mass-Univariate Parameter Estimation

We assume the relationship between a behavioral phenotype of
interest and the imaging phenotype is captured by a general lin-
ear model. Specifically, let N denote the number of participants
and let V denote the number of vertices. Then

y =
V∑

v=1

xvβv + ε, (1)

where y is a standardized N x 1 vector of behavioral phenotypes,
xv is standardized N x 1 vector of imaging data, and βv is
the association parameter for the vth voxel, v = 1, . . . V. More
generally, the regression model (1) will also include covariates
of no interest, which we omit here for simplicity of exposition.

It is often not possible to estimate model (1) directly, as
there are a greater number of vertices than participants, V >

N, and the desired associations with the behavioral phenotype
is instead usually estimated using a mass-univariate regres-
sion approach across individual voxels. The mass-univariate
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Figure 1. Overview of the PVSB and the PVSU algorithms. Ten-fold cross-validation was performed to obtain a PVSB for each individual. For each fold, mass univariate
summary statistics, β̂U, were obtained from the training set which contained 90% of the complete sample. Posterior mean effect sizes at each vertex, β̂B, were
approximated by multiplying the mass univariate beta estimates, β̂U, by the inverse of the correlation structure of the brain, D, and a shrinkage factor that accounts for

the number of vertices, V, and the total signal of the brain-behavior association. The PVSB was subsequently calculated for the test set participants by multiplying their
imaging phenotype with the β̂B. Simulations were conducted at three levels of total explainable signal, six levels of study sample size, and four levels of proportion of
non-null vertices, yielding 60 instantiations of simulation conditions with 100 iterations per condition.

regression model is given by

y = xvβv + εv, v = 1, . . . , V. (2)

Let X =
(
x1, . . . , xV

)
denote the N x V matrix of standardized

imaging phenotypes and β =
(
β1, . . . , βV

)′
the V x 1 vector of

association parameters of interest. The mass-univariate brain
mapping model (2) omits information contained in the cor-
relation across columns of X when estimating β. In a least-
squares framework, this is equivalent to assuming that the
sample correlation matrix of the brain phenotype, X′X = I, the
V x Videntity matrix. The least-squares estimates of β based on
mass-univariate model (2) thus take the form

β̂U = X′y. (3)

Independent estimation of the parameter estimate at each
vertex allows for estimation when V > N and otherwise reduces
the computational demand and produces more stable estimates
when the voxels are highly correlated with each other (when N >

V).
Recent debates on reproducibility and small effect sizes in

neuroimaging research are based on such mass-univariate esti-
mates from the brain mapping framework. However, ignoring
the correlation structure among vertices results in biased esti-
mation of β as described in Thompson et al. (2015), limiting
the ability of mass-univariate approaches to localize effects
and to make accurate predictions. Moreover, the magnitude of
the generalizable brain-behavior association is usually inferred
from the effect size estimates of “only the most significant”
vertices/ROIs using the mass univariate estimators (3). Such
an approach assumes that the underlying true association is
sparse and localized in the cortex, and hence that clusters of
vertices/ROIs with min-P form the basis of generalizable signals.
However, emerging evidence from large consortia such as the
ABCD indicates that the explanatory power of the brain on
behavior is nonsparse, and thus cannot be captured solely by
the most significant vertices/ROIs. In order to generalize the
effect sizes of the whole brain phenotype, we need a prediction
framework that accounts for correlation across voxels as well

as the nonsparseness of the brain signal on behavior. Rooted in
this brain mapping approach, we propose the PVSB estimation
and prediction framework.

Empirical Bayes Estimation of Parameter of Interest

To tackle the correlated signal of the imaging phenotype at each
vertex, we developed a Bayesian approach where the correlation
information across vertices is incorporated into the parameter
estimation process. Similar frameworks have been proposed in
the field of genetics (Vilhjálmsson et al. 2015). Let y denotes stan-

dardized N x 1 vector of behavioral phenotypes, X =
(
x1, . . . , xV

)
denotes the N x V matrix of standardized imaging phenotypes

and β =
(
β1, . . . , βV

)′
is a V x 1 vector of association parameters

of interest. The intuition behind the formulation of the PVSB is
to estimate the posterior expectation of the multivariate linear
regression coefficients β from model (1) utilizing the mass-
univariate estimator β̂U from (3) and a regularized estimator of
its V x V correlation matrix.

To do so, we assume that the residuals ε are independent and

normally distributed with constant variance, ε ∼ NN

(
0, σ 2I

)
, and

give an independent normal prior with constant variance for the

regression coefficients, β ∼ NV

(
0, δ2I

)
. It is easy to show that

the posterior distribution of β | y, X, δ2, σ 2 is again multivariate
normal with expectation

E
(
βB

∣∣ y, X, δ2, σ 2
)

=
(

D + σ 2

δ2
I

)−1

β̂U, (4)

where D = X′ X is the V x V correlation matrix of β̂U. We can thus
express the vertexwise posterior mean effect sizes of the brain
phenotype under model (1) by weighting the mass univariate
beta estimates β̂U with a factor that accounts for the observed
correlation structure of the cortex D and the per-vertex variance
explained δ2. Since we do not know δ2 and σ 2a priori, we use
plug-in estimators based on the summary statistics from the
mass univariate model. We accomplish this using a method-
of-moments estimator of the variance explained per vertex
(Schwartzman et al. 2019):

Ŝ2 = m̂eff

(
z2 − 1

)
(5)
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where z2is the mean of the squared z-statistics of the mass
univariate regressions across vertices, and the m̂eff is the esti-
mated effective number of vertices: m̂eff is calculated as the
number of vertices,Vdivided by the second spectral moment of
the correlation matrix D. Then the estimated per-vertex variance
explained is given by δ̂2 = Ŝ2V, and the estimated residual

variance is given by σ̂ 2 =
(
1 − Ŝ2

)
. Thus, our Empirical Bayes

estimator for β is given by

β̂B =
(

D + σ̂ 2

δ̂2
I

)−1

β̂U. (6)

The benefits of implementing this Empirical Bayes param-
eter estimation are 2-fold: (i) the procedure takes into account
the correlation of the brain phenotype across vertices, and (ii)
the total estimated signal of the brain-behavior relationship is
incorporated as a data-driven regularization parameter.

Behavioral Prediction

Polyvertex Scores
Motivated by the success of polygenic risk scores (PRS), a PVS can
be calculated from neuroimaging data by aggregating the predic-
tive power of all vertices on a given behavioral phenotype. We
implemented two types of PVS that utilize the mass univariate
and Empirical Bayes parameter estimates, respectively. A mass
PVSU, based on the mass univariate parameter estimates, was
computed as the brain phenotype at each vertex for an indi-
vidual multiplied by the mass univariate parameter estimates
acquired from an independent sample:

ŷPVSU =
∑V

j
Xjβ̂U,j, (7)

where y is a standardized N x 1 vector of behavioral phenotypes,
xv is standardized N x 1 vector of imaging data, and βv is
the association parameter for the vth voxel, v = 1, . . . V. The
PVSU summarizes the effect size at all vertices on individual
variability in behavior, with the assumption of independence at
each vertex.

Similarly, PVSB (Figure 1) was calculated using the Empirical
Bayes parameter estimates:

ŷPVSB =
∑V

j
Xjβ̂B,j. (8)

The PVSB is hypothesized to harness the multivariate effect
of an imaging phenotype on behavior by accounting for the
correlation structure and the total explainable signal of the
brain phenotype and should therefore yield a superior predictive
performance over the PVSU.

Thresholding Based on Statistical Significance

To address the possibility that the explanatory power on behav-
iors is sparse and localized in the brain, a canonical assump-
tion of mass univariate statistical models, we tested whether
thresholding the number of vertices based on statistical sig-
nificance would improve the prediction performance of the
PVSB. The thresholding procedure was performed as follows:
we ranked the absolute effect sizes for all vertices and removed
those ranked lower than a threshold proportion. Three levels of

thresholding were implemented such that the top 50%, 10%, and
1% of vertices were retained for the PVSB.

To link our predictive methods with the canonical statistical
inference approach where a brain and behavior relationship is
established when any single vertex shows a significant asso-
ciation with the behavior, we compared our methods with the
predictive performance of the vertex with the most significant
mass univariate z-score, which we have referred to as the min-P
model. A total of six prediction models were examined, namely,
the PVSU, the PVSB, PVSB 50%, PVSB 10%, PVSB 1%, and min-P.

Out-of-sample variance explained R2 was used to evaluate
the predictive accuracy of each method. Simulations were
performed to assess the predictive performance of the above-
mentioned six methods. The simulation procedure, cross-
validation scheme, and simulation results were shown in the
Supplementary Material.

Empirical Data

We examined whether functional neuroimaging phenotypes
could predict complex behaviors with greater predictive power
by (i) aggregating over all unthresholded effects across the cortex
and (2) incorporating the covariance structure of the imaging
phenotype. The PVSB and its thresholded variants, the PVSU, and
min-P model were implemented to assess the predictive power
of two functional magnetic resonance imaging (fMRI) contrasts
on two different cognitive tasks using the baseline data of the
ABCD Study.

Sample
The ABCD Study is a population-based longitudinal study across
21 data acquisition sites in the United States of America follow-
ing 11 875 demographically diverse children starting at 9 and
10 years old (Garavan et al. 2018). Participants were recruited
through a probability sampling procedure at the school level
within the defined catchment area of the study’s nationally
distributed set of 21 recruitment sites. The ABCD sample also
included a large twin cohort and many siblings. Family related-
ness was documented and controlled for in the analyses in this
paper such that twins and siblings from the same family were
grouped into the same training or testing set. Study inclusion
criteria were detailed in Casey et al. (2018) and Hagler et al. (2019).
Additional data quality control was applied to the complete
baseline data of the ABCD Study, yielding a final sample of
over 6000 participants. Quality control criteria and the descrip-
tive characteristics of the final sample were presented in the
Supplementary Material.

With the complete baseline data of the ABCD study, we
estimated the predictive performance of the vertex-wise “2 back
versus 0 back” contrast from the Emotional N-back fMRI task
(nBack; Casey et al. 2018) and the “correct stop versus correct
go” contrast from the Stop Signal Task (SST; Logan 1994) on the
“Total Composite (TC) Score” from the NIH Toolbox Cognition
Battery (NTCB) ages 7–17 ( Gershon et al. 2013) and the “Stop
Signal Reaction Time” (SSRT) from the SST task, respectively.
NBack-SSRT and SST-TC associations were assessed to examine
the specificity of prediction. Four brain-behavior associations of
interest were examined: nBack predicting TC, nBack predicting
SSRT, SST predicting TC, and SST predicting SSRT. To account
for the potential contribution of subcortical ROIs on behavioral
variability, a whole brain imaging phenotype was created by
combining the BOLD activity of the FreeSurfer subcortical ROIs
(excluding ventricles; Fischl et al. 2002) with the vertexwise

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
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fMRI data. The predictive performance of these whole brain
phenotypes on the above-mentioned four associations was also
estimated.

Ten-fold cross-validation was performed for each associa-
tion. Variance explained R2, the squared Pearson correlation
between the observed and predicted behavioral phenotypes,
was calculated for each association. Rigorous covariate control
was applied to the data to ensure that the identified brain-
behavior associations were not attributable to demographic and
socioeconomical confounds known to influence brain or behav-
ioral variation. Failing to control for these confounds may result
in inflated prediction performance for multivariate methods
(Scheinost et al. 2019). Both brain and behavioral phenotypes
were preresidualized for age, sex, race, ethnicity, household
income, parental education, household marital status, and scan-
ner ID independently within each training and testing set.

FMRI Tasks and Processing Steps
The nBack task incorporated facial and emotional processing
to the traditional N-back task to assess memory and emotional
regulation processes. The nBack task consisted of two runs.
Within each run, participants were shown a series of stimuli
and were instructed to indicate if a stimulus was the same as
or different from the stimulus they saw N items earlier for each
stimulus. There were two conditions for the nBack task: a 2-back
versus fixation condition and a 0-back versus fixation condition
which served as baseline. The “2 back versus 0 back” contrast
was used in this analysis.

The SST was used to assess the BOLD activity during
inhibitory control. Participants were instructed to indicate the
direction of a left or right arrow as quickly and accurately as
possible, but were instructed not to respond when a left or right
arrow was followed by an upward arrow. The full details of the
fMRI tasks used in the ABCD Study were documented in Casey
et al. (2018).

Structural and task-based functional magnetic resonance
imaging (MRI) data acquisition were conducted with 3T scan-
ners, with multiband echo planar imaging with fast integrated
distortion correction and were harmonized across scanner
vendors. Preprocessing steps included head motion correction,
B0 distortion correction, resampling with cubic interpolation,
between-scan motion correction, and automated registration.
General linear models implemented in AFNI’s 3dDeconvolve
were used to estimate task-related activation strength at the
individual subject level, with hemodynamic response functions
modeled using a gamma variate basis function plus its temporal
derivative. Averaged beta coefficients per participant across
two runs were calculated by weighting each run with the
nominal degrees of freedom of that run and were used in this
analysis. Detailed imaging processing and analysis pipelines
were described in Hagler et al. (2019).

Behavioral Measures
The NTCB ages 7–17 is a comprehensive suite of neurobehavioral
measurements. NTCB consists of seven subtests: the Flanker
Inhibitory Control and Attention Test, the Picture Sequence
Memory Test, the List Sorting Working Memory Test, Picture
Vocabulary Test, Oral Reading Recognition Test, Dimensional
Change Card Sorting Test, and Pattern Comparison Processing
Speed Test. The TC score, the average of all 7 subtests, is a
composite index of general cognitive ability and was used in this
study.

The SSRT was derived from the behavioral performance mea-
sures acquired during the SST. It was computed by subtracting
the median stop signal delay of all successful stop trials from
the nth percentile go reaction time, where n represents the
percentage of successful inhibitions.

Multivariate Method Comparisons

To assess the predictive performance of the PVSB relative exist-
ing multivariate models, we submitted the above-mentioned
empirical data to three additional multivariate methods: LASSO,
random forest, and SVR with linear kernel, and compared their
predictive performance with that of the PVSB. These methods
were chosen to complement PVSB’s statistical emphasis.
Although LASSO is a parametric regression-based method
similar to the PVSB, its sparsity assumption sets it aside from
the PVSB, which assumes a global prior. SVR and random forest,
on the other hand, are popular nonparametric methods that
capture nonlinear effects for better prediction. Matlab imple-
mentation of these multivariate methods was described in
the Supplementary Material. To make our results compatible
with previous multivariate analyses of differing covariates
treatments (Finn et al. 2015; Sripada et al. 2019; Cui et al.
2020), we repeated these analyses with two additional covariate
control schemes. Out-of-sample variance explained for all
multivariate methods after controlling for (1) age, sex, and
scanner ID, and (2) age, sex, scanner ID, race, and ethnicity, was
estimated.

Results
Simulation Results: the PVSB Demonstrated Superiority
at Capturing Global, Distributed Brain-Behavior
Association Patterns

The reliability of the predictive performance of the PVS frame-
work was established across a suite of simulated conditions
(Fig. 2 and Supplementary Material). The PVSB better captured
the variance explained in behavior than the PVSU and the min-
P (most significant vertex) across varying conditions of mag-
nitude (total explainable signal; Fig. 2A), sample size (Fig. 2B),
and nonsparseness of the true signal across the cortex (pro-
portion of non-null vertices; Fig. 2C). This shows the benefit of
accounting for the correlation structure of the brain for behav-
ioral prediction. The PVSB also outperformed its thresholded
variants when the signal structure was global (Fig. 2D,E). When
the true signal structure was sparse, thresholding PVSB at the
corresponding threshold yielded better performance (Fig. 2F),
demonstrating the sensitivity of the PVSB to the underlying true
signal structure.

Empirical Results: Behavioral Variability was Better
Predicted by the Unthresholded Task Activation Pattern
Captured by the PVSB

After establishing the efficacy of the PVSB at capturing global
brain-behavior associations using simulation, we explored
whether individual differences in cognitive processes can be
better predicted by whole brain rather than thresholded task
activation patterns using the baseline data from the ABCD Study
(Fig. 3). For the nBack-TC association, the PVSB outperformed
the PVSU and min-P, capturing 12.6% compared with 6.9%
and 3.5% of the variance in the n-Back-TC association. Similar
improvement in prediction accuracy was also observed for the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
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Figure 2. The PVSB demonstrated superior predictive performance compared with the PVSU, and min-P (A–C) as well as its thresholded variants (D–F) across various
simulated conditions. Figure 2 showed the mean and 1.96 standard deviation confidence interval of the proportion of total variance explained by each method. The
advantage of the PVSB over the PVSU and the min-P was most prominent at higher levels of total explainable signal (A), larger sample size (B), and with increased
proportion of non-null vertices (C). When the true signal structure was nonsparse, (10, 50, and 100% of non-null vertices; C), the advantage in prediction accuracy of

the PVSB was prominent, manifested by its superior, prediction performance compared with the PVSU and min-P. Superior predictive performance was established
for the PVSB compared with its thresholded variants (D, E). When the true signal structure was global, the PVSB outperformed its thresholded variants across levels
of total explainable signals (D) and across sample sizes (E). Sensitivity to the underlying signal structure of the PVSB was estimated with varying simulated levels of
signal sparsity (F): when the true signal structure was sparse, that is, the proportion of non-null vertices was small, the thresholded PVSB at the corresponding level of

statistical threshold outperformed the unthresholded PVSB, highlighting the sensitivity of the PVSB to the underlying signal structure of the simulated brain-behavior
association. The complete simulation results were reported in Supplementary Material.

SST-SSRT association. The PVSB was able to explain 11.7% of
the variance in SSRT using the vertex-wise BOLD variation
of the correct stop versus correct go contrast from the SST,
compared with 1.7% and 1.5% for the PVSU and the min-P,
respectively. The increased predictive performance of the PVSB

highlights the importance of accounting for the correlation
structure of the imaging phenotype when measuring the
generalizable signal between brain and behavior. Interestingly,
the imaging contrasts only showed associations with the
behaviors that used similar underlying cognitive constructs
to the fMRI tasks: no associations were found between the
nBack contrast and SSRT and between the SST contrast and
TC. Such specificity has been found in other fMRI studies
(Rosenberg et al. 2020) and further highlights the benefit of
the PVSB at capturing effective association patterns without
overfitting.

Thresholding the PVSB at varying statistical thresholds, on
the other hand, did not confer any advantage for prediction
accuracy. For both significant associations, the predictive

performance of the PVSB decreased as more stringent
statistical thresholds were applied. Specifically, for the nBack-
TC association, decreased predictive performance was found for
the PVSB 50% (R2 = 12.4%) and PVSB 10% (R2 = 9.2%) compared
with the PVSB (R2 = 12.6%). A similar drop in predictive accuracy
was found for the SST-SSRT association (PVSB: R2 = 11.7%, PVSB

50%: R2 = 11.5%; PVSB 10%: R2 = 8.2%). Thresholding based on the
vertex-wise P values resulted in decreased prediction accuracy,
suggesting that vertices with subthresholded P values were still
informative for behavioral prediction. The visualization of the
distributed pattern of mass univariate statistics (Fig. 4A,C) and
the posterior mean effect sizes (Fig. 4B,D) across the cortex,
further corroborated our hypothesis that the predictive effect of
the brain on complex behavior was indeed global and distributed
across the cortex. No improvement was observed by including
subcortical ROIs for prediction, as shown by the comparable
predictive performance of the cortical imaging phenotype
relative to that of the whole brain imaging phenotypes
(Supplementary Material Table 2).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
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Figure 3. Decreased predictive performance was associated with more stringently thresholded models for the empirical brain-behavior associations. Variance
explained, R2, for four brain-behavior associations (nBack predicting TC, SST predicting SSRT, nBack predicting SSRT, SST predicting TC) were examined using the
PVSU, PVSB, thresholded variants of the PVSB, and min-P. Significant associations were identified for the nBack-TC and SST-SSRT, but not for the nBack-SSRT and
SST-TC associations. For the two significant associations, the best prediction performance was achieved by the PVSB where all vertices where included in the model.

Predictive performance decreased as more stringent thresholds were applied. All brain and behavioral variables were preresidualized for age and categorical variables
including sex, parent marital status, highest level of parental education, household income, self-reported race and ethnicity, and MRI scanner ID.

Table 1 The PVSB demonstrated comparable if not superior generalization performance relative to other multivariate methods. The out-of-
sample variance explained, R2, of each multivariate method was shown for each empirical brain-behavior association. Although the PVSB,
random forest, and LASSO showed comparable predictive performance for the nBack-TC association, the PVSB outperformed other multivariate
methods for the SST-SSRT association. Minimal association was again found for the nBack-SSRT and SST-TC contrasts

Associations PVSB Random Forest LASSO SVR

nBack-TC 11.58 10.88 10.42 2.25
nBack-SSRT 0.76 0.12 0.13 0.07
SST-TC 0.46 0.38 0.00 0.08
SST-SSRT 10.64 8.03 8.70 3.45

Multivariate Method Comparisons

The PVSB demonstrated comparable if not superior predictive
performance compared to other multivariate methods (Table 1).
All methods except the SVR with linear kernel explained at
least 10% of the variance explained of the nBack-TC association
after controlling for demographic variables. For the SST-SSRT
association, the PVSB explained more than 10% of the out-of-
sample variance in behavior, whereas random forest and LASSO
achieved only 8% and 8.7% variance explained, respectively.
Such difference in prediction accuracy may be due to overfitting
of the random forest and LASSO to the noisier SST imaging
phenotype, highlighting the importance of having high quality
imaging data in multivariate statistical analysis. More stringent
covariate control, on the other hand, reduced the predictive
performance of all methods on the nBack-TC but not the SST-
SSRT association (Supplementary Material Table 2), suggesting
that insufficient covariates control would inflate the magnitude
of association detected by multivariate statistical methods and
that such inflation may be specific to the association of interest.

Discussion
In this study, we presented the empirical utility of a new
multivariate prediction method, the PVSB, and showed that
greater out-of-sample behavioral prediction of imaging phe-
notypes could be achieved by explicitly modeling the globally
distributed brain-behavioral associations across the cortex. The
PVSB captures the unthresholded, generalizable predictive effect
of an imaging phenotype on behavior by calibrating the mass
univariate summary statistics with the estimated covariance
structure of the imaging phenotype and a global prior of effect
sizes. Using the Emotional N-back and the SST fMRI contrasts
from the ABCD Study, we demonstrated that greatest predictive
performance of fMRI phenotypes on complex behaviors can
be achieved using the unthresholded multivariate effect size
pattern captured by the PVSB. Our findings suggested that the
predictive power of imaging phenotypes on complex behaviors
was distributed rather than localized across the cortex, and such
global effect needs to be explicitly modeled in the statistical
methods used by neuroimaging studies in order to holistically

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa290#supplementary-data
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Figure 4. Distributed pattern of effects across the cortex for the nBack-TC and SST-SSRT associations. Unthresholded vertexwise mass univariate standardized
parameter estimates and posterior mean effect sizes were displayed for the nBack-TC and SST-SSRT associations. The unthresholded mass univariate parameter
estimates were used to calculate the PVSU and the posterior mean effect sizes were used to calculate the PVSB for each association. For the nBack-TC association,

both mass univariate (A) and posterior mean effect size maps (B) showed distributed patterns of association across the cortex, suggesting that the association between
imaging and behavioral phenotypes were global, spanning the whole cortex. Similar distributed patterns were found for the SST-SSRT association. Compared with the
mass univariate statistical map (C), the posterior mean effect size map (D) of the SST-SSRT association showed greater variation in the relative weighting of brain regions
on behavioral prediction, potentially contributing to the greater prediction accuracy for the PVSB compared with the PVSU for this association. The interpretation of

the posterior mean effect size maps should be attempted with caution as the validity of these effect sizes rests upon the assumption of the global prior such that all
vertices contribute to brain-behavior associations.

understand the neural bases of psychiatric disorders and
cognitive functions.

Traditional methods used to analyze brain-behavior rela-
tionships aim to detect individual brain regions or localized
clusters significantly associated with phenotypic variation.
Rooted in signal detection theory, this brain mapping approach
has been fruitful in characterizing the explanatory effect of
brain regions on behavior, but has demonstrated suboptimal
replicability (Ihnen et al. 2009; King et al. 2019) and therefore
limited translational utility for psychopathology. When predict-
ing individual differences in phenotypic variation, sparse and
focal association patterns, captured by statistical thresholding
based on P values, did not confer any advantage over the
unthresholded association pattern captured by the PVSB. Along
with other neuroimaging studies that have reported similar
distributed association patterns (Gonzalez-Castillo et al. 2012;
Poldrack et al. 2017; Bruin et al. 2019; Dubois et al. 2018; Sripada
et al. 2019), our findings suggest that the power for predicting
individual variability in complex cognitive behaviors is globally
distributed in an imaging phenotype, above and beyond a

localized and sparse region or network. Although lower level
visual motor processes and specialized cognitive behaviors may
be more accurately captured by localized association patterns
(Sereno et al. 1995; Tsao et al. 2003), complex cognitive processes
and risk for psychiatric disorders may be more accurately
predicted by distributed, global patterns of BOLD activation
across the cortex.

Our results further demonstrate the importance of mov-
ing beyond mass univariate statistical models in neuroimaging
research (Reddan et al. 2017; Smith and Nichols 2018; Kragel et al.
2018). Common fMRI practice assumes that BOLD activity has a
localized correlation structure. However, long-range correlations
in BOLD activity across the cortex have been well documented
by resting-state fMRI research and have demonstrated impor-
tant behavioral implications. Here, we found that including the
covariance structure of the imaging phenotype during parame-
ter estimation greatly improved the predictive performance of
functional imaging phenotypes. Similar improvement of pre-
dictive accuracy of regional cortical morphology on cognitive
outcomes was shown in children (Palmer et al. 2020). Predictive
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performance is of great importance to the utility of biomarkers
on clinical disorders or cognitive processes. As a result, neu-
roimaging studies that aim to generate potential biomarkers
using functional neuroimaging phenotypes should adopt and
develop new statistical methods that estimate the multivariate,
distributed associative effects between brain and behavior.

Our results echoed the solution of the small effect size issue
adopted by the field of genetics. Similar to traditional neu-
roimaging studies, mass univariate statistical models and statis-
tical thresholding are used in genome-wide association studies
(GWAS) to localize genetic loci that are significantly associ-
ated with psychiatric disorders and cognitive processes. With
thousands of participants and unprecedented statistical power,
GWAS-based significant genetic loci only account for a fraction
of the variance in complex human phenotypes. To resolve this
issue, PRS (Purcell et al. 2009) were subsequently developed
from GWAS to aggregate the small effect sizes across the whole
genome, including those nonsignificant loci (Yang et al. 2010;
Davies et al. 2011; Le Hellard and Steen 2014; Torkamani et al.
2018). By pulling together the effects of many informative but not
necessarily statistically significant genetic variants, PRS greatly
improved the predictive performance of genetic data on strati-
fying psychiatric risk based on the polygenic burden of common
variants (Purcell et al. 2009; Dudbridge 2013), fueling the discov-
ery that complex behaviors are polygenic (Visscher et al. 2017;
Gibson 2018). Given the similarity of observed small effect sizes
of neuroimaging and genetics research, individual variability
in complex behavior may be attributable to the structural and
functional differences across the whole brain. Indeed, as our
results indicated, complex behaviors are polyvertex, with each
vertex contributing only minimally to the variance explained
in behavior and thus not surviving statistical thresholding. To
capture the distributed, small predictive effects of the brain on
behavior, multivariate methods (Chang et al. 2015; Finn et al.
2015; Bruin et al. 2019) are essential, and a multivariate method
that captures the subthreshold effect sizes of the imaging data
is needed.

The PVSB is one of many multivariate statistical methods
available for neuroimaging analyses. Although the predictive
advantage of various multivariate models is dependent on the
sample size, imaging features, the magnitude of the effect sizes
and other sample characteristics (Jollans et al. 2019), our results
showed that the predictive accuracy was comparable across
multivariate methods, with slightly greater performance of the
PVSB on the SST-SSRT contrast. In addition to its good prediction
accuracy, the PVSB confers other advantages. First, following the
brain mapping approach, the PVSB maps the effect sizes at every
vertex without reducing the dimensionality of the imaging phe-
notype, providing the scientific interpretability unavailable to
nonparametric multivariate methods, making it a useful tool for
the neuroimaging community. Second, the PVSB offers empirical
insights into the underlying signal structure of a brain-behavior
association of interest. Last, mass univariate summary statistics
from large neuroimaging dataset can be supplied to the PVSB

for prediction in a small independent sample, which makes
the PVSB a useful tool to harvest the statistical power of large
neuroimaging consortiums for smaller imaging studies.

In summary, results from this study suggest that in order
for neuroimaging studies to identify possible biomarkers for
cognitive and clinical outcomes, greater predictive power of
the functional neuroimaging phenotypes needs to established,
which can be achieved through the statistical modeling of global,
distributed effects using multivariate statistical methods, one

of which being the PVSB. Using a large sample from the ABCD
study, we have demonstrated the utility of employing multivari-
ate parameter estimation and aggregating the effect across a
functional neuroimaging phenotype for greater predictive power
for behavior. With an increasing interest in the predictive utility
of imaging phenotypes as biomarkers for health and disease,
this novel work will pave the way for improving our ability to
reach this goal.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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